1
|
Liu Y, Hong J, Wang G, Mei Z. An emerging role of SNAREs in ischemic stroke: From pre-to post-diseases. Biochem Pharmacol 2025; 236:116907. [PMID: 40158821 DOI: 10.1016/j.bcp.2025.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Ischemic stroke is a debilitating condition characterized by high morbidity, disability, recurrence, and mortality rates on a global scale, posing a significant threat to public health and economic stability. Extensive research has thoroughly explored the molecular mechanisms underlying ischemic stroke, elucidating a strong association between soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor proteins (SNAREs) and the pathogenesis of this condition. SNAREs, a class of highly conserved proteins involved in membrane fusion, play a crucial role in modulating neuronal information transmission and promoting myelin formation in the central nervous system (CNS). Preventing the SNARE complex formation, malfunctions in SNARE-dependent exocytosis, and altered regulation of SNARE-mediated vesicle fusion are linked to excitotoxicity, endoplasmic reticulum (ER) stress, and programmed cell death (PCD) in ischemic stroke. However, its underlying mechanisms remain unclear. This study conducts a comprehensive review of the existing literature on SNARE proteins, encompassing the structure, classification, and expression of the SNARE protein family, as well as the assembly - disassembly cycle of SNARE complexes and their physiological roles in the CNS. We thoroughly examine the mechanisms by which SNAREs contribute to the pathological progression and associated risk factors of ischemic stroke (hypertension, hyperglycemia, dyslipidemia, and atherosclerosis). Furthermore, our findings highlight the promise of SNAREs as a viable target for pharmacological interventions in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yaxin Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jingyan Hong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
2
|
Takahashi M, Caraveo G. Ykt6 SNARE protein drives GluA1 insertion at synaptic spines during LTP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.632800. [PMID: 40236018 PMCID: PMC11996430 DOI: 10.1101/2025.02.10.632800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Long-Term Potentiation (LTP), a crucial form of synaptic plasticity essential for memory and learning, depends on protein synthesis and the upregulation of GluA1 at postsynaptic terminals. While extensive research has focused on the role of endosomal trafficking in GluA1 regulation, the contribution of endoplasmic reticulum (ER) trafficking pathways remains largely unexplored. A key opportunity to investigate this emerged from Ykt6, an evolutionarily conserved SNARE protein and a master regulator of vesicular fusion along ER-trafficking pathways. Here, we demonstrate that Ykt6 is highly expressed in the mammalian hippocampus, where it localizes to synaptic spines and regulates GluA1 surface expression in an LTP-dependent manner. Furthermore, we found that Ykt6 modulates synaptic vesicle pool dynamics as well as the amplitude and frequency of miniature excitatory postsynaptic currents. Ykt6 loss of function has been linked to α-synuclein pathology, a hallmark of Lewy Body Dementias (LBDs), where α-synuclein misfolding in the hippocampus disrupts LTP. Taken together, our findings establish Ykt6 as a critical SNARE protein in hippocampal function during LTP, with significant implications for neurodegenerative disorders such as LBDs.
Collapse
|
3
|
Zhang W, Zhang H, He T, Li X, Liu Y, Han H, Wang J. The diverse functions of syntaxin 13 in endosome-mediated membrane fusion. Int J Biol Macromol 2025; 307:141878. [PMID: 40058431 DOI: 10.1016/j.ijbiomac.2025.141878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
SNARE is a crucial membrane fusion factor. It forms SNARE complex that play significant roles in regulating various biological functions. The SNARE protein family, including syntaxin13 (STX13), is highly conserved across various species, from yeast to humans. This review summarizes the molecular mechanisms by which STX13-associated SNARE complexes contribute to diverse endosome-mediated membrane fusions. Furthermore, multiple cofactors are essential for regulating the SNARE complexes-mediated membrane fusion. These include but are not limited to Rab GTPases and their effectors. The interaction of these factors with SNARE proteins constitutes a critical component driving vesicle fusion processes.
Collapse
Affiliation(s)
- Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Huijie Han
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
4
|
Li L, An G, Li F, Zhang D, Zhu X, Liang C, Zhao Y, Xie K, Zhou P, Zhu H, Jin X, Du L. Shared Genes and Pathways in Ulcerative Colitis and Ankylosing Spondylitis: Functional Validation and Implications for Diagnosis. J Inflamm Res 2025; 18:1657-1678. [PMID: 39925932 PMCID: PMC11806757 DOI: 10.2147/jir.s497201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Background Associations between ulcerative colitis (UC) and ankylosing spondylitis (AS) have been reported in multiple studies, but the common etiologies of UC and AS remain unknown. Thus, in the current study, we aimed to investigate the shared genes and relevant mechanisms in UC and AS. Methods Using datasets for UC (GSE113079) and AS (GSE1797879), we initially identified differentially expressed genes (DEGs) through differential expression analysis. The DEGs from both datasets were intersected to identify common DEGs, relevant to both UC and AS, which were used in receiver operating characteristic (ROC) curve analysis to confirm key genes in the shared pathway. Gene set enrichment analysis (GSEA) was used to obtain information on key gene pathways and interactions with UC or AS-related diseases, followed by immune infiltration analysis. Finally, peripheral blood samples of AS and UC were used to verify the mRNA expression of the eight key genes using reverse transcription-polymerase chain reaction (RT-PCR). Results Our results revealed that GMFG, GNG11, CLEC4D, CMTM2, VAMP5, S100A8, S100A12 and DGKQ are potential diagnostic biomarkers of AS and UC. Rimegepant, eptinezumab, methotrexate, atogepant, and ubrogepant were identified as potential drugs for S100A12 and S100A8 in patients with UC and AS. GSEA showed that these key genes were associated with antigen processing and presentation, natural killer cell mediated cytotoxicity and the T cell receptor signaling pathway in AS and UC, and were significantly associated with immune cells in various immune-related pathways. Subsequent functional experiments revealed significant increases in the mRNA expressions of S100A12 and VAMP5 in patients with AS and UC. Additionally, CLEC4D mRNA expression was notably higher in patients with UC than in healthy controls. Conclusion Key genes and shared pathways were identified in UC and AS, which may improve understanding of their relationship and guide diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Lin Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Guangqi An
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Donghui Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Xinyue Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Chunyu Liang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Yu Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Kunpeng Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Pengyi Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Haiyan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
5
|
Yokoi Y, Nakamura R, Ohira S, Takemi S, Ayabe T, Nakamura K. Potential consequences of phototoxicity on cell function during live imaging of intestinal organoids. PLoS One 2024; 19:e0313213. [PMID: 39546479 PMCID: PMC11567556 DOI: 10.1371/journal.pone.0313213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Live imaging visualizes the structure, dynamics, and function of cells and tissues to reveal the molecular mechanisms, and has contributed to the advancement of life science. In live imaging, it has been well known that there is a trade-off between higher-resolution analysis and cell damage caused by light illumination, i.e., phototoxicity. However, despite the risk of unknowingly distorting experimental results, phototoxicity is an unresolved issue in live imaging because overall consequences occurring inside cells due to phototoxicity remains unknown. Here, we determined the molecular process of phototoxicity-induced cell damage systematically under low- and high-dose light illumination conditions by analyzing differential gene expression using RNA-sequencing in a three-dimensional organoid of small intestinal epithelial cells, enteroid. The low-dose light illumination already induced various abnormalities in functional molecules involved in the response to reactive oxygen species generated by the excitation of fluorescent dyes, intracellular metabolism, mitosis, immune responses, etc., at mRNA expression level. Together with the behavior toward apoptosis caused by high-dose light illumination, the light dose-dependent progression of intracellular damage was revealed. About visible impairment of intestinal epithelial function, failures in both the structure-forming ability of enteroids and Paneth cell granule secretion were observed under high-dose light illumination, while the drug efflux was not disturbed despite abnormal drug efflux transporter mRNA expression. Based on the gene expression profiles, we comprehensively clarified phenomena in the cells at mRNA level that cannot be recognized both morphologically and functionally during live imaging, further providing a new insight into the risk of phototoxicity. This study warns from the aspect of mRNA expression that awareness of phototoxic artifacts is needed when analyzing cellular function and the mechanism in live imaging.
