1
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
2
|
Liu Z, Liu J, Liu Z, Song X, Liu S, Liu F, Song L, Gao Y. Identification and Characterization of a Novel Insulin-like Receptor ( LvRTK2) Involved in Regulating Growth and Glucose Metabolism of the Pacific White Shrimp Litopenaeus vannamei. Biomolecules 2024; 14:1300. [PMID: 39456233 PMCID: PMC11506343 DOI: 10.3390/biom14101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The insulin receptor (IR) plays a crucial role in the growth and metabolism of animals. However, there are still many questions regarding the IR in crustaceans, particularly their role in shrimp growth and glucose metabolism. In this study, we identified a novel insulin-like receptor gene in Litopenaeus vannamei and cloned its full length of 6439 bp. This gene exhibited a highly conserved sequence and structural characteristics. Phylogenetic analysis confirmed it as an unreported RTK2-type IR, namely, LvRTK2. Expression pattern analysis showed that LvRTK2 is primarily expressed in female reproductive and digestive organs. Through a series of in vivo and in vitro experiments, including glucose treatment, exogenous insulin treatment, and starvation treatment, LvRTK2 was confirmed to be involved in the endogenous glucose metabolic pathway of shrimp under different glucose variations. Moreover, long-term and short-term interference experiments with LvRTK2 revealed that the interference significantly reduced the shrimp growth rate and serum glucose clearance rate. Further studies indicated that LvRTK2 may regulate shrimp growth by modulating the downstream PI3K/AKT signaling pathway and a series of glucose metabolism events, such as glycolysis, gluconeogenesis, glycogen synthesis, and glycogenolysis. This report on the characteristics and functions of LvRTK2 confirms the important role of RTK2-type IRs in regulating shrimp growth and glucose metabolism.
Collapse
Affiliation(s)
- Zijian Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China;
| | - Jiawei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Zijie Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Xiaowei Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Su Liu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Fei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Lin Song
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Yi Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| |
Collapse
|
3
|
Zhao H, Chen L, Liu M, Zhao S, Ma W, Jiang Y. Insulin receptor participates in the peripheral olfactory processes of honey bees (Apis cerana cerana). INSECT SCIENCE 2024; 31:1477-1488. [PMID: 38302859 DOI: 10.1111/1744-7917.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 02/03/2024]
Abstract
Insulin receptors (InR) are an integral component of the insulin/insulin-like growth factor signaling pathway, which plays a vital role in insect development, lifespan, reproduction, and olfactory sensitivity. However, whether InR participate in the peripheral olfactory system of insects remains unclear. Recently, we found that 2-heptanone (2-HT) affects AcerInR expression, the gene for an InR protein, in Apis cerana cerana. We then examined the spatiotemporal expression profile of the gene in A. cerana cerana. The mRNA of AcerInR was primarily expressed in the antennae, wings, and legs of forager bees, which are probable chemosensory tissues. The results of fluorescence competitive binding assays, combined with site-directed mutagenesis, demonstrated that AcerOBP6 and AcerOBP14 exhibit strong binding affinities to 2-HT. Furthermore, after foragers were fed with double-stranded AcerInR, the expression levels of AcerOBP6 and AcerOBP14 decreased significantly, as did the electroantennogram responsiveness to 2-HT and some other odorants. In conclusion, our findings provide a foundation for understanding the involvement of AcerInR in the odor perception of A. cerana cerana. Moreover, they offer novel insights into the olfactory recognition mechanism in insects.
