1
|
Rodriguez A, Purvinsh Y, Zhang J, Rogovskyy AS, Kurouski D. Nano-Infrared Detection and Identification of Bacteria at the Single-Cell Level. Anal Chem 2025; 97:9535-9539. [PMID: 40258302 DOI: 10.1021/acs.analchem.5c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Every year, bacterial infections are responsible for over 7 million deaths globally. Timely detection and identification of these pathogens enable timely administration of antimicrobial agents, which can save thousands of lives. Most of the currently known approaches that can address these needs are time- and labor consuming. In this study, we examine the potential of innovative nano-infrared spectroscopy, also known as atomic force microscopy infrared (AFM-IR) spectroscopy, and machine learning in the identification of different bacteria. We demonstrate that a single bacteria cell is sufficient to identify Borreliella burgdorferi, Escherichia coli, Mycobacterium smegmatis, and two strains of Acinetobacter baumannii with 100% accuracy. The identification is based on the vibrational bands that originate from the components of the cell wall as well as the interior biomolecules of the bacterial cell. These results indicate that nano-IR spectroscopy can be used for the nondestructive, confirmatory, and label-free identification of pathogenic microorganisms at the single-cell level.
Collapse
Affiliation(s)
- Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Yana Purvinsh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Artem S Rogovskyy
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Holman AP, Dou T, Matveyenka M, Zhaliazka K, Patel A, Maalouf A, Elsaigh R, Kurouski D. The role of phospholipid saturation and composition in α-synuclein aggregation and toxicity: A dual in vitro and in vivo approach. Protein Sci 2025; 34:e70121. [PMID: 40247826 PMCID: PMC12006753 DOI: 10.1002/pro.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Parkinson's disease is characterized by a progressive accumulation of α-synuclein (α-syn) aggregates in Lewy bodies, extracellular deposits found in the midbrain, hypothalamus, and thalamus. The rate of α-syn aggregation, as well as the secondary structure of α-syn oligomers and fibrils, can be uniquely altered by lipids. However, the role of saturation of fatty acids (FAs) in such lipids in the aggregation properties of α-syn remains unclear. In this study, we investigated the effect of saturation of FAs in phosphatidylcholine (PC) and cardiolipin (CL), as well as a mixture of these phospholipids on the rate of α-syn aggregation. We found that although saturation plays very little if any role in the rate of protein aggregation and morphology of α-syn aggregates, it determined the secondary structure of α-syn oligomers and fibrils. Furthermore, we found that aggregates formed in the presence of both saturated and unsaturated PC and CL, as well as mixtures of these phospholipids, exert significantly higher cell toxicity compared to the protein aggregates formed in the lipid-free environment. To extend these findings, we conducted in vivo studies using C. elegans, where we assessed the effect of lipid-modified α-syn aggregates on organismal survival and neurotoxicity. Our results suggest that the saturation of FAs in phospholipids present in the plasma and mitochondrial membranes can be a key determinant of the secondary structure and, consequently, the toxicity of α-syn oligomers and fibrils. These findings provide new insights into the role of lipids in Parkinson's disease pathogenesis and highlight potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Aidan P. Holman
- Interdisciplinary Faculty of ToxicologyTexas A&M UniversityCollege StationTexasUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Tianyi Dou
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Mikhail Matveyenka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Kiryl Zhaliazka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Anjni Patel
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Avery Maalouf
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Ragd Elsaigh
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Dmitry Kurouski
- Interdisciplinary Faculty of ToxicologyTexas A&M UniversityCollege StationTexasUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
3
|
Saha J, Wolszczak A, Kaur N, Widanage MCD, McCalpin SD, Fu R, Ali J, Ramamoorthy A. Anionic lipid catalyzes the generation of cytotoxic insulin oligomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633028. [PMID: 39868250 PMCID: PMC11761421 DOI: 10.1101/2025.01.14.633028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Misfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection sites poses a challenge for diabetic patients who rely on insulin therapy. Furthermore, decreased responsiveness to insulin in type 2 diabetic (T2D) patients may lead to its overproduction and accumulation as aggregates. Earlier reports have reported that various factors such as pH, temperature, agitation, and the presence of lipids or other proteins influence insulin aggregation. Our present study aims to elucidate the effects of non-micellar anionic DMPG (1,2-dimyristoyl-sn-glycero-3-phosphoglycerol) lipids on insulin aggregation. Distinct pathways of insulin aggregation and intermediate formation were observed in the presence of DMPG using a ThT fluorescence assay. The formation of soluble intermediates, alongside large insulin fibrils, was observed in insulin incubated with DMPG via TEM, DLS and NMR, as opposed to insulin aggregates generated without lipids. 13C magic angle spinning solid-state NMR and FTIR experiments indicated that lipids do not alter the conformation of insulin fibrils but do alter the time scale of motion of aromatic and aliphatic sidechains. Furthermore, the soluble intermediates were found to be more cytotoxic as compared to fibrils generated with or without lipids. Overall, our study elucidates the importance of anionic lipids in dictating the pathways and intermediates associated with insulin aggregation. These findings could be useful in determining various approaches to avoid toxicity and enhance the effectiveness of insulin in therapeutic applications.