Collapse
Affiliation(s)
- Yuki Yokoi
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryu Nakamura
- System Development Section, Technology Solution Sector, Healthcare Business Unit, Nikon Corporation, Yokohama-City, Kanagawa, Japan
| | - Shuya Ohira
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Creative Research Institution, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shota Takemi
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Pedrão LFAT, Medeiros POS, Leandro EC, Falquetto B. Parkinson's disease models and death signaling: what do we know until now? Front Neuroanat 2024; 18:1419108. [PMID: 39533977 PMCID: PMC11555652 DOI: 10.3389/fnana.2024.1419108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is the second neurodegenerative disorder most prevalent in the world, characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN). It is well known for its motor and non-motor symptoms including bradykinesia, resting tremor, psychiatric, cardiorespiratory, and other dysfunctions. Pathological apoptosis contributes to a wide variety of diseases including PD. Various insults and/or cellular phenotypes have been shown to trigger distinct signaling events leading to cell death in neurons affected by PD. The intrinsic or mitochondrial pathway, inflammatory or oxidative stress-induced extrinsic pathways are the main events associated with apoptosis in PD-related neuronal loss. Although SN is the main brain area studied so far, other brain nuclei are also affected by the disease leading to non-classical motor symptoms as well as non-motor symptoms. Among these, the respiratory symptoms are often overlooked, yet they can cause discomfort and may contribute to patients shortened lifespan after disease diagnosis. While animal and in vitro models are frequently used to investigate the mechanisms involved in the pathogenesis of PD in both the SN and other brain regions, these models provide only a limited understanding of the disease's actual progression. This review offers a comprehensive overview of some of the most studied forms of cell death, including recent research on potential treatment targets for these pathways. It highlights key findings and milestones in the field, shedding light on the potential role of understanding cell death in the prevention and treatment of the PD. Therefore, unraveling the connection between these pathways and the notable pathological mechanisms observed during PD progression could enhance our comprehension of the disease's origin and provide valuable insights into potential molecular targets for the developing therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciências Biomédica, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Toshima JY, Toshima J. Transport mechanisms between the endocytic, recycling, and biosynthetic pathways via endosomes and the trans-Golgi network. Front Cell Dev Biol 2024; 12:1464337. [PMID: 39291266 PMCID: PMC11405242 DOI: 10.3389/fcell.2024.1464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
After the endocytic and biosynthetic pathway converge, they partially share the route to the lysosome/vacuole. Similarly, the endocytic recycling and secretory pathways also partially share the route to the plasma membrane. The interaction of these transport pathways is mediated by endosomes and the trans-Golgi network (TGN), which act as sorting stations in endocytic and biosynthesis pathway, and endosomes has a bidirectional transport to and from the TGN. In mammalian cells endosomes can be largely classified as early/sorting, late, and recycling endosomes, based on their morphological features and localization of Rab family proteins, which are key factors in vesicular trafficking. However, these endosomes do not necessarily represent specific compartments that are comparable among different species. For instance, Rab5 localizes to early endosomes in mammalian cells but is widely localized to early-to-late endosomes in yeast, and to pre-vacuolar endosomes and the TGN in plant cells. The SNARE complexes are also key factors widely conserved among species and localized specifically to the endosomal membrane, but the localization of respective homologs is not necessarily consistent among species. These facts suggest that endosomes should be classified more inclusively across species. Here we reconsider the mammalian endosome system based on findings in budding yeast and other species and discuss the differences and similarities between them.
Collapse
Affiliation(s)
- Junko Y Toshima
- School of Health Science, Tokyo University of Technology, Tokyo, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
8
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
van Wijck RTA, Sharma HS, Swagemakers SMA, Dik WA, IJspeert H, Dalm VASH, van Daele PLA, van Hagen PM, van der Spek PJ. Bioinformatic meta-analysis reveals novel differentially expressed genes and pathways in sarcoidosis. Front Med (Lausanne) 2024; 11:1381031. [PMID: 38938383 PMCID: PMC11208482 DOI: 10.3389/fmed.2024.1381031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Sarcoidosis is a multi-system inflammatory disease of unknown origin with heterogeneous clinical manifestations varying from a single organ non-caseating granuloma site to chronic systemic inflammation and fibrosis. Gene expression studies have suggested several genes and pathways implicated in the pathogenesis of sarcoidosis, however, due to differences in study design and variable statistical approaches, results were frequently not reproducible or concordant. Therefore, meta-analysis of sarcoidosis gene-expression datasets is of great importance to robustly establish differentially expressed genes and signalling pathways. Methods We performed meta-analysis on 22 published gene-expression studies on sarcoidosis. Datasets were analysed systematically using same statistical cut-offs. Differentially expressed genes were identified by pooling of p-values using Edgington's method and analysed for pathways using Ingenuity Pathway Analysis software. Results A consistent and significant signature of novel and well-known genes was identified, those collectively implicated both type I and type II interferon mediated signalling pathways in sarcoidosis. In silico functional analysis showed consistent downregulation of eukaryotic initiation factor 2 signalling, whereas cytokines like interferons and transcription factor STAT1 were upregulated. Furthermore, we analysed affected tissues to detect differentially expressed genes likely to be involved in granuloma biology. This revealed that matrix metallopeptidase 12 was exclusively upregulated in affected tissues, suggesting a crucial role in disease pathogenesis. Discussion Our analysis provides a concise gene signature in sarcoidosis and expands our knowledge about the pathogenesis. Our results are of importance to improve current diagnostic approaches and monitoring strategies as well as in the development of targeted therapeutics.
Collapse
Affiliation(s)
- Rogier T. A. van Wijck
- Department of Pathology & Clinical Bioinformatics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Hari S. Sharma
- Department of Pathology & Clinical Bioinformatics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sigrid M. A. Swagemakers
- Department of Pathology & Clinical Bioinformatics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Virgil A. S. H. Dalm
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Paul L. A. van Daele
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - P. Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Peter J. van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
10
|
Li F, Zhang J, Zhong H, Yu K, Chen J. Genome-Wide Identification of SNARE Family Genes and Functional Characterization of an R-SNARE Gene BbSEC22 in a Fungal Insect Pathogen Beauveria bassiana. J Fungi (Basel) 2024; 10:393. [PMID: 38921379 PMCID: PMC11204939 DOI: 10.3390/jof10060393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are central components of the machinery mediating cell membrane fusion and intracellular vesicular trafficking in eukaryotic cells, and have been well-documented to play critical roles in growth, development, and pathogenesis in the filamentous fungal plant pathogens. However, little is known about the contributions of SNAREs to the physiology and biocontrol potential in entomopathogenic filamentous fungi. Here, a genome-wide analysis of SNARE genes was performed taking advantage of the available whole genome sequence of Beauveria bassiana, a classical entomopathogenic fungus. Based on the compared genomic method, 22 genes encoding putative SNAREs were identified from the whole genome of B. bassiana, and were classified into four groups (7 Qa-, 4 Qb-, 6 Qc-, and 5 R-SNAREs) according to the conserved structural features of their encoding proteins. An R-SNARE encoding gene BbSEC22 was further functionally characterized by gene disruption and complementation. The BbSEC22 null mutant showed a fluffy appearance in mycelial growth and an obvious lag in conidial germination. The null mutant also exhibited significantly increased sensitivity to oxidative stress and cell wall perturbing agents and reduced the yield of conidia production by 43.1% compared with the wild-type strain. Moreover, disruption of BbSEC22 caused a significant decrease in conidial virulence to Spodoptera litura larvae. Overall, our results provide an overview of vesicle trafficking in B. bassiana and revealed that BbSec22 was a multifunctional protein associated with mycelial growth, sporulation, conidial germination, stress tolerance, and insecticidal virulence.