Collapse
Affiliation(s)
- Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Longlong Chen
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Miaomiao Liu
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuguo Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
4
|
Santos-Araujo S, Gomes F, Carvalho-Kelly LF, Meyer-Fernandes JR, Gondim KC, Ramos I. In the fed state, autophagy plays a crucial role in assisting the insect vector Rhodnius prolixus mobilize TAG reserves under forced flight activity. Front Physiol 2024; 15:1352766. [PMID: 38725570 PMCID: PMC11079428 DOI: 10.3389/fphys.2024.1352766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy is a cellular degradation pathway mediated by highly conserved autophagy-related genes (Atgs). In our previous work, we showed that inhibiting autophagy under starvation conditions leads to significant physiological changes in the insect vector of Chagas disease Rhodnius prolixus; these changes include triacylglycerol (TAG) retention in the fat body, reduced survival and impaired locomotion and flight capabilities. Herein, because it is known that autophagy can be modulated in response to various stimuli, we further investigated the role of autophagy in the fed state, following blood feeding. Interestingly, the primary indicator for the presence of autophagosomes, the lipidated form of Atg8 (Atg8-II), displayed 20%-50% higher autophagic activation in the first 2 weeks after feeding compared to the third week when digestion was complete. Despite the elevated detection of autophagosomes, RNAi-mediated suppression of RpAtg6 and RpAtg8 did not cause substantial changes in TAG or protein levels in the fat body or the flight muscle during blood digestion. We also found that knockdown of RpAtg6 and RpAtg8 led to modest modulations in the gene expression of essential enzymes involved in lipid metabolism and did not significantly stimulate the expression of the chaperones BiP and PDI, which are the main effectors of the unfolded protein response. These findings indicate that impaired autophagy leads to slight disturbances in lipid metabolism and general cell proteostasis. However, the ability of insects to fly during forced flight until exhaustion was reduced by 60% after knockdown of RpAtg6 and RpAtg8. This change was accompanied by TAG and protein increases as well as decreased ATP levels in the fat body and flight muscle, indicating that autophagy during digestion, i.e., under fed conditions, is necessary to sustain high-performance activity.
Collapse
Affiliation(s)
- Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Ilyaskina D, Fernandes S, Berg MP, Lamoree MH, van Gestel CAM, Leonards PEG. Exploring the Relationship Among Lipid Profile Changes, Growth, and Reproduction in Folsomia candida Exposed to Teflubenzuron Over Time. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38517147 DOI: 10.1002/etc.5851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
The integration of untargeted lipidomics approaches in ecotoxicology has emerged as a strategy to enhance the comprehensiveness of environmental risk assessment. Although current toxicity tests with soil microarthropods focus on species performance, that is, growth, reproduction, and survival, understanding the mechanisms of toxicity across all levels of biological organization, from molecule to community is essential for informed decision-making. Our study focused on the impacts of sublethal concentrations of the insecticide teflubenzuron on the springtail Folsomia candida. Untargeted lipidomics was applied to link changes in growth, reproduction, and the overall stress response with lipid profile changes over various exposure durations. The accumulation of teflubenzuron in organisms exposed to the highest test concentration (0.035 mg a.s. kg-1 soil dry wt) significantly impacted reproductive output without compromising growth. The results suggested a resource allocation shift from reproduction to size maintenance. This hypothesis was supported by lipid shifts on day 7, at which point reductions in triacylglycerol and diacylglycerol content corresponded with decreased offspring production on day 21. The hypermetabolism of fatty acids and N-acylethanolamines on days 2 and 7 of exposure indicated oxidative stress and inflammation in the animals in response to teflubenzuron bioaccumulation, as measured using high-performance liquid chromatography-tandem mass spectrometry. Overall, the changes in lipid profiles in comparison with phenotypic adverse outcomes highlight the potential of lipid analysis as an early-warning tool for reproductive disturbances caused by pesticides in F. candida. Environ Toxicol Chem 2024;00:1-12. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Diana Ilyaskina