Collapse
Affiliation(s)
- Jhinuk Saha
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Audrey Wolszczak
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Navneet Kaur
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Malitha C. Dickwella Widanage
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Samuel D McCalpin
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Jamel Ali
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Ayyalusamy Ramamoorthy
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| |
Collapse
|
4
|
Juárez I, Naron A, Blank H, Polymenis M, Threadgill DW, Bailey RL, Stover PJ, Kurouski D. Noninvasive Optical Sensing of Aging and Diet Preferences Using Raman Spectroscopy. Anal Chem 2025; 97:969-975. [PMID: 39743337 PMCID: PMC11740184 DOI: 10.1021/acs.analchem.4c05853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Effective dietary strategies and interventions for monitoring dietary exposures require accurate and noninvasive methods to understand how diet modulates health and risk of obesity; advances in technology are transforming the landscape and enabling more specific tailored approaches to nutritional guidance. This study explores the use of Raman spectroscopy (RS), a noninvasive and nondestructive analytical technique, to identify changes in the mice skin in response to constant dietary exposures. We found that RS is highly accurate to determine body composition as a result of habitual dietary patterns, specifically Vegan, Typical American, and Ketogenic diets, all very common in the US context. RS is based on major differences in the intensities of vibrational bands that originate from collagen. Moreover, RS could be used to predict folate deficiency and identify the sex of the animals. Finally, we found that RS could be used to track the chronological age of the mice. Considering the hand-held nature of the utilized spectrometer, one can expect that RS could be used to monitor and, consequently, personalize effects of diet on the body composition.
Collapse
Affiliation(s)
- Isaac
D. Juárez
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Alexandra Naron
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Heidi Blank
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Michael Polymenis
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - David W. Threadgill
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Regan L. Bailey
- Department
of Nutrition, Texas A&M University, College Station, Texas 77843, United States
- Institute
for Advancing Health through Agriculture Texas A&M University, College Station, Texas 77843, United States
| | - Patrick J. Stover
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
for Advancing Health through Agriculture Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
for Advancing Health through Agriculture Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Ali A, Matveyenka M, Pickett DN, Rodriguez A, Kurouski D. Tubulin-Binding Region Modulates Cholesterol-Triggered Aggregation of Tau Proteins. J Neurochem 2025; 169:e16294. [PMID: 39777699 PMCID: PMC11731895 DOI: 10.1111/jnc.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau1-441, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules. Other Tau isoforms have one (1N4R) or zero (0N4R) N-terminal inserts, which makes 2N4R Tau more and 0N4R less effective in promoting microtubule self-assembly. A growing body of evidence indicates that lipids can alter the aggregation rate of Tau isoforms. However, the role of N-terminal inserts in Tau-lipid interactions remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which N-terminal inserts alter interactions of Tau isoforms with cholesterol, one of the most important lipids in plasma membranes. Our results showed that 2 N insert prevents amyloid-driven aggregation of Tau at the physiological concentration of cholesterol, while the absence of this N-terminal repeat (1N4R and 0N4R Tau) resulted in the self-assembly of Tau into toxic amyloid fibrils. We also found that the presence of cholesterol in the lipid bilayers caused a significant increase in the cytotoxicity of 1N4R and 0N4R Tau to neurons. This effect was not observed for 2N4R Tau fibrils formed in the presence of lipid membranes with low, physiological, and elevated concentrations of cholesterol. Using molecular assays, we found that Tau aggregates primarily exert cytotoxicity by damaging cell endosomes, endoplasmic reticulum, and mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Davis N Pickett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Ali A, Holman AP, Rodriguez A, Matveyenka M, Kurouski D. Tubulin-binding region alters tau-lipid interactions and changes toxicity of tau fibrils formed in the presence of phosphatidylserine lipids. Protein Sci 2024; 33:e5078. [PMID: 38895991 PMCID: PMC11187861 DOI: 10.1002/pro.