Collapse
Affiliation(s)
| | - Juefeng Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.L.)
| | | | | | - Jianming Chen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.L.)
| |
Collapse
|
11
|
Watanabe H, Urano S, Kikuchi N, Kubo Y, Kikuchi A, Gomi K, Shintani T. Ykt6 functionally overlaps with vacuolar and exocytic R-SNAREs in the yeast Saccharomyces cerevisiae. J Biol Chem 2024; 300:107274. [PMID: 38588809 PMCID: PMC11091695 DOI: 10.1016/j.jbc.2024.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.
Collapse
Affiliation(s)
- Hayate Watanabe
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shingo Urano
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nozomi Kikuchi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yurika Kubo
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayumi Kikuchi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsuya Gomi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takahiro Shintani
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
12
|
Pha K, Mirrashidi K, Sherry J, Tran CJ, Herrera CM, McMahon E, Elwell CA, Engel JN. The Chlamydia effector IncE employs two short linear motifs to reprogram host vesicle trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590830. [PMID: 38712241 PMCID: PMC11071397 DOI: 10.1101/2024.04.23.590830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chlamydia trachomatis, a leading cause of bacteria sexually transmitted infections, creates a specialized intracellular replicative niche by translocation and insertion of a diverse array of effectors (Incs) into the inclusion membrane. Here, we characterize IncE, a multi-functional Inc that encodes two non-overlapping short linear motifs (SLiMs) within its short cytosolic C-terminus. The proximal SLiM mimics an R-SNARE motif to recruit syntaxin (STX) 7 and 12-containing vesicles to the inclusion. The distal SLiM mimics the Sorting Nexin (SNX) 5 and 6 cargo binding site to recruit SNX6-containing vesicles to the inclusion. By simultaneously binding to two distinct vesicle classes, IncE reprograms host cell trafficking to promote the formation of a class of hybrid vesicles at the inclusion that are required for C. trachomatis intracellular development. Our work suggests that Incs may have evolved SLiMs to facilitate rapid evolution in a limited protein space to disrupt host cell processes.
Collapse
|
13
|
Ma Y, Guo W, Mou Q, Shao X, Lyu M, Garcia V, Kong L, Lewis W, Ward C, Yang Z, Pan X, Yi SS, Lu Y. Spatial imaging of glycoRNA in single cells with ARPLA. Nat Biotechnol 2024; 42:608-616. [PMID: 37217750 PMCID: PMC10663388 DOI: 10.1038/s41587-023-01801-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Little is known about the biological roles of glycosylated RNAs (glycoRNAs), a recently discovered class of glycosylated molecules, because of a lack of visualization methods. We report sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA) to visualize glycoRNAs in single cells with high sensitivity and selectivity. The signal output of ARPLA occurs only when dual recognition of a glycan and an RNA triggers in situ ligation, followed by rolling circle amplification of a complementary DNA, which generates a fluorescent signal by binding fluorophore-labeled oligonucleotides. Using ARPLA, we detect spatial distributions of glycoRNAs on the cell surface and their colocalization with lipid rafts as well as the intracellular trafficking of glycoRNAs through SNARE protein-mediated secretory exocytosis. Studies in breast cell lines suggest that surface glycoRNA is inversely associated with tumor malignancy and metastasis. Investigation of the relationship between glycoRNAs and monocyte-endothelial cell interactions suggests that glycoRNAs may mediate cell-cell interactions during the immune response.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Weijie Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xiangli Shao
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Mingkuan Lyu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Valeria Garcia
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Whitney Lewis
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Carson Ward
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhenglin Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - S Stephen Yi
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Fang Z, Zhao Q, Yang S, Cai Y, Fang W, Abubakar YS, Lin Y, Yun Y, Zheng W. Two distinct SNARE complexes mediate vesicle fusion with the plasma membrane to ensure effective development and pathogenesis of Fusarium oxysporum f. sp. cubense. MOLECULAR PLANT PATHOLOGY 2024; 25:e13443. [PMID: 38502146 PMCID: PMC10950013 DOI: 10.1111/mpp.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) facilitate docking and fusion of vesicles with their target membranes, playing a crucial role in vesicle trafficking and exocytosis. However, the spatial assembly and roles of plasma membrane (PM)-associated SNAREs in phytopathogen development and pathogenicity are not clearly understood. In this study, we analysed the roles and molecular mechanisms of PM-associated SNARE complexes in the banana Fusarium wilt fungus Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4). Our findings demonstrate that FocSso1 is important for the fungal growth, conidiation, host penetration and colonization. Mechanistically, FocSso1 regulates protein secretion by mediating vesicle docking and fusion with the PM and hyphal apex. Interestingly, a FocSso1-FocSec9-FocSnc1 complex was observed to assemble not only at the fungal PM but also on the growing hyphal apex, facilitating exocytosis. FocSso2, a paralogue of FocSso1, was also found to form a ternary SNARE complex with FocSec9 and FocSnc1, but it mainly localizes to the PM in old hyphae. The functional analysis of this protein demonstrated that it is dispensable for the fungal growth but necessary for host penetration and colonization. The other subunits, FocSec9 and FocSnc1, are involved in the fungal development and facilitate host penetration. Furthermore, FocSso1 and FocSnc1 are functionally interdependent, as loss of FocSso1 leads to mis-sorting and degradation of FocSnc1 in the vacuole and vice versa. Overall, this study provides insight into the formation of two spatially and functionally distinct PM SNARE complexes and their involvement in vesicle exocytosis to regulate development and pathogenicity of FocTR4.
Collapse
Affiliation(s)
- Zhenyu Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Qiwen Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Shiyu Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yan Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Wenqin Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Department of Biochemistry, Faculty of Life SciencesAhmadu Bello UniversityZariaNigeria
| | - Ying Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- School of Biological and Environmental EngineeringJingdezhen UniversityJingdezhenJiangxiChina
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|
15
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 PMCID: PMC11578640 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Erol S, Zırh S, Bozdag G, Sokmensuer LK, Muftuoglu SF. In vitro evaluation of exocytosis-associated SNARE molecules in human granulosa cells in polycystic ovary syndrome. J Assist Reprod Genet 2024; 41:49-61. [PMID: 37993579 PMCID: PMC10789710 DOI: 10.1007/s10815-023-02967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/03/2023] [Indexed: 11/24/2023] Open
Abstract
PURPOSE Patients with polycystic ovarian morphology (PCOM) make up 20% cases for assisted reproductive technology (ART). Folliculogenesis is impaired in PCOS. Signaling molecules are involved in follicle development. Dysregulations of intrafollicular environment and signaling molecules are observed in PCOS. Granulosa cells (GCs) and oocytes secrete molecules into follicular fluid by exocytosis of SNAREs. The aim of this study is to evaluate vesicle transport and vesicle fusion proteins (SNAREs) in GCs from PCOS patients who have undergone IVF treatment. METHODS Follicular fluids were collected from patients who undergo IVF/ICSI with the diagnosis of male factor (n = 10) and PCOS (n = 10) patients. GCs were separated and cultured. Each group of GCs was stimulated with FSH-hCG. The cells were examined under electron microscope. Immunofluorescent labeling was performed on cells for Stx6, SNAP25, StxBP1, FSHr, and KITL. Integrated density was analyzed from images of Stx6, SNAP25, StxBP1, FSHr, and KITL. RESULTS Intercellular communication occurs by signal molecules; Stx6, SNAP25, and StxBP1 fusion proteins involved in exocytosis were decreased in the GCs of PCOS. There was no increase in in vitro stimulation with FSH-hCG either. In the electron microscope, it was observed that exocytosis of the vesicles was disrupted. CONCLUSIONS Exocytosis and vesicular dynamics are among the basic physiological functions of human steroidogenic granulosa cells. Follicle development is necessary for production of competent oocytes and ovulation. Understanding the pathophysiology of PCOS at follicular level is important for disease management. According to our findings, deficits in vesicular dynamics of human granulosa cells in may be central to the treatment strategy for PCOS patients.