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Saúl Fernandes
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matty P Berg
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ameijeiras P, Capriotti N, Ons S, Oliveira PL, Sterkel M. eIF3 subunit M regulates blood meal digestion in Rhodnius prolixus affecting ecdysis, reproduction, and survival. INSECT SCIENCE 2023; 30:1282-1292. [PMID: 36621956 DOI: 10.1111/1744-7917.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In triatomines, blood-feeding triggers many physiological processes including post embryonic development and reproduction. Different feeding habits, such as hematophagy, can shape gene functions to meet the challenges of each type of diet. The gut of blood-sucking insects faces particular challenges after feeding due to the quantity and the quality of the food ingested. A comparison of transcriptomic and proteomic data indicates that post transcriptional regulation of gene expression is crucial in the triatomine gut. It was proposed that eukaryotic translation initiation factor 3 subunit m (eIF3m) and eIF3e define 2 different eIF3 complexes with a distinct affinity for the different mRNAs, thus selecting the set of mRNAs to be translated and constituting a post transcriptional mode of regulation of gene expression. Because the eIF3m is mainly expressed in the gut, we evaluated its relevance in Rhodnius prolixus physiology through RNA interference-mediated gene silencing. The knockdown of eIF3m reduced the digestion rate, affecting the processes triggered by a blood meal. Its silencing inhibited molting and caused premature death in nymphs while impaired ovary development, oviposition and increased resistance to starvation in adult females. The survival of males after feeding (resistance to starvation) was not affected by eIF3m knockdown. The information regarding the eIF3m function in insects is scarce and the phenotypes observed in R. prolixus upon eIF3m silencing are different and more severe than those previously described in Drosophila melanogaster, indicating a pleiotropic role of this gene in triatomines.
Collapse
Affiliation(s)
- Pilar Ameijeiras
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Natalia Capriotti
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
7
|
Keyes-Scott NI, Swade KR, Allen LR, Vogel KJ. RNAi-mediated knockdown of two orphan G protein-coupled receptors reduces fecundity in the yellow fever mosquito Aedes aegypti. FRONTIERS IN INSECT SCIENCE 2023; 3:1197945. [PMID: 38469499 PMCID: PMC10926455 DOI: 10.3389/finsc.2023.1197945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 03/13/2024]
Abstract
G protein-coupled receptors (GPCRs) control numerous physiological processes in insects, including reproduction. While many GPCRs have known ligands, orphan GPCRs do not have identified ligands in which they bind. Advances in genomic sequencing and phylogenetics provide the ability to compare orphan receptor protein sequences to sequences of characterized GPCRs, and thus gain a better understanding of the potential functions of orphan GPCRs. Our study sought to investigate the functions of two orphan GPCRs, AAEL003647 and AAEL019988, in the yellow fever mosquito, Aedes aegypti. From our phylogenetic investigation, we found that AAEL003647 is orthologous to the SIFamide-2/SMYamide receptor. We also found that AAEL019988 is orthologous to the Trapped in endoderm (Tre1) receptor of Drosophila melanogaster. Next, we conducted a tissue-specific expression analysis and found that both receptors had highest expression in the ovaries, suggesting they may be important for reproduction. We then used RNA interference (RNAi) to knock down both genes and found a significant reduction in the number of eggs laid per individual female mosquito, suggesting both receptors are important for Ae. aegypti reproduction.