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease is the fastest-growing neurodegenerative disease that affects over six million Americans. The abnormal aggregation of amyloid β peptide and Tau protein is the expected molecular cause of the loss of neurons in brains of AD patients. A growing body of evidence indicates that lipids can alter the aggregation rate of amyloid β peptide and modify the toxicity of amyloid β aggregates. However, the role of lipids in Tau aggregation remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which phospatidylserine (PS) altered the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N terminal inserts that enhance the binding of Tau to tubulin. We found that the length and saturation of fatty acids (FAs) in PS altered the aggregation rate of 2N4R isoform, while no changes in the aggregation rate of 1N4R were observed. These results indicate that N terminal inserts play an important role in protein-lipid interactions. We also found that PS could change the toxicity of 1N4R and 2N4R Tau fibrils, as well as alter molecular mechanisms by which these aggregates exert cytotoxicity to neurons. Finally, we found that although Tau fibrils formed in the presence and absence of PS endocytosed by cells, only fibril species that were formed in the presence of PS exert strong impairment of the cell mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Aidan P. Holman
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of EntomologyTexas A&M UniversityCollege StationTexasUSA
| | - Axell Rodriguez
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Mikhail Matveyenka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
8
|
Matveyenka M, Zhaliazka K, Kurouski D. Macrophages and Natural Killers Degrade α-Synuclein Aggregates. Mol Pharm 2024; 21:2565-2576. [PMID: 38635186 PMCID: PMC11080468 DOI: 10.1021/acs.molpharmaceut.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Amyloid oligomers and fibrils are protein aggregates that exert a high cell toxicity. Efficient degradation of these protein aggregates can minimize the spread and progression of neurodegeneration. In this study, we investigate the properties of natural killer (NK) cells and macrophages in the degradation of α-synuclein (α-Syn) aggregates grown in a lipid-free environment and in the presence of phosphatidylserine and cholesterol (PS/Cho), which are lipids that are directly associated with the onset and progression of Parkinson's disease. We found that both types of α-Syn aggregates were endocytosed by neurons, which caused strong damage to cell endosomes. Our results also indicated that PS/Cho vesicles drastically increased the toxicity of α-Syn fibrils formed in their presence compared to the toxicity of α-Syn aggregates grown in a lipid-free environment. Both NK cells and macrophages were able to degrade α-Syn and α-Syn/Cho monomers, oligomers, and fibrils. Quantitative analysis of protein degradation showed that macrophages demonstrated substantially more efficient internalization and degradation of amyloid aggregates in comparison to NK cells. We also found that amyloid aggregates induced the proliferation of macrophages and NK cells and significantly changed the expression of their cytokines and chemokines.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Ali A, Holman AP, Rodriguez A, Zhaliazka K, Osborne L, Kurouski D. Large Unilamellar Vesicles of Phosphatidic Acid Reduce the Toxicity of α-Synuclein Fibrils. Mol Pharm 2024; 21:1334-1341. [PMID: 38373398 PMCID: PMC10915799 DOI: 10.1021/acs.molpharmaceut.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
Parkinson's disease (PD) is a severe pathology that is caused by a progressive degeneration of dopaminergic neurons in substantia nigra pars compacta as well as other areas in the brain. These neurodegeneration processes are linked to the abrupt aggregation of α-synuclein (α-syn), a small protein that is abundant at presynaptic nerve termini, where it regulates cell vesicle trafficking. Due to the direct interactions of α-syn with cell membranes, a substantial amount of work was done over the past decade to understand the role of lipids in α-syn aggregation. However, the role of phosphatidic acid (PA), a negatively charged phospholipid with a small polar head, remains unclear. In this study, we examined the effect of PA large unilamellar vesicles (LUVs) on α-syn aggregation. We found that PA LUVs with 16:0, 18:0, and 18:1 FAs drastically reduced the toxicity of α-syn fibrils if were present in a 1:1 molar ratio with the protein. Our results also showed that the presence of these vehicles changed the rate of α-syn aggregation and altered the morphology and secondary structure of α-syn fibrils. These results indicate that PA LUVs can be used as a potential therapeutic strategy to reduce the toxicity of α-syn fibrils formed upon PD.
Collapse
Affiliation(s)
- Abid Ali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Aidan P. Holman
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Axell Rodriguez
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Luke Osborne
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Ali A, Zhaliazka K, Holman A, Kurouski D. Secondary structure and toxicity of lysozyme fibrils are determined by the length and unsaturation of phosphatidic acid. Proteins 2024; 92:411-417. [PMID: 37909765 PMCID: PMC11075103 DOI: 10.1002/prot.26622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