Collapse
Affiliation(s)
- Suleyman Erol
- Department of Histology and Embryology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Selim Zırh
- Department of Histology and Embryology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Gurkan Bozdag
- Department of Obstetrics and Gynecology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Lale Karakoc Sokmensuer
- Department of Histology and Embryology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Sevda F Muftuoglu
- Department of Histology and Embryology, School of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
17
|
Liu X, Zhu D, Zhao F, Gao Y, Li J, Li Y. VAMP726 and VAMP725 regulate vesicle secretion and pollen tube growth in Arabidopsis. PLANT CELL REPORTS 2023; 42:1951-1965. [PMID: 37805949 DOI: 10.1007/s00299-023-03075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
KEY MESSAGE VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex. Secretory vesicle fusion with the plasma membrane of the pollen tube tip is a key step in pollen tube growth. Membrane fusion was mediated by SNAREs. However, little is known about the composition and function of the SNARE complex during pollen tube tip growth. In this study, we constructed a double mutant vamp725 vamp726 via CRISPR‒Cas9. Fluorescence labeling combined with microscopic observation, luciferase complementation imaging, co-immunoprecipitation and GST pull-down were applied in the study. We show that double mutation of the R-SNAREs VAMP726 and VAMP725 significantly inhibits pollen tube growth in Arabidopsis and slows vesicle exocytosis at the apex of the pollen tube. GFP-VAMP726 and VAMP725-GFP localize mainly to secretory vesicles and the plasma membrane at the apex of the pollen tube. In addition, fluorescence recovery after photobleaching (FRAP) experiments showed that mCherry-VAMP726 colocalizes with Qa-SNARE SYP131 in the central region of the pollen tube apical plasma membrane. Furthermore, we found that VAMP726 and VAMP725 can interact with the SYP131. Based on these results, we suggest that VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex, and vesicle secretion may mainly occur at the central region of the pollen tube apical plasma membrane.
Collapse
Affiliation(s)
- Xinyan Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dandan Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fuli Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yadan Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianji Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Hirano T, Ebine K, Ueda T, Higaki T, Watanabe-Nakayama T, Konno H, Takigawa-Imamura H, Sato MH. The SYP123-VAMP727 SNARE complex delivers secondary cell wall components for root hair shank hardening in Arabidopsis. THE PLANT CELL 2023; 35:4347-4365. [PMID: 37713604 PMCID: PMC10689195 DOI: 10.1093/plcell/koad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/17/2023]
Abstract
The extended tubular shape of root hairs is established by tip growth and concomitant hardening. Here, we demonstrate that a syntaxin of plants (SYP)123-vesicle-associated membrane protein (VAMP)727-dependent secretion system delivers secondary cell wall components for hardening the subapical zone and shank of Arabidopsis (Arabidopsis thaliana) root hairs. We found increased SYP123 localization at the plasma membrane (PM) of the subapical and shank zones compared with the tip region in elongating root hairs. Inhibition of phosphatidylinositol (PtdIns)(3,5)P2 production impaired SYP123 localization at the PM and SYP123-mediated root hair shank hardening. Moreover, root hair elongation in the syp123 mutant was insensitive to a PtdIns(3,5)P2 synthesis inhibitor. SYP123 interacts with both VAMP721 and VAMP727. syp123 and vamp727 mutants exhibited reduced shank cell wall stiffness due to impaired secondary cell wall component deposition. Based on these results, we conclude that SYP123 is involved in VAMP721-mediated conventional secretion for root hair elongation as well as in VAMP727-mediated secretory functions for the delivery of secondary cell wall components to maintain root hair tubular morphology.
Collapse
Affiliation(s)
- Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
| | | | - Hiroki Konno
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Masa H Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
19
|
Fu Y, Ding B, Liu X, Zhao S, Chen F, Li L, Zhu Y, Zhao J, Yuan Z, Shen Y, Yang C, Shao M, Chen S, Bickel PE, Zhong Q. Qa-SNARE syntaxin 18 mediates lipid droplet fusion with SNAP23 and SEC22B. Cell Discov 2023; 9:115. [PMID: 37989733 PMCID: PMC10663520 DOI: 10.1038/s41421-023-00613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/08/2023] [Indexed: 11/23/2023] Open
Abstract
Lipid droplets (LDs) are dynamic lipid storage organelles that can sense and respond to changes in systemic energy balance. The size and number of LDs are controlled by complex and delicate mechanisms, among which, whether and which SNARE proteins mediate LD fusion, and the mechanisms governing this process remain poorly understood. Here we identified a SNARE complex, syntaxin 18 (STX18)-SNAP23-SEC22B, that is recruited to LDs to mediate LD fusion. STX18 targets LDs with its transmembrane domain spanning the phospholipid monolayer twice. STX18-SNAP23-SEC22B complex drives LD fusion in adiposome lipid mixing and content mixing in vitro assays. CIDEC/FSP27 directly binds STX18, SEC22B, and SNAP23, and promotes the lipid mixing of SNAREs-reconstituted adiposomes by promoting LD clustering. Knockdown of STX18 in mouse liver via AAV resulted in smaller liver and reduced LD size under high-fat diet conditions. All these results demonstrate a critical role of the SNARE complex STX18-SNAP23-SEC22B in LD fusion.
Collapse
Affiliation(s)
- Yuhui Fu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shangang Zhao
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology and Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Fang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jingxuan Zhao
- MedChem Service Unit of Shanghai Haoyuan Chemexpress Co., Ltd., Shanghai, China
| | - Zhen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yafeng Shen
- Shanghai Institute of Precision of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofeng Yang
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengle Shao
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Chen Y, Liu J, Kang S, Wei D, Fan Y, Xiang M, Liu X. A palisade-shaped membrane reservoir is required for rapid ring cell inflation in Drechslerella dactyloides. Nat Commun 2023; 14:7376. [PMID: 37968349 PMCID: PMC10651832 DOI: 10.1038/s41467-023-43235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Fusion of individual vesicles carrying membrane-building materials with the plasma membrane (PM) enables gradual cell expansion and shape change. Constricting ring (CR) cells of carnivorous fungi triple in size within 0.1-1 s to capture passing nematodes. Here, we investigated how a carnivorous fungus, Drechslerella dactyloides, executes rapid and irreversible PM expansion during CR inflation. During CR maturation, vesicles carrying membrane-building materials accumulate and fuse, forming a structure named the Palisade-shaped Membrane-building Structure (PMS) around the rumen side of ring cells. After CR inflation, the PMS disappears, with partially inflated cells displaying wavy PM and fully inflated cells exhibiting smooth PM, suggesting that the PMS serves as the reservoir for membrane-building materials to enable rapid and extensive PM expansion. The DdSnc1, a v-SNARE protein, accumulates at the inner side of ring cells and is necessary for PMS formation and CR inflation. This study elucidates the unique cellular mechanisms underpinning rapid CR inflation.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jia Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dongsheng Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China.