Collapse
Affiliation(s)
| | | | | | - Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Dai Y, Li X, Ding J, Liang Z, Guo R, Yi T, Zhu Y, Chen S, Liang S, Liu W. Molecular and expression characterization of insulin-like signaling in development and metabolism of Aedes albopictus. Parasit Vectors 2023; 16:134. [PMID: 37072796 PMCID: PMC10111782 DOI: 10.1186/s13071-023-05747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Insulin-like signaling (IS) in insects is a conserved pathway that regulates development, reproduction and longevity. Insulin-like peptides (ILPs) activate the IS pathway by binding to the insulin receptor (InR) and trigger the ERK and AKT cascades. A varying number of ILPs were identified in Aedes aegypti mosquito and other insects. Aedes albopictus is an invasive mosquito which transmits dengue and Zika viruses worldwide. Until now, the molecular and expression characteristics of IS pathway in Ae. albopictus have not been investigated. METHODS The orthologues of ILP in Ae. albopictus genome assembly was analyzed by using sequence blast. Phylogenetic analysis and molecular characterization were performed to identify the functional domains of ILPs. Quantitative analysis was performed to determine the expression characteristics of ILPs, InR as well as ERK and AKT in mosquito development and different tissues of female adults after blood-feeding. In addition, the knockdown of InR was achieved by feeding larvae with Escherichia coli-producing dsRNA to investigate the impact of IS pathway on mosquito development. RESULTS We identified seven putative ILP genes in Ae. albopictus genome assembly, based on nucleotide similarity to the ILPs of Ae. aegypti and other insects. Bioinformatics and molecular analyses suggested that the ILPs contain the structural motif which is conserved in the insulin superfamily. Expression levels of ILPs, InR as well as ERK and AKT varied in Ae. albopictus development stages and between male and female adults. Quantitative analyses revealed that expression of ILP6, the putative orthologue of the insulin growth factor peptides, was highest in the midgut of female adults after blood-feeding. Knockdown of Ae. albopictus InR induces a significant decrease in the phosphorylation levels of ERK and AKT proteins and results in developmental delays and smaller body sizes. CONCLUSIONS The IS pathway of Ae. albopictus mosquito contains ILP1-7, InR and ERK/AKT cascades, which exhibited different developmental and tissue expression characteristics. Feeding Ae. albopictus larvae with E. coli-producing InR dsRNA blocks the ERK and AKT cascades and interferes with the development of mosquito. Our data suggest that IS pathway plays an important role in the metabolism and developmental process and could represent a potential target for controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Yi Dai
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Li
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinying Ding
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Liang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Renxian Guo
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tangwei Yi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yihan Zhu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Siqi Chen
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shaohui Liang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Wenquan Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
9
|
Fang H, Wang X, Liu X, Michaud JP, Wu Y, Zhang H, Li Y, Li Z. Molecular characterization of insulin receptor (IR) in oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), and elucidation of its regulatory roles in glucolipid homeostasis and metamorphosis through interaction with miR-982490. INSECT MOLECULAR BIOLOGY 2022; 31:659-670. [PMID: 35690916 DOI: 10.1111/imb.12794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
As an intermediate molecule in the Insulin/Insulin-like growth factor signalling pathway (IIS), the insulin receptor (IR) plays vital roles linking nutritional signals to the downstream regulation of metabolic homeostasis, development, metamorphosis, reproduction and stress responses. In the present study, we describe the molecular characteristics of IR in the cosmopolitan fruit boring pest, Grapholita molesta, and its predicted posttranscription regulator miR-982490, and elucidate its regulatory roles in glucolipid homeostasis and metamorphosis. Phylogenetic and domain analyses indicate that lepidopteran IRs normally cluster within families, and that four main domains are conserved in GmIR and those of other Lepidoptera. Bio-informatic prediction, synchronic expression profile evaluation and dual luciferase reporter assays indicated negative regulation of GmIR by miR-982490. Injection of miR-982490 agomir into fifth instar larvae yielded effects similar to dsGmIR injection, resulting in enhanced levels of trehalose and triglyceride in haemolymph, and reduced pupation success and pupal weight, both of which could be rescued by co-injection of dsGmIR and miR-982490 antagomir. We infer that GmIR regulates glucolipid homeostasis and affects G. molesta metamorphosis via interactions with its posttranscriptional regulator miR-982490. This study expands our understanding of the regulatory network of IIS in insect nutritional homeostasis and development.