A progressive aggregation of misfolded proteins is a hallmark of numerous pathologies including diabetes Type 2, Alzheimer's disease, and Parkinson's disease. As a result, highly toxic protein aggregates, which are known as amyloid fibrils, are formed. A growing body of evidence suggests that phospholipids can uniquely alter the secondary structure and toxicity of amyloid aggregates. However, the role of phosphatidic acid (PA), a unique lipid that is responsible for cell signaling and activation of lipid-gated ion channels, in the aggregation of amyloidogenic proteins remains unclear. In this study, we investigate the role of the length and degree of unsaturation of fatty acids (FAs) in PA in the structure and toxicity of lysozyme fibrils formed in the presence of this lipid. We found that both the length and saturation of FAs in PA uniquely altered the secondary structure of lysozyme fibrils. However, these structural differences in PA caused very little if any changes in the morphology of lysozyme fibrils. We also utilized cell toxicity assays to determine the extent to which the length and degree of unsaturation of FAs in PA altered the toxicity of lysozyme fibrils. We found that amyloid fibrils formed in the presence of PA with C18:0 FAs exerted significantly higher cell toxicity compared to the aggregates formed in the presence of PA with C16:0 and C18:1 FAs. These results demonstrated that PA can be an important player in the onset and spread of amyloidogenic diseases.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Aidan Holman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843, United States
| |
Collapse
|
11
|
Zhaliazka K, Ali A, Kurouski D. Phospholipids and Cholesterol Determine Molecular Mechanisms of Cytotoxicity of α-Synuclein Oligomers and Fibrils. ACS Chem Neurosci 2024; 15:371-381. [PMID: 38166409 DOI: 10.1021/acschemneuro.3c00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta, hypothalamus, and thalamus is a hallmark of Parkinson's disease. Neuronal death is linked to the abrupt aggregation of α-synuclein (α-Syn), a small membrane protein that regulates cell vesicle trafficking. α-Syn aggregation rate, as well as the secondary structure and toxicity of α-Syn fibrils, could be uniquely altered by lipids. However, molecular mechanisms that determine such a remarkable difference in the toxicity of α-Syn fibrils formed in the presence of lipids remain unclear. In this study, we used a set of molecular assays to determine the molecular mechanism by which α-Syn fibrils formed in the presence of phosphatidylcholine (PC), cardiolipin (CL), and cholesterol (Cho) exert cell toxicity. We found that rat dopaminergic cells exposed to α-Syn fibrils formed in the presence of different lipids exert drastically different magnitudes and dynamics of unfolded protein response (UPR) in the endoplasmic reticulum (ER) and mitochondria (MT). Specifically, α-Syn:CL were found to cause the strongest, whereas α-Syn fibrils formed in the absence of lipids had the lowest magnitude of the UPR cell response. We also found the opposite dynamics of the ER- and MT-UPR responses in rat dopaminergic cells exposed to protein aggregates. These results could suggest that facing severe ER stress, dopaminergic cells suppress MT-UPR response, enabling the maximal ATP production to restore their normal physiological function. These findings help to better understand complex mechanisms of cell toxicity of amyloid aggregates and ultimately find neuroprotective drug candidates that will be able to suppress the spread of Parkinson's disease.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Hoover Z, Lynn M, Zhaliazka K, Holman AP, Dou T, Kurouski D. Long-Chain Polyunsaturated Fatty Acids Accelerate the Rate of Insulin Aggregation and Enhance Toxicity of Insulin Aggregates. ACS Chem Neurosci 2024; 15:147-154. [PMID: 38127718 PMCID: PMC10862472 DOI: 10.1021/acschemneuro.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Long-chain polyunsaturated fatty acids (LCPUFAs) are essential components of a human diet. These molecules are critically important for cognitive attention and memory, mood states, coronary circulation, and cirrhosis. However, recently reported findings demonstrated that docosahexaenoic (DHA) and arachidonic acids (ARA), ω-3 and ω-6 LCPUFAs, accelerated the aggregation rates of insulin and α-synuclein, proteins that are directly linked to diabetes type 2 and Parkinson's disease, respectively. Furthermore, both DHA and ARA uniquely altered the structure and toxicity of the corresponding protein aggregates. Our objective is to ascertain whether other LCPUFAs, alongside long-chain unsaturated fatty acid (LCUFA) proteins, exhibit similar effects on amyloidogenic proteins. To explore this matter, we investigated the effect of 10 different LCPUFAs and LCUFAs on the rate of insulin aggregation. We found that all of the analyzed fatty acids strongly accelerated insulin aggregation. Moreover, we found that protein aggregates that were formed in the presence of these fatty acids exerted significantly higher cell toxicity compared with insulin fibrils grown in the lipid-free environment. These findings show that interactions between amyloid-associated proteins and LCPUFAs can be the underlying molecular cause of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zachary Hoover
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Michael Lynn
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Aidan P. Holman