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Matsui T, Sakamaki Y, Hiragi S, Fukuda M. VAMP5 and distinct sets of cognate Q-SNAREs mediate exosome release. Cell Struct Funct 2023; 48:187-198. [PMID: 37704453 PMCID: PMC11496780 DOI: 10.1247/csf.23067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
Small extracellular vesicles (sEVs) are largely classified into two types, plasma-membrane derived sEVs and endomembrane-derived sEVs. The latter type (referred to as exosomes herein) is originated from late endosomes or multivesicular bodies (MVBs). In order to release exosomes extracellularly, MVBs must fuse with the plasma membrane, not with lysosomes. In contrast to the mechanism responsible for MVB-lysosome fusion, the mechanism underlying the MVB-plasma membrane fusion is poorly understood. Here, we systematically analyze soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family proteins and identify VAMP5 as an MVB-localized SNARE protein required for exosome release. Depletion of VAMP5 in HeLa cells impairs exosome release. Mechanistically, VAMP5 mediates exosome release by interacting with SNAP47 and plasma membrane SNARE Syntaxin 1 (STX1) or STX4 to release exosomes. VAMP5 is also found to mediate asymmetric exosome release from polarized Madin-Darby canine kidney (MDCK) epithelial cells through interaction with the distinct sets of Q-SNAREs, suggesting that VAMP5 is a general exosome regulator in both polarized cells and non-polarized cells.Key words: exosome, small extracellular vesicle (sEV), multivesicular body, SNARE, VAMP5.
Collapse
Affiliation(s)
- Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yuriko Sakamaki
- Microscopy Research Support Unit Research Core, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
22
|
Chatterjee R, Nair AV, Singh A, Mehta N, Setty SRG, Chakravortty D. Syntaxin 3 SPI-2 dependent crosstalk facilitates the division of Salmonella containing vacuole. Traffic 2023; 24:270-283. [PMID: 37114883 DOI: 10.1111/tra.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Nishi Mehta
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
23
|
Liu T, Li T, Xu D, Wang Y, Zhou Y, Wan J, Huang CLH, Tan X. Small-conductance calcium-activated potassium channels in the heart: expression, regulation and pathological implications. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220171. [PMID: 37122223 PMCID: PMC10150224 DOI: 10.1098/rstb.2022.0171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/25/2022] [Indexed: 05/02/2023] Open
Abstract
Ca2+-activated K+ channels are critical to cellular Ca2+ homeostasis and excitability; they couple intracellular Ca2+ and membrane voltage change. Of these, the small, 4-14 pS, conductance SK channels include three, KCNN1-3 encoded, SK1/KCa2.1, SK2/KCa2.2 and SK3/KCa2.3, channel subtypes with characteristic, EC50 ∼ 10 nM, 40 pM, 1 nM, apamin sensitivities. All SK channels, particularly SK2 channels, are expressed in atrial, ventricular and conducting system cardiomyocytes. Pharmacological and genetic modification results have suggested that SK channel block or knockout prolonged action potential durations (APDs) and effective refractory periods (ERPs) particularly in atrial, but also in ventricular, and sinoatrial, atrioventricular node and Purkinje myocytes, correspondingly affect arrhythmic tendency. Additionally, mitochondrial SK channels may decrease mitochondrial Ca2+ overload and reactive oxygen species generation. SK channels show low voltage but marked Ca2+ dependences (EC50 ∼ 300-500 nM) reflecting their α-subunit calmodulin (CaM) binding domains, through which they may be activated by voltage-gated or ryanodine-receptor Ca2+ channel activity. SK function also depends upon complex trafficking and expression processes and associations with other ion channels or subunits from different SK subtypes. Atrial and ventricular clinical arrhythmogenesis may follow both increased or decreased SK expression through decreased or increased APD correspondingly accelerating and stabilizing re-entrant rotors or increasing incidences of triggered activity. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dandi Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Juyi Wan
- Department of Cardiovascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Christopher L.-H. Huang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Physiological Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
24
|
Chen J, Wang Z, Wang T, Cheng J, Zhuang R, Wang W. SNAP23 decreases insulin secretion by competitively inhibiting the interaction between SNAP25 and STX1A. Biosci Rep 2023; 43:BSR20222594. [PMID: 37057886 PMCID: PMC10154458 DOI: 10.1042/bsr20222594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/15/2023] Open
Abstract
SNAP25 is a core protein of the SNARE complex, which mediates stimulus-dependent secretion of insulin from the pancreatic β cells. SNAP23 is a SNAP25 homolog, however, the functional role of SNAP23 in the exocytic secretion of insulin is not known. Therefore, in the present study, we investigated the functional role of SNAP23 in the insulin secretory pathway. Our results demonstrated that over-expression of SNAP23 inhibited the secretion of insulin from the INS-1 cells. Conversely, SNAP23 depletion increased insulin secretion. Mechanistically, overexpression of SNAP23 decreased SNARE complex formation by blocking the binding of SNAP25 to STX1A. The full-length SNAP23 protein with the N-terminal and C-terminal SNARE binding domains was required for competition. Moreover, SNAP23 serine 95 phosphorylation plays a crucial function in insulin secretion by enhancing the interaction between SNAP23 and STX1A. The present study presents a new pathway regulating insulin secretion. Therefore, SNAP23 may be a potential therapeutic target for diabetes mellitus.
Collapse
Affiliation(s)
- Jun Chen
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361104, China
| | - Ziyan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361104, China
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361104, China
| | - Jidong Cheng
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361104, China
| | - Ruijuan Zhuang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361104, China
| | - Wei Wang
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361104, China
| |
Collapse
|
25
|
Choi JH, Park SY, Lee WJ, Lee CJ, Kim JH, Jang TY, Jeon SE, Jun Y, Nam JS. SEC22B inhibition attenuates colorectal cancer aggressiveness and autophagic flux under unfavorable environment. Biochem Biophys Res Commun 2023; 665:10-18. [PMID: 37148741 DOI: 10.1016/j.bbrc.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Autophagy has bidirectional functions in cancer by facilitating cell survival and death in a context-dependent manner. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a large family of proteins essential for numerous biological processes, including autophagy; nevertheless, their potential function in cancer malignancy remains unclear. Here, we explored the gene expression patterns of SNAREs in tissues of patients with colorectal cancer (CRC) and discovered that SEC22B expression, a vesicle SNARE, was higher in tumor tissues than in normal tissues, with a more significant increase in metastatic tissues. Interestingly, SEC22B knockdown dramatically decreased CRC cell survival and growth, especially under stressful conditions, such as hypoxia and serum starvation, and decreased the number of stress-induced autophagic vacuoles. Moreover, SEC22B knockdown successfully attenuated liver metastasis in a CRC cell xenograft mouse model, with histological signs of decreased autophagic flux and proliferation within cancer cells. Together, this study posits that SEC22B plays a crucial role in enhancing the aggressiveness of CRC cells, suggesting that SEC22B might be an attractive therapeutic target for CRC.