Collapse
Affiliation(s)
- Haibo Fang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiu Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Kansas, USA
| | - Yanan Wu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huaijiang Zhang
- Chinese Academy of Agricultural Sciences, Institute of Pomology, Liaoning, China
| | - Yisong Li
- The College of Agronomy, Xinjiang Agricultural University, Xinjiang, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Moraes B, Braz V, Santos-Araujo S, Oliveira IA, Bomfim L, Ramos I, Gondim KC. Deficiency of Acetyl-CoA Carboxylase Impairs Digestion, Lipid Synthesis, and Reproduction in the Kissing Bug Rhodnius prolixus. Front Physiol 2022; 13:934667. [PMID: 35936892 PMCID: PMC9353303 DOI: 10.3389/fphys.2022.934667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Rhodnius prolixus is a hematophagous insect, vector of Chagas disease. After feeding, as blood is slowly digested, amino acids are used as substrates to fuel lipid synthesis, and adult females accumulate lipids in the fat body and produce eggs. In order to evaluate the importance of de novo fatty acid synthesis for this insect metabolism, we generated acetyl-CoA carboxylase (ACC) deficient insects. The knockdown (AccKD) females had delayed blood digestion and a shorter lifespan. Their fat bodies showed reduced de novo lipogenesis activity, did not accumulate triacylglycerol during the days after blood meal, and had smaller lipid droplets. At 10 days after feeding, there was a general decrease in the amounts of neutral lipids and phospholipids in the fat body. In the hemolymph, no difference was observed in lipid composition at 5 days after blood meal, but at day ten, there was an increase in hydrocarbon content and a decrease in phospholipids. Total protein concentration and amino acid composition were not affected. The AccKD females laid 60% fewer eggs than the control ones, and only 7% hatched (89% for control), although their total protein and triacylglycerol contents were not different. Scanning electron microscopy of the egg surface showed that chorion (eggshell) from the eggs laid by the AccKD insects had an altered ultrastructural pattern when compared to control ones. These results show that ACC has a central role in R. prolixus nutrient homeostasis, and its appropriate activity is important to digestion, lipid synthesis and storage, and reproductive success.
Collapse
Affiliation(s)
- Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdir Braz
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isadora A. Oliveira
- Centro de Espectrometria de Massas de Biomoléculas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Bomfim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Zhang X, Zhu X, Bi X, Huang J, Zhou L. The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 2022; 23:7793. [PMID: 35887136 PMCID: PMC9325136 DOI: 10.3390/ijms23147793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The insulin receptor (IR) is a transmembrane protein that is activated by ligands in insulin signaling pathways. The IR has been considered as a novel therapeutic target for clinical intervention, considering the overexpression of its protein and A-isoform in multiple cancers, Alzheimer's disease, and Type 2 diabetes mellitus in humans. Meanwhile, it may also serve as a potential target in pest management due to its multiple physiological influences in insects. In this review, we provide an overview of the structural and molecular biology of the IR, functions of IRs in humans and insects, physiological and nonpeptide small molecule modulators of the IR, and the regulating mechanisms of the IR. Xenobiotic compounds and the corresponding insecticidal chemicals functioning on the IR are also discussed. This review is expected to provide useful information for a better understanding of human IR-related diseases, as well as to facilitate the development of novel small-molecule activators and inhibitors of the IR for use as medicines or pesticides.
Collapse
Affiliation(s)
| | | | | | - Jiguang Huang
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| |
Collapse
|
12
|
Arêdes DS, De Paula IF, Santos-Araujo S, Gondim KC. Silencing of Mitochondrial Trifunctional Protein A Subunit (HADHA) Increases Lipid Stores, and Reduces Oviposition and Flight Capacity in the Vector Insect Rhodnius prolixus. FRONTIERS IN INSECT SCIENCE 2022; 2:885172. [PMID: 38468769 PMCID: PMC10926480 DOI: 10.3389/finsc.2022.885172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 03/13/2024]
Abstract
Rhodnius prolixus is an obligatory hematophagous insect, vector of Chagas disease. After blood meal, lipids are absorbed, metabolized, synthesized, and accumulated in the fat body. When necessary, stored lipids are mobilized, transported to other organs, or are oxidized to provide energy. Mitochondrial β-oxidation is a cyclic conserved pathway, where degradation of long-chain fatty acids occurs to contribute to cellular energetic demands. Three of its reactions are catalyzed by the mitochondrial trifunctional protein (MTP), which is composed by hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunits alpha and beta (HADHA and HADHB, respectively). Here, we investigated the role of HADHA in lipid metabolism and reproduction of Rhodnius prolixus females. The expression of HADHA gene (RhoprHadha) was determined in the organs of starving adult insects. The flight muscle and ovary had higher expression levels when compared to the anterior and posterior midguts or the fat body. RhoprHadha gene expression was upregulated by blood meal in the flight muscle and fat body. We generated insects with RNAi-mediated knockdown of RhoprHadha to address the physiological role of this gene. RhoprHadha deficiency resulted in higher triacylglycerol content and larger lipid droplets in the fat body during starvation. After feeding, lifespan of the knockdown females was not affected, but they exhibited a decrease in oviposition, although hatching was the same in both groups. Silenced females showed lower forced flight capacity than the control ones, and their fat bodies had lower gene expression levels of Brummer lipase (RhoprBmm) and long-chain acyl-CoA synthetase 2 (RhoprAcsl2). Taken together, these findings indicate that HADHA is important to guarantee successful reproduction and efficient mobilization of lipid stores during starvation and flight.