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Tianyi Dou
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Zhaliazka K, Kurouski D. Nano-infrared analysis of amyloid β 1-42 fibrils formed in the presence of lipids with unsaturated fatty acids. NANOSCALE 2023; 15:19650-19657. [PMID: 38019134 PMCID: PMC11034782 DOI: 10.1039/d3nr05184f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive memory loss and serious impairment of cognitive abilities. AD is the most common cause of dementia, affecting more than 44 million people around the world. The hallmark of AD is amyloid plaques, extracellular deposits primarily found in the frontal lobe, that are composed of amyloid β (Aβ) aggregates. In this study, we utilized nano-infrared spectroscopy, also known as Atomic Force Microscopy Infrared (AFM-IR) spectroscopy to investigate the effect of unsaturated phospholipids on the rate of Aβ1-42 aggregation. We found that unsaturated phosphatidylcholine, phosphatidylserine, and cardiolipin strongly suppressed aggregation of Aβ1-42. Furthermore, Aβ1-42 fibrils formed in the presence of such lipids exerted significantly lower cell toxicity compared to the protein aggregates formed in the lipid-free environment. These findings suggest that dietary changes linked to the increased consumption of unsaturated phospholipids could be considered as a potential therapeutic approach that can decelerate the progression of AD. These results also suggest that large unilamellar vesicles with unsaturated lipids can be used as potential therapeutics to delay the onset and decelerate the progression of AD.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
14
|
Ali A, Zhaliazka K, Dou T, Holman AP, Kurouski D. Cholesterol and Sphingomyelin Uniquely Alter the Rate of Transthyretin Aggregation and Decrease the Toxicity of Amyloid Fibrils. J Phys Chem Lett 2023; 14:10886-10893. [PMID: 38033106 PMCID: PMC10863059 DOI: 10.1021/acs.jpclett.3c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Transthyretin (TTR) is a small tetrameric protein that aggregates, forming highly toxic oligomers and fibrils. In the blood and cerebrospinal fluid, TTR can interact with various biomolecules, phospho- and sphingolipids, and cholesterol on the red blood cell plasma membrane. However, the role of these molecules in TTR aggregation remains unclear. In this study, we investigated the extent to which phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol (Cho), important components of plasma membranes, could alter the rate of TTR aggregation. We found that PC and SM inhibited TTR aggregation whereas Cho strongly accelerated it. The presence of these lipids during the stage of protein aggregation uniquely altered the morphology and secondary structure of the TTR fibrils, which changed the toxicity of these protein aggregates. These results suggest that interactions of TTR with red blood cells, whose membranes are rich with these lipids, can trigger irreversible aggregation of TTR and cause transthyretin amyloidosis.
Collapse
Affiliation(s)
- Abid Ali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Tianyi Dou
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Aidan P. Holman
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| |
Collapse
|
15
|
Rodriguez A, Ali A, Holman AP, Dou T, Zhaliazka K, Kurouski D. Nanoscale structural characterization of transthyretin aggregates formed at different time points of protein aggregation using atomic force microscopy-infrared spectroscopy. Protein Sci 2023; 32:e4838. [PMID: 37967043 PMCID: PMC10683371 DOI: 10.1002/pro.4838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Transthyretin (TTR) amyloidosis is a progressive disease characterized by an abrupt aggregation of misfolded protein in multiple organs and tissues TTR is a tetrameric protein expressed in the liver and choroid plexus. Protein misfolding triggers monomerization of TTR tetramers. Next, monomers assemble forming oligomers and fibrils. Although the secondary structure of TTR fibrils is well understood, there is very little if anything is known about the structural organization of TTR oligomers. To end this, we used nano-infrared spectroscopy, also known as atomic force microscopy infrared (AFM-IR) spectroscopy. This emerging technique can be used to determine the secondary structure of individual amyloid oligomers and fibrils. Using AFM-IR, we examined the secondary structure of TTR oligomers formed at the early (3-6 h), middle (9-12 h), and late (28 h) of protein aggregation. We found that aggregating, TTR formed oligomers (Type 1) that were dominated by α-helix (40%) and β-sheet (~30%) together with unordered protein (30%). Our results showed that fibril formation was triggered by another type of TTR oligomers (Type 2) that appeared at 9 h. These new oligomers were primarily composed of parallel β-sheet (55%), with a small amount of antiparallel β-sheet, α-helix, and unordered protein. We also found that Type 1 oligomers were not toxic to cells, whereas TTR fibrils formed at the late stages of protein aggregation were highly cytotoxic. These results show the complexity of protein aggregation and highlight the drastic difference in the protein oligomers that can be formed during such processes.