Collapse
|
26
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
27
|
Sánchez-Martín P, Kriegenburg F, Alves L, Adam J, Elsaesser J, Babic R, Mancilla H, Licheva M, Tascher G, Münch C, Eimer S, Kraft C. ULK1-mediated phosphorylation regulates the conserved role of YKT6 in autophagy. J Cell Sci 2023; 136:jcs260546. [PMID: 36644903 PMCID: PMC10022743 DOI: 10.1242/jcs.260546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a catabolic process during which cytosolic material is enwrapped in a newly formed double-membrane structure called the autophagosome, and subsequently targeted for degradation in the lytic compartment of the cell. The fusion of autophagosomes with the lytic compartment is a tightly regulated step and involves membrane-bound SNARE proteins. These play a crucial role as they promote lipid mixing and fusion of the opposing membranes. Among the SNARE proteins implicated in autophagy, the essential SNARE protein YKT6 is the only SNARE protein that is evolutionarily conserved from yeast to humans. Here, we show that alterations in YKT6 function, in both mammalian cells and nematodes, produce early and late autophagy defects that result in reduced survival. Moreover, mammalian autophagosomal YKT6 is phospho-regulated by the ULK1 kinase, preventing premature bundling with the lysosomal SNARE proteins and thereby inhibiting autophagosome-lysosome fusion. Together, our findings reveal that timely regulation of the YKT6 phosphorylation status is crucial throughout autophagy progression and cell survival.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ludovico Alves
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Julius Adam
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jana Elsaesser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Riccardo Babic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hector Mancilla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stefan Eimer
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
28
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
29
|
Yan C, Jiang J, Yang Y, Geng X, Dong W. The function of VAMP2 in mediating membrane fusion: An overview. Front Mol Neurosci 2022; 15:948160. [PMID: 36618823 PMCID: PMC9816800 DOI: 10.3389/fnmol.2022.948160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Vesicle-associated membrane protein 2 (VAMP2, also known as synaptobrevin-2), encoded by VAMP2 in humans, is a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. VAMP2 combined with syntaxin-1A (SYX-1A) and synaptosome-associated protein 25 (SNAP-25) produces a force that induces the formation of fusion pores, thereby mediating the fusion of synaptic vesicles and the release of neurotransmitters. VAMP2 is largely unstructured in the absence of interaction partners. Upon interaction with other SNAREs, the structure of VAMP2 stabilizes, resulting in the formation of four structural domains. In this review, we highlight the current knowledge of the roles of the VAMP2 domains and the interaction between VAMP2 and various fusion-related proteins in the presynaptic cytoplasm during the fusion process. Our summary will contribute to a better understanding of the roles of the VAMP2 protein in membrane fusion.
Collapse
Affiliation(s)
- Chong Yan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Jiang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Xiaoqi Geng,
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China,Wei Dong,
| |
Collapse
|
30
|
Rai P, Kumar Roy J. Endosomal recycling protein Rab11 in Parkin and Pink1 signaling in Drosophila model of Parkinson's disease. Exp Cell Res 2022; 420:113357. [PMID: 36116557 DOI: 10.1016/j.yexcr.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases are progressive disorders of the nervous system primarily affecting the loss of neuronal cells present in the brain. Although most neurodegenerative cases are sporadic, some familial genes are found to be involved in the neurodegenerative diseases. The extensively studied parkin and pink1 gene products are known to be involved in the removal of damaged mitochondria via autophagy (mitophagy), a quality control process. If the function of any of these genes is somehow disrupted, accumulation of damaged mitochondria occurs in the forms of protein aggregates in the cytoplasm, leading to formation of the Lewy-bodies. Autophagy is an important catabolic process where the endosomal Rab proteins are seen to be involved. Rab11, an endosomal recycling protein, serves as an ATG9A carrier that helps in autophagosome formation and maturation. Earlier studies have reported that loss of Rab11 prevents the fusion of autophagosomes with the late endosomes hampering the autophagy pathway resulting in apoptosis of cells. In this study, we have emphasized on the importance and functional role of Rab11 in the molecular pathway of Parkin/Pink1 in Parkinson's disease.
Collapse
Affiliation(s)
- Pooja Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
31
|
Cabaço LC, Bento-Lopes L, Neto MV, Ferreira A, Staubli WB, Ramalho JS, Seabra MC, Barral DC. RAB3A Regulates Melanin Exocytosis and Transfer Induced by Keratinocyte-Conditioned Medium. JID INNOVATIONS 2022; 2:100139. [PMID: 36090299 PMCID: PMC9460155 DOI: 10.1016/j.xjidi.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Skin pigmentation is imparted by melanin and is crucial for photoprotection against UVR. Melanin is synthesized and packaged into melanosomes within melanocytes and is then transferred to keratinocytes (KCs). Although the molecular players involved in melanogenesis have been extensively studied, those underlying melanin transfer remain unclear. Previously, our group proposed that coupled exocytosis/phagocytosis is the predominant mechanism of melanin transfer in human skin and showed an essential role for RAB11B and the exocyst tethering complex in this process. In this study, we show that soluble factors present in KC-conditioned medium stimulate melanin exocytosis from melanocytes and transfer to KCs. Moreover, we found that these factors are released by differentiated KCs but not by basal layer KCs. Furthermore, we found that RAB3A regulates melanin exocytosis and transfer stimulated by KC-conditioned medium. Indeed, KC-conditioned medium enhances the recruitment of RAB3A to melanosomes in melanocyte dendrites. Therefore, our results suggest the existence of two distinct routes of melanin exocytosis: a basal route controlled by RAB11B and a RAB3A-dependent route, stimulated by KC-conditioned medium. Thus, this study provides evidence that soluble factors released by differentiated KCs control skin pigmentation by promoting the accumulation of RAB3A-positive melanosomes in melanocyte dendrites and their release and subsequent transfer to KCs.
Collapse
Key Words
- CO2, carbon dioxide
- FBS, fetal bovine serum
- FCM, fibroblast-conditioned medium
- HEKn, human neonatal epidermal keratinocyte
- HEMn-DP, human neonatal epidermal darkly pigmented melanocyte
- KC, keratinocyte
- KCM, keratinocyte-conditioned medium
- MKCM, melanocyte-/keratinocyte-conditioned medium
- miRNA, microRNA
- pKCM, primary keratinocyte-conditioned medium
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Luís C. Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Liliana Bento-Lopes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Matilde V. Neto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Andreia Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Wanja B.L. Staubli
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - José S. Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C. Seabra
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
32
|
Lischnig A, Bergqvist M, Ochiya T, Lässer C. Quantitative Proteomics Identifies Proteins Enriched in Large and Small Extracellular Vesicles. Mol Cell Proteomics 2022; 21:100273. [PMID: 35918030 PMCID: PMC9486130 DOI: 10.1016/j.mcpro.2022.100273] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022] Open
Abstract
There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs), such as exosomes. However, recent studies have shown that several of these markers can also be present in other subpopulations of EVs to a similar degree. Furthermore, few markers have been identified as enriched or uniquely present in larger EVs, such as microvesicles. The aim of this study was to address these issues by conducting an in-depth comparison of the proteome of large and small EVs. Large (16,500g) and small EVs (118,000g) were isolated from three cell lines using a combination of differential ultracentrifugation and a density cushion and quantitative mass spectrometry (tandem mass tag-liquid chromatography-tandem mass spectrometry) was used to identify differently enriched proteins in large and small EVs. In total, 6493 proteins were quantified, with 818 and 1567 proteins significantly enriched in small and large EVs, respectively. Tetraspanins, ADAMs and ESCRT proteins, as well as SNAREs and Rab proteins associated with endosomes were enriched in small EVs compared with large EVs, whereas ribosomal, mitochondrial, and nuclear proteins, as well as proteins involved in cytokinesis, were enriched in large EVs compared with small EVs. However, Flotillin-1 was not differently expressed in large and small EVs. In conclusion, our study shows that the proteome of large and small EVs are substantially dissimilar. We validated several proteins previously suggested to be enriched in either small or large EVs (e.g., ADAM10 and Mitofilin, respectively), and we suggest several additional novel protein markers.
Collapse
Affiliation(s)
- Anna Lischnig
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Bergqvist
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Cecilia Lässer
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
33
|
Identification of two pathways mediating protein targeting from ER to lipid droplets. Nat Cell Biol 2022; 24:1364-1377. [PMID: 36050470 PMCID: PMC9481466 DOI: 10.1038/s41556-022-00974-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Pathways localizing proteins to their sites of action are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, how proteins, such as metabolic enzymes, target from the endoplasmic reticulum (ER) to cellular lipid droplets (LDs) is poorly understood. Here we identify two distinct pathways for ER-to-LD protein targeting: early targeting at LD formation sites during formation, and late targeting to mature LDs after their formation. Using systematic, unbiased approaches in Drosophila cells, we identified specific membrane-fusion machinery, including regulators, a tether and SNARE proteins, that are required for the late targeting pathway. Components of this fusion machinery localize to LD–ER interfaces and organize at ER exit sites. We identified multiple cargoes for early and late ER-to-LD targeting pathways. Our findings provide a model for how proteins target to LDs from the ER either during LD formation or by protein-catalysed formation of membrane bridges. Song et al. identify two protein-targeting pathways from the endoplasmic reticulum to (1) early lipid droplets (LDs) and (2) mature lipid droplets. They define key factors mediating the second, late pathway and its many cargoes.