Collapse
Affiliation(s)
| | | | | | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Lange AB, Leyria J, Orchard I. The hormonal and neural control of egg production in the historically important model insect, Rhodnius prolixus: A review, with new insights in this post-genomic era. Gen Comp Endocrinol 2022; 321-322:114030. [PMID: 35317995 DOI: 10.1016/j.ygcen.2022.114030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
Rhodnius prolixus, the blood gorging kissing bug, is a model insect, extensively used by Sir Vincent Wigglesworth and others, upon which the foundations of insect physiology, endocrinology, and development are built. It is also medically important, being a principal vector of Trypanosoma cruzi, the causative agent of Chagas disease in humans. The blood meal stimulates and enables egg production, and since an adult mated female can take several blood meals, each female can produce hundreds of offspring. Understanding the reproductive biology of R. prolixus is therefore of some critical importance for controlling the transmission of Chagas disease. The R. prolixus genome is available and so the post-genomic era has arrived for this historic model insect. This review focuses on the female reproductive system and coordination over the production of eggs, emphasizing the classical (neuro)endocrinological studies that led to a model describing inputs from feeding and mating, and the neural control of egg-laying. We then review recent insights brought about by molecular analyses, including transcriptomics, that confirm, support, and considerably extends this model. We conclude this review with an updated model describing the events leading to full expression of egg production, and also provide a consideration of questions for future exploration and experimentation.
Collapse
Affiliation(s)
- Angela B Lange
- University of Toronto Mississauga, Department of Biology, Mississauga, ON L5L 1C6, Canada.
| | - Jimena Leyria
- University of Toronto Mississauga, Department of Biology, Mississauga, ON L5L 1C6, Canada.
| | - Ian Orchard
- University of Toronto Mississauga, Department of Biology, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
14
|
Haddad AN, Leyria J, Lange AB. Identification of a tachykinin receptor and its implication in carbohydrate and lipid homeostasis in Rhodnius prolixus, a chagas disease vector. Gen Comp Endocrinol 2022; 320:114010. [PMID: 35231487 DOI: 10.1016/j.ygcen.2022.114010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/03/2023]
Abstract
Neuropeptides and their receptors are fundamentally important in regulating many physiological and behavioural processes in insects. In this work, we have identified, cloned, and sequenced the tachykinin receptor (Rhopr-TKR) from Rhodnius prolixus, a vector of Chagas disease. The receptor is a G protein-coupled receptor belonging to the Rhodopsin Family A. The total length of the open reading frame of the Rhopr-TKR transcript is 1110 bp, which translates into a receptor of 338 amino acids. Fluorescent in-situ RNA-hybridization (FISH) for the Rhopr-TKR transcript shows a signal in a group of six bilaterally paired neurons in the protocerebrum of the brain, localized in a similar region as the insulin producing cells. To examine the role of tachykinin signaling in lipid and carbohydrate homeostasis we used RNA interference. Downregulation of the Rhopr-TKR transcript led to a decrease in the size of blood meal consumed and a significant increase in circulating carbohydrate and lipid levels. Further investigation revealed a close relationship between tachykinin and insulin signaling since the downregulation of the Rhopr-TKR transcript negatively affected the transcript expression for insulin-like peptide 1 (Rhopr-ILP1), insulin-like growth factor (Rhopr-IGF) and insulin receptor 1 (Rhopr-InR1) in both the central nervous system and fat body. Taken together, these findings suggest that tachykinin signaling regulates lipid and carbohydrate homeostasis via the insulin signaling pathway.