Collapse
Affiliation(s)
- Axell Rodriguez
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Abid Ali
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Aidan P. Holman
- Department of EntomologyTexas A&M UniversityCollege StationTexasUSA
| | - Tianyi Dou
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Kiryl Zhaliazka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
16
|
Kurouski D. Elucidating the Role of Lipids in the Aggregation of Amyloidogenic Proteins. Acc Chem Res 2023; 56:2898-2906. [PMID: 37824095 PMCID: PMC10862471 DOI: 10.1021/acs.accounts.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 10/13/2023]
Abstract
The abrupt aggregation of misfolded proteins is linked to the onset and spread of amyloidogenic diseases, including diabetes type 2, systemic amyloidosis, and Alzheimer's (AD) and Parkinson's diseases (PD). Although the exact cause of these pathological processes is unknown, a growing body of evidence suggests that amyloid diseases are triggered by misfolded or unfolded proteins, forming highly toxic oligomers. These transient species exhibit high structural and morphological heterogeneity. Protein oligomers can also propagate into β-sheet-rich filaments that braid and coil with other filaments to form amyloid fibrils and supramolecular structures with both flat and twisted morphologies. Microscopic examination of protein deposits formed in the brains of both AD and PD patients revealed the presence of fragments of lipid membranes. Furthermore, nanoscale infrared analysis of ex vivo extracted fibrils revealed the presence of lipids in their structure (Zhaliazka, K.; Kurouski, D. Protein Sci. 2023, 32, e4598). These findings demonstrated that lipid bilayers could play an important role in the aggregation of misfolded proteins.Experimental findings summarized in this Account show that (i) lipids uniquely change the aggregation rate of amyloidogenic proteins. In this case, the observed changes in the rates directly depend on the net charge of the lipid and the length and saturation of lipid fatty acids (FAs). For instance, zwitterionic phosphatidylcholine (PC) with 14:0 FAs inhibited the aggregation of insulin, lysozyme, and α-synuclein (α-Syn), whereas anionic phosphatidylserine with the same FAs dramatically accelerated the aggregation rate of these proteins (Dou, T., et al. J. Phys. Chem. Lett. 2021, 12, 4407. Matveyenka, M., et al. FASEB J. 2022, 36, e22543. Rizevsky, S., et al. J. Phys. Chem. Lett. 2022, 13, 2467). Furthermore, (ii) lipids uniquely alter the secondary structure and morphology of protein oligomers and fibrils formed in their presence. Utilization of nano-infrared spectroscopy revealed that such aggregates, as well as ex vivo extracted fibrils, possessed lipids in their structure. These findings are significant because (iii) lipids uniquely alter the toxicity of amyloid oligomers and fibrils formed in their presence. Specifically, PC lowered the toxicity of insulin and lysozyme oligomers, whereas α-Syn oligomers formed in the presence of this phospholipid were found to be significantly more toxic to rat dopaminergic cells compared to α-Syn oligomers grown in the lipid-free environment. Thus, the toxicity of protein oligomers and fibrils is directly determined by the chemical structure of the lipid and the secondary structure of amyloidogenic proteins (Dou, T., et al. J. Phys. Chem. Lett. 2021, 12, 4407. Matveyenka, M., et al. FASEB J. 2022, 36, e22543. Rizevsky, S., et al. J. Phys. Chem. Lett. 2022, 13, 2467). Experimental results discussed in this Account also suggest that amyloidogenic diseases could be caused by pathological changes in the lipid composition of both plasma and organelle membranes, which, in turn, may trigger protein aggregation that results in the formation of highly toxic oligomers and fibrils. Finally, the Account discusses the effects of polyunsaturated FAs on the aggregation properties of amyloidogenic proteins. Experimental findings reported by the author's laboratory revealed that polyunsaturated FAs drastically accelerated the aggregation rate of both insulin and α-Syn as well as strongly changed the secondary structure of amyloid fibrils formed in their presence.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Joshi R, Zhaliazka K, Holman AP, Kurouski D. Elucidation of the Role of Lipids in Late Endosomes on the Aggregation of Insulin. ACS Chem Neurosci 2023; 14:3551-3559. [PMID: 37682720 PMCID: PMC10862470 DOI: 10.1021/acschemneuro.3c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Abrupt aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies including diabetes type 2 and injection amyloidosis. Although the exact cause of this process is unclear, a growing body of evidence suggests that protein aggregation is linked to a high protein concentration and the presence of lipid membranes. Endosomes are cell organelles that often possess high concentrations of proteins due to their uptake from the extracellular space. However, the role of endosomes in amyloid pathologies remains unclear. In this study, we used a set of biophysical methods to determine the role of bis(monoacylglycero)phosphate (BMP), the major lipid constituent of late endosomes on the aggregation properties of insulin. We found that both saturated and unsaturated BMP accelerated protein aggregation. However, very little if any changes in the secondary structure of insulin fibrils grown in the presence of BMP were observed. Therefore, no changes in the toxicity of these aggregates compared to the fibrils formed in the lipid-free environment were observed. We also found that the toxicity of insulin oligomers formed in the presence of a 77:23 mol/mol ratio of BMP/PC, which represents the lipid composition of late endosomes, was slightly higher than the toxicity of insulin oligomers formed in the lipid-free environment. However, the toxicity of mature insulin fibrils formed in the presence of BMP/PC mixture was found to be lower or similar to the toxicity of insulin fibrils formed in the lipid-free environment. These results suggest that late endosomes are unlikely to be the source of highly toxic protein aggregates if amyloid proteins aggregate in them.