Collapse
|
34
|
Bourne CM, Lai DC, Schottenfeld-Roames J. Regulators of the secretory pathway have distinct inputs into single-celled branching morphogenesis and seamless tube formation in the Drosophila trachea. Dev Biol 2022; 490:100-109. [PMID: 35870495 DOI: 10.1016/j.ydbio.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Biological tubes serve as conduits through which gas, nutrients and other important fluids are delivered to tissues. Most biological tubes consist of multiple cells connected by epithelial junctions. Unlike these multicellular tubes, seamless tubes are unicellular and lack junctions. Seamless tubes are present in various organ systems, including the vertebrate vasculature, C.elegans excretory system, and Drosophila tracheal system. The Drosophila tracheal system is a network of air-filled tubes that delivers oxygen to all tissues. Specialized cells within the tracheal system, called terminal cells, branch extensively and form seamless tubes. Terminal tracheal tubes are polarized; the lumenal membrane has apical identity whereas the outer membrane exhibits basal characteristics. Although various aspects of membrane trafficking have been implicated in terminal cell morphogenesis, the precise secretory pathway requirements for basal and apical membrane growth have yet to be elucidated. In the present study, we demonstrate that anterograde trafficking, retrograde trafficking and Golgi-to-plasma membrane vesicle fusion are each required for the complex branched architecture of the terminal cell, but their inputs during seamless lumen formation are more varied. The COPII subunit, Sec31, and ER exit site protein, Sec16, are critical for subcellular tube architecture, whereas the SNARE proteins Syntaxin 5, Syntaxin 1 and Syntaxin 18 are more generally required for seamless tube growth and maintenance. These data suggest that distinct components of the secretory pathway have differential contributions to basal and apical membrane growth and maintenance during terminal cell morphogenesis.
Collapse
Affiliation(s)
- Christopher M Bourne
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA, 19081, United States
| | - Daniel C Lai
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA, 19081, United States
| | - Jodi Schottenfeld-Roames
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA, 19081, United States.
| |
Collapse
|
35
|
Parveen S, Khamari A, Raju J, Coppolino MG, Datta S. Syntaxin 7 contributes to breast cancer cell invasion by promoting invadopodia formation. J Cell Sci 2022; 135:275829. [PMID: 35762511 DOI: 10.1242/jcs.259576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
Invasion in various cancer cells requires coordinated delivery of signaling proteins, adhesion proteins, actin-remodeling proteins and proteases to matrix-degrading structures called invadopodia. Vesicular trafficking involving SNAREs plays a crucial role in the delivery of cargo to the target membrane. Screening of 13 SNAREs from the endocytic and recycling route using a gene silencing approach coupled with functional assays identified syntaxin 7 (STX7) as an important player in MDA-MB-231 cell invasion. Total internal reflection fluorescence microscopy (TIRF-M) studies revealed that STX7 resides near invadopodia and co-traffics with MT1-MMP (also known as MMP14), indicating a possible role for this SNARE in protease trafficking. STX7 depletion reduced the number of invadopodia and their associated degradative activity. Immunoprecipitation studies revealed that STX7 forms distinct SNARE complexes with VAMP2, VAMP3, VAMP7, STX4 and SNAP23. Depletion of VAMP2, VAMP3 or STX4 abrogated invadopodia formation, phenocopying what was seen upon lack of STX7. Whereas depletion of STX4 reduced MT1-MMP level at the cell surfaces, STX7 silencing significantly reduced the invadopodia-associated MT1-MMP pool and increased the non-invadosomal pool. This study highlights STX7 as a major contributor towards the invadopodia formation during cancer cell invasion. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| | - Amrita Khamari
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| | - Jyothikamala Raju
- Thazhathemalayil House, Thodupuzha East PO, Keerikode, Kerala 685585, India
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| |
Collapse
|
36
|
Hwang J, Thurmond DC. Exocytosis Proteins: Typical and Atypical Mechanisms of Action in Skeletal Muscle. Front Endocrinol (Lausanne) 2022; 13:915509. [PMID: 35774142 PMCID: PMC9238359 DOI: 10.3389/fendo.2022.915509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-stimulated glucose uptake in skeletal muscle is of fundamental importance to prevent postprandial hyperglycemia, and long-term deficits in insulin-stimulated glucose uptake underlie insulin resistance and type 2 diabetes. Skeletal muscle is responsible for ~80% of the peripheral glucose uptake from circulation via the insulin-responsive glucose transporter GLUT4. GLUT4 is mainly sequestered in intracellular GLUT4 storage vesicles in the basal state. In response to insulin, the GLUT4 storage vesicles rapidly translocate to the plasma membrane, where they undergo vesicle docking, priming, and fusion via the high-affinity interactions among the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) exocytosis proteins and their regulators. Numerous studies have elucidated that GLUT4 translocation is defective in insulin resistance and type 2 diabetes. Emerging evidence also links defects in several SNAREs and SNARE regulatory proteins to insulin resistance and type 2 diabetes in rodents and humans. Therefore, we highlight the latest research on the role of SNAREs and their regulatory proteins in insulin-stimulated GLUT4 translocation in skeletal muscle. Subsequently, we discuss the novel emerging role of SNARE proteins as interaction partners in pathways not typically thought to involve SNAREs and how these atypical functions reveal novel therapeutic targets for combating peripheral insulin resistance and diabetes.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
37
|
Wang S, Ma C. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. FEBS Open Bio 2022; 12:1939-1957. [PMID: 35278279 PMCID: PMC9623535 DOI: 10.1002/2211-5463.13394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023] Open
Abstract
Neurotransmitter release by Ca2+ -triggered synaptic vesicle exocytosis is essential for information transmission in the nervous system. The soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form the SNARE complex to bring synaptic vesicles and the plasma membranes together and to catalyze membrane fusion. Munc18-1 and Munc13-1 regulate synaptic vesicle priming via orchestrating neuronal SNARE complex assembly. In this review, we summarize recent advances toward the functions and molecular mechanisms of Munc18-1 and Munc13-1 in guiding neuronal SNARE complex assembly, and discuss the functional similarities and differences between Munc18-1 and Munc13-1 in neurons and their homologs in other intracellular membrane trafficking systems.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
38
|
Lauzier A, Bossanyi MF, Larcher R, Nassari S, Ugrankar R, Henne WM, Jean S. Snazarus and its human ortholog SNX25 modulate autophagic flux. J Cell Sci 2022; 135:273525. [PMID: 34821359 DOI: 10.1242/jcs.258733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy, the degradation and recycling of cytosolic components in the lysosome, is an important cellular mechanism. It is a membrane-mediated process that is linked to vesicular trafficking events. The sorting nexin (SNX) protein family controls the sorting of a large array of cargoes, and various SNXs impact autophagy. To improve our understanding of their functions in vivo, we screened all Drosophila SNXs using inducible RNA interference in the fat body. Significantly, depletion of Snazarus (Snz) led to decreased autophagic flux. Interestingly, we observed altered distribution of Vamp7-positive vesicles with Snz depletion, and the roles of Snz were conserved in human cells. SNX25, the closest human ortholog to Snz, regulates both VAMP8 endocytosis and lipid metabolism. Through knockout-rescue experiments, we demonstrate that these activities are dependent on specific SNX25 domains and that the autophagic defects seen upon SNX25 loss can be rescued by ethanolamine addition. We also demonstrate the presence of differentially spliced forms of SNX14 and SNX25 in cancer cells. This work identifies a conserved role for Snz/SNX25 as a regulator of autophagic flux and reveals differential isoform expression between paralogs.