Collapse
Affiliation(s)
- A N Haddad
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - J Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - A B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
15
|
Kanagasabai T, Li G, Shen TH, Gladoun N, Castillo-Martin M, Celada SI, Xie Y, Brown LK, Mark ZA, Ochieng J, Ballard BR, Cordon-Cardo C, Adunyah SE, Jin R, Matusik RJ, Chen Z. MicroRNA-21 deficiency suppresses prostate cancer progression through downregulation of the IRS1-SREBP-1 signaling pathway. Cancer Lett 2022; 525:46-54. [PMID: 34610416 DOI: 10.1016/j.canlet.2021.09.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022]
Abstract
Sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor in lipogenesis and lipid metabolism, is critical for disease progression and associated with poor outcomes in prostate cancer (PCa) patients. However, the mechanism of SREBP-1 regulation in PCa remains elusive. Here, we report that SREBP-1 is transcriptionally regulated by microRNA-21 (miR-21) in vitro in cultured cells and in vivo in mouse models. We observed aberrant upregulation of SREBP-1, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC) in Pten/Trp53 double-null mouse embryonic fibroblasts (MEFs) and Pten/Trp53 double-null mutant mice. Strikingly, miR-21 loss significantly reduced cell proliferation and suppressed the prostate tumorigenesis of Pten/Trp53 mutant mice. Mechanistically, miR-21 inactivation decreased the levels of SREBP-1, FASN, and ACC in human PCa cells through downregulation of insulin receptor substrate 1 (IRS1)-mediated transcription and induction of cellular senescence. Conversely, miR-21 overexpression increased cell proliferation and migration; as well as the levels of IRS1, SREBP-1, FASN, and ACC in human PCa cells. Our findings reveal that miR-21 promotes PCa progression by activating the IRS1/SREBP-1 axis, and targeting miR-21/SREBP-1 signaling pathway can be a novel strategy for controlling PCa malignancy.
Collapse
Affiliation(s)
- Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Tian Huai Shen
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Nataliya Gladoun
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mireia Castillo-Martin
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sherly I Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Yingqiu Xie
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Lakendria K Brown
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Zaniya A Mark
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Josiah Ochieng
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Carlos Cordon-Cardo
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
16
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
17
|
Sousa G, de Carvalho SS, Atella GC. Trypanosoma cruzi Affects Rhodnius prolixus Lipid Metabolism During Acute Infection. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.737909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interaction between Rhodnius prolixus and Trypanosoma cruzi has huge medical importance because it responds to the transmission of Chagas disease, a neglected tropical disease that affects about eight million people worldwide. It is known that trypanosomatid pathogens depend on active lipid endocytosis from the insect host to meet growth and differentiation requirements. However, until now, knowledge on how the parasite affects the lipid physiology of individual insect organs was largely unknown. Herein, the biochemical and molecular dynamics of the triatomine R. prolixus lipid metabolism in response to T. cruzi acute infection were investigated. A qRT-PCR approach was used to determine the expression profile of 12 protein-coding genes involved in R. prolixus lipid physiology. In addition, microscopic and biochemical assays revealed the lipid droplet profile and the levels of the different identified lipid classes. Finally, spectrometry analyses were used to determine fatty acid and sterol composition and their modulation towards the infection. T. cruzi infection downregulated the transcript levels of protein-coding genes for lipid biosynthetic and degrading pathways in individual triatomine organs. On the other hand, upregulation of lipid receptor transcripts indicates an attempt to capture more lipids from hemolymphatic lipoproteins. Consequently, several lipid classes (such as monoacylglycerol, diacylglycerol, triacylglycerol, cholesteryl ester, phosphatidylcholine, and phosphatidylethanolamine) were involved in the response to the parasite challenge, although modulating only the insect fat body. T. cruzi never leaves the insect gut and yet it modulates non-infected tissues, suggesting that the association between the parasite and the vector organs is reached by cell signaling molecules. This hypothesis raises several intriguing issues to inspire future studies in the parasite-vector interaction field.