Collapse
Affiliation(s)
- Ritu Joshi
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Aidan P. Holman
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Panda C, Kumar S, Gupta S, Pandey LM. Structural, kinetic, and thermodynamic aspects of insulin aggregation. Phys Chem Chem Phys 2023; 25:24195-24213. [PMID: 37674360 DOI: 10.1039/d3cp03103a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Given the significance of protein aggregation in proteinopathies and the development of therapeutic protein pharmaceuticals, revamped interest in assessing and modelling the aggregation kinetics has been observed. Quantitative analysis of aggregation includes data of gradual monomeric depletion followed by the formation of subvisible particles. Kinetic and thermodynamic studies are essential to gain key insights into the aggregation process. Despite being the medical marvel in the world of diabetes, insulin suffers from the challenge of aggregation. Physicochemical stresses are experienced by insulin during industrial formulation, storage, delivery, and transport, considerably impacting product quality, efficacy, and effectiveness. The present review briefly describes the pathways, mathematical kinetic models, and thermodynamics of protein misfolding and aggregation. With a specific focus on insulin, further discussions include the structural heterogeneity and modifications of the intermediates incurred during insulin fibrillation. Finally, different model equations to fit the kinetic data of insulin fibrillation are discussed. We believe that this review will shed light on the conditions that induce structural changes in insulin during the lag phase of fibrillation and will motivate scientists to devise strategies to block the initialization of the aggregation cascade. Subsequent abrogation of insulin fibrillation during bioprocessing will ensure stable and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Sachin Kumar
- Viral Immunology Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
19
|
Ali A, Zhaliazka K, Dou T, Holman AP, Kurouski D. Role of Saturation and Length of Fatty Acids of Phosphatidylserine in the Aggregation of Transthyretin. ACS Chem Neurosci 2023; 14:3499-3506. [PMID: 37676231 PMCID: PMC10862486 DOI: 10.1021/acschemneuro.3c00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
The progressive accumulation of transthyretin (TTR), a small protein that transports thyroxine, in various organs and tissues is observed upon transthyretin amyloidosis, a severe pathology that affects the central, peripheral, and autonomic nervous systems. Once expressed in the liver and choroid plexus, TTR is secreted into the bloodstream and cerebrospinal fluid. In addition to thyroxine, TTR interacts with a large number of molecules, including retinol-binding protein and lipids. In this study, we examined the extent to which phosphatidylserine (PS), a phospholipid that is responsible for the recognition of apoptotic cells by macrophages, could alter the stability of TTR. Using thioflavin T assay, we investigated the rates of TTR aggregation in the presence of PS with different lengths and saturation of fatty acids (FAs). We found that all analyzed lipids decelerated the rate of TTR aggregation. We also used a set of biophysical methods to investigate the extent to which the presence of PS altered the morphology and secondary structure of TTR aggregates. Our results showed that the length and saturation of fatty acids in PS uniquely altered the morphology and secondary structure of TTR fibrils. As a result, TTR fibrils that were formed in the presence of PS with different lengths and saturation of FAs exerted significantly lower cell toxicity compared with the TTR aggregates grown in the lipid-free environment. These findings help to reveal the role of PS in transthyretin amyloidosis and determine the role of the length and saturation of FAs in PS on the morphology and secondary structure of TTR fibrils.
Collapse
Affiliation(s)
- Abid Ali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Tianyi Dou
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Aidan P. Holman
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
20
|
Holman A, Quinn K, Kumar R, Kmiecik S, Ali A, Kurouski D. Fatty Acids Reverse the Supramolecular Chirality of Insulin Fibrils. J Phys Chem Lett 2023; 14:6935-6939. [PMID: 37498215 PMCID: PMC10863027 DOI: 10.1021/acs.jpclett.3c01527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Long-chain unsaturated and polyunsaturated fatty acids (LCUFAs and LCPUFAs, respectively) are the essential components of phospholipids and sphingolipids, major building blocks of plasma and organelle membranes. These molecules are also involved in cell signaling and energy metabolism. Hence, both LCUFAs and LCPUFAs are broadly used as food supplements. However, the role of these fatty acids (FAs) in the self-assembly of misfolded proteins remains unclear. In this study, we investigated the effect of LCUFAs and LCPUFAs, as well as their saturated analogue, on insulin aggregation. Using vibrational circular dichroism, we found that all analyzed FAs reversed the supramolecular chirality of insulin fibrils. Molecular dynamics simulations showed that strong hydrophobic interactions were formed between the long aliphatic tails of FAs and hydrophobic amino acid residues of insulin. We infer that such insulin:FA complexes had different self-assembly mechanisms compared to that of insulin alone, which resulted in the observed reversal of the supramolecular chirality of the amyloid fibrils.