Collapse
|
18
|
Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021; 12:701203. [PMID: 34267679 PMCID: PMC8276055 DOI: 10.3389/fphys.2021.701203] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The insulin-like peptide (ILP) and insulin-like growth factor (IGF) signalling pathways play a crucial role in the regulation of metabolism, growth and development, fecundity, stress resistance, and lifespan. ILPs are encoded by multigene families that are expressed in nervous and non-nervous organs, including the midgut, salivary glands, and fat body, in a tissue- and stage-specific manner. Thus, more multidirectional and more complex control of insect metabolism can occur. ILPs are not the only factors that regulate metabolism. ILPs interact in many cross-talk interactions of different factors, for example, hormones (peptide and nonpeptide), neurotransmitters and growth factors. These interactions are observed at different levels, and three interactions appear to be the most prominent/significant: (1) coinfluence of ILPs and other factors on the same target cells, (2) influence of ILPs on synthesis/secretion of other factors regulating metabolism, and (3) regulation of activity of cells producing/secreting ILPs by various factors. For example, brain insulin-producing cells co-express sulfakinins (SKs), which are cholecystokinin-like peptides, another key regulator of metabolism, and express receptors for tachykinin-related peptides, the next peptide hormones involved in the control of metabolism. It was also shown that ILPs in Drosophila melanogaster can directly and indirectly regulate AKH. This review presents an overview of the regulatory role of insulin-like peptides in insect metabolism and how these factors interact with other players involved in its regulation.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Pawel Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
19
|
Toprak U, Musselman LP. From cellular biochemistry to systems physiology: New insights into insect lipid metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103585. [PMID: 33915290 DOI: 10.1016/j.ibmb.2021.103585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Umut Toprak
- Ankara University, Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara, Turkey.
| | | |
Collapse
|
20
|
Leyria J, Orchard I, Lange AB. The involvement of insulin/ToR signaling pathway in reproductive performance of Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 130:103526. [PMID: 33453353 DOI: 10.1016/j.ibmb.2021.103526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Insulins are peptide hormones widely studied for their important regulatory roles in metabolism, growth and development. In insects, insulin signaling along with the target of rapamycin (ToR) are involved in detecting and interpreting nutrient levels. Recently, by transcriptome analysis we reported an up-regulation of transcripts involved in insulin/ToR signaling in unfed Rhodnius prolixus; however, this signaling pathway is only activated in fed insects. Here, continuing with the blood-gorging triatomine R. prolixus as a model, we report the direct effect of insulin/ToR signaling on reproductive performance. By immunofluorescence we identified cells in the brain with positive signal to the R. prolixus ILP (Rhopr-ILP1) and show that the insulin receptor and protein effectors downstream of insulin/ToR signaling activation, are differentially expressed in ovarian follicles dependent on their developmental stage. Using qPCR we find that the expression of transcripts involved in insulin signaling in the central nervous system (CNS), fat body and ovaries increase as the state of starvation progresses, promoting a more highly sensitized state to respond rapidly to ILP/IGF levels. In addition, using dsRNA injection and in vivo and ex vivo assays to promote signaling activation we demonstrate a direct participation of insulin/ToR signaling in coordinating the synthesis of the main yolk protein precursor, vitellogenin, thereby influencing the numbers of eggs laid per female. We thereby show a mechanism by which nutritional signaling regulates reproductive performance in a vector of Chagas disease. As reproduction is responsible for propagation of insect populations, this work is important for the development of innovative biocontrol methods.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|