Collapse
Affiliation(s)
- Aidan
P. Holman
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | | | - Rakesh Kumar
- Biological
and Chemical Research Center, University
of Warsaw, Warsaw 02-089, Poland
| | - Sebastian Kmiecik
- Biological
and Chemical Research Center, University
of Warsaw, Warsaw 02-089, Poland
| | - Abid Ali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| |
Collapse
|
21
|
Frese A, Goode C, Zhaliazka K, Holman AP, Dou T, Kurouski D. Length and saturation of fatty acids in phosphatidylserine determine the rate of lysozyme aggregation simultaneously altering the structure and toxicity of amyloid oligomers and fibrils. Protein Sci 2023; 32:e4717. [PMID: 37402649 PMCID: PMC10364468 DOI: 10.1002/pro.4717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Abrupt aggregation of misfolded proteins is the underlying molecular cause of numerous severe pathologies including Alzheimer's and Parkinson's diseases. Protein aggregation yields small oligomers that can later propagate into amyloid fibrils, β-sheet-rich structures with a variety of topologies. A growing body of evidence suggests that lipids play an important role in abrupt aggregation of misfolded proteins. In this study, we investigate the roles of length and saturation of fatty acids (FAs) in phosphatidylserine (PS), an anionic lipid that is responsible for the recognition of apoptotic cells by macrophages, in lysozyme aggregation. We found that both the length and saturation of FAs in PS contribute to the aggregation rate of insulin. PS with 14-carbon-long FAs (14:0) enabled a much stronger acceleration of protein aggregation compared to PS with 18-carbon-long FAs (18:0). Our results demonstrate that the presence of double bonds in FAs accelerated the rate of insulin aggregation relative to PS with fully saturated FAs. Biophysical methods revealed morphological and structural differences in lysozyme aggregates grown in the presence of PS with varying lengths and FA saturation. We also found that such aggregates exerted diverse cell toxicities. These results demonstrate that the length and saturation of FAs in PS can uniquely alter the stability of misfolded proteins on lipid membranes.
Collapse
Affiliation(s)
- Addison Frese
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
| | - Cody Goode
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
| | - Kiryl Zhaliazka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
| | - Aidan P. Holman
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
- Department of EntomologyTexas A&M UniversityCollege StationTexasUnited States
| | - Tianyi Dou
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
| | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUnited States
| |
Collapse
|
22
|
Matveyenka M, Zhaliazka K, Kurouski D. Unsaturated fatty acids uniquely alter aggregation rate of α-synuclein and insulin and change the secondary structure and toxicity of amyloid aggregates formed in their presence. FASEB J 2023; 37:e22972. [PMID: 37302013 PMCID: PMC10405295 DOI: 10.1096/fj.202300003r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/24/2023] [Accepted: 05/01/2023] [Indexed: 06/12/2023]
Abstract
Docosahexaenoic (DHA) and arachidonic acids (ARA) are omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFAs). These molecules constitute a substantial portion of phospholipids in plasma membranes. Therefore, both DHA and ARA are essential diet components. Once consumed, DHA and ARA can interact with a large variety of biomolecules, including proteins such as insulin and α-synuclein (α-Syn). Under pathological conditions known as injection amyloidosis and Parkinson's disease, these proteins aggregate forming amyloid oligomers and fibrils, toxic species that exert high cell toxicity. In this study, we investigate the role of DHA and ARA in the aggregation properties of α-Syn and insulin. We found that the presence of both DHA and ARA at the equimolar concentrations strongly accelerated aggregation rates of α-Syn and insulin. Furthermore, LCPUFAs substantially altered the secondary structure of protein aggregates, whereas no noticeable changes in the fibril morphology were observed. Nanoscale Infrared analysis of α-Syn and insulin fibrils grown in the presence of both DHA and ARA revealed the presence of LCPUFAs in these aggregates. We also found that such LCPUFAs-rich α-Syn and insulin fibrils exerted significantly greater toxicities compared to the aggregates grown in the LCPUFAs-free environment. These findings show that interactions between amyloid-associated proteins and LCPUFAs can be the underlying molecular cause of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
Matveyenka M, Rizevsky S, Kurouski D. Elucidation of the Effect of Phospholipid Charge on the Rate of Insulin Aggregation and Structure and Toxicity of Amyloid Fibrils. ACS OMEGA 2023; 8:12379-12386. [PMID: 37033844 PMCID: PMC10077570 DOI: 10.1021/acsomega.3c00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The plasma membrane is a dynamic structure that separates the cell interior from the extracellular space. The fluidity and plasticity of the membrane determines a large number of physiologically important processes ranging from cell division to signal transduction. In turn, membrane fluidity is determined by phospholipids that possess different charges, lengths, and saturation states of fatty acids. A growing body of evidence suggests that phospholipids may play an important role in the aggregation of misfolded proteins, which causes pathological conditions that lead to severe neurodegenerative diseases. In this study, we investigate the role of the charge of the most abundant phospholipids in the plasma membrane: phosphatidylcholine and phosphatidylethanolamine, zwitterions: phosphatidylserine and phosphatidylglycerol, lipids that possess a negative charge, and cardiolipin that has double negative charge on its polar head. Our results show that both zwitterions strongly inhibit insulin aggregation, whereas negatively charged lipids accelerate fibril formation. We also found that in the equimolar presence of zwitterions insulin yields oligomers that exert significantly lower cell toxicity compared to fibrils that were grown in the lipid-free environment. Such aggregates were not formed in the presence of negatively charged lipids. Instead, long insulin fibrils that had strong cell toxicity were grown in the presence of such negatively charged lipids. However, our results showed no correlation between the charge of the lipid and secondary structure and toxicity of the aggregates formed in its presence. These findings show that the secondary structure and toxicity are determined by the chemical structure of the lipid rather than by the charge of the phospholipid polar head.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Stanislav Rizevsky
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Vietnam
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| |
Collapse
|