Collapse
Affiliation(s)
- Annie Lauzier
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Marie-France Bossanyi
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Raphaëlle Larcher
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Sonya Nassari
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Rupali Ugrankar
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Hary Lines Boulevard, Dallas, TX 75390, USA
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Hary Lines Boulevard, Dallas, TX 75390, USA
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| |
Collapse
|
39
|
Brasher MI, Chafe SC, McDonald PC, Nemirovsky O, Gorshtein G, Gerbec ZJ, Brown WS, Grafinger OR, Marchment M, Matus E, Dedhar S, Coppolino MG. Syntaxin4-Munc18c Interaction Promotes Breast Tumor Invasion and Metastasis by Regulating MT1-MMP Trafficking. Mol Cancer Res 2022; 20:434-445. [PMID: 34876482 PMCID: PMC9306282 DOI: 10.1158/1541-7786.mcr-20-0527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/18/2020] [Accepted: 11/24/2021] [Indexed: 01/07/2023]
Abstract
Invasion of neighboring extracellular matrix (ECM) by malignant tumor cells is a hallmark of metastatic progression. This invasion can be mediated by subcellular structures known as invadopodia, the function of which depends upon soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE)-mediated vesicular transport of cellular cargo. Recently, it has been shown the SNARE Syntaxin4 (Stx4) mediates trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) to invadopodia, and that Stx4 is regulated by Munc18c in this context. Here, it is observed that expression of a construct derived from the N-terminus of Stx4, which interferes with Stx4-Munc18c interaction, leads to perturbed trafficking of MT1-MMP, and reduced invadopodium-based invasion in vitro, in models of triple-negative breast cancer (TNBC). Expression of Stx4 N-terminus also led to increased survival and markedly reduced metastatic burden in multiple TNBC models in vivo. The findings are the first demonstration that disrupting Stx4-Munc18c interaction can dramatically alter metastatic progression in vivo, and suggest that this interaction warrants further investigation as a potential therapeutic target. IMPLICATIONS Disrupting the interaction of Syntaxin4 and Munc18c may be a useful approach to perturb trafficking of MT1-MMP and reduce metastatic potential of breast cancers.
Collapse
Affiliation(s)
- Megan I. Brasher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shawn C. Chafe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Genya Gorshtein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Zachary J. Gerbec
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Wells S. Brown
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Olivia R. Grafinger
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Matthew Marchment
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Esther Matus
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc G. Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Corresponding Author: Marc G. Coppolino, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada. E-mail:
| |
Collapse
|
40
|
Saito-Nakano Y, Makiuchi T, Tochikura M, Gilchrist CA, Petri WA, Nozaki T. ArfX2 GTPase Regulates Trafficking From the Trans-Golgi to Lysosomes and Is Necessary for Liver Abscess Formation in the Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 11:794152. [PMID: 34976870 PMCID: PMC8719317 DOI: 10.3389/fcimb.2021.794152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amoebic dysentery and liver abscess in humans. The parasitic lifestyle and the virulence of the protist require elaborate biological processes, including vesicular traffic and stress management against a variety of reactive oxygen and nitrogen species produced by the host immune response. Although the mechanisms for intracellular traffic of representative virulence factors have been investigated at molecular levels, it remains poorly understood whether and how intracellular traffic is involved in the defense against reactive oxygen and nitrogen species. Here, we demonstrate that EhArfX2, one of the Arf family of GTPases known to be involved in the regulation of vesicular traffic, was identified by comparative transcriptomic analysis of two isogenic strains: an animal-passaged highly virulent HM-1:IMSS Cl6 and in vitro maintained attenuated avirulent strain. EhArfX2 was identified as one of the most highly upregulated genes in the highly virulent strain. EhArfX2 was localized to small vesicle-like structures and largely colocalized with the marker for the trans-Golgi network SNARE, EhYkt6, but neither with the endoplasmic reticulum (ER)-resident chaperon, EhBip, nor the cis-Golgi SNARE, EhSed5, and Golgi-luminal galactosyl transferase, EhGalT. Expression of the dominant-active mutant form of EhArfX2 caused an increase in the number of lysosomes, while expression of the dominant-negative mutant led to a defect in lysosome formation and cysteine protease transport to lysosomes. Expression of the dominant-negative mutant in the virulent E. histolytica strain caused a reduction of the size of liver abscesses in a hamster model. This defect in liver abscess formation was likely at least partially attributed to reduced resistance to nitrosative, but not oxidative stress in vitro. These results showed that the EhArfX2-mediated traffic is necessary for the nitrosative stress response and virulence in the host.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Mami Tochikura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Carol A Gilchrist
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - William A Petri
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
41
|
Luo C, Shi Y, Xiang Y. SNAREs Regulate Vesicle Trafficking During Root Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:853251. [PMID: 35360325 PMCID: PMC8964185 DOI: 10.3389/fpls.2022.853251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 05/13/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins assemble to drive the final membrane fusion step of membrane trafficking. Thus, SNAREs are essential for membrane fusion and vesicular trafficking, which are fundamental mechanisms for maintaining cellular homeostasis. In plants, SNAREs have been demonstrated to be located in different subcellular compartments and involved in a variety of fundamental processes, such as cytokinesis, cytoskeleton organization, symbiosis, and biotic and abiotic stress responses. In addition, SNAREs can also contribute to the normal growth and development of Arabidopsis. Here, we review recent progress in understanding the biological functions and signaling network of SNAREs in vesicle trafficking and the regulation of root growth and development in Arabidopsis.
Collapse
|
42
|
Serratos IN, Hernández-Pérez E, Campos C, Aschner M, Santamaría A. An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Mol Neurobiol 2021; 59:620-642. [PMID: 34750787 DOI: 10.1007/s12035-021-02596-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Elizabeth Hernández-Pérez
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Carolina Campos
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, SSA, 14269, Mexico City, Mexico.
| |
Collapse
|
43
|
IŞIK M, BİLİCİ Z, ÇİNE N, ÖZTÜRK S. Usage of Peptide Antigens for Antibody-Based BoNT Detection System. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2021. [DOI: 10.30934/kusbed.935903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Congenital disorder of glycosylation caused by starting site-specific variant in syntaxin-5. Nat Commun 2021; 12:6227. [PMID: 34711829 PMCID: PMC8553859 DOI: 10.1038/s41467-021-26534-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein syntaxin-5 (Stx5) is essential for Golgi transport. In humans, the STX5 mRNA encodes two protein isoforms, Stx5 Long (Stx5L) from the first starting methionine and Stx5 Short (Stx5S) from an alternative starting methionine at position 55. In this study, we identify a human disorder caused by a single missense substitution in the second starting methionine (p.M55V), resulting in complete loss of the short isoform. Patients suffer from an early fatal multisystem disease, including severe liver disease, skeletal abnormalities and abnormal glycosylation. Primary human dermal fibroblasts isolated from these patients show defective glycosylation, altered Golgi morphology as measured by electron microscopy, mislocalization of glycosyltransferases, and compromised ER-Golgi trafficking. Measurements of cognate binding SNAREs, based on biotin-synchronizable forms of Stx5 (the RUSH system) and Förster resonance energy transfer (FRET), revealed that the short isoform of Stx5 is essential for intra-Golgi transport. Alternative starting codons of Stx5 are thus linked to human disease, demonstrating that the site of translation initiation is an important new layer of regulating protein trafficking.
Collapse
|
45
|
Errachid A, Nohawica M, Wyganowska-Swiatkowska M. A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomed Rep 2021; 15:95. [PMID: 34631050 PMCID: PMC8493546 DOI: 10.3892/br.2021.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to reduced secretory functions and oral and ocular dryness. The salivary glands are composed of acinar cells that are responsible for the secretion and production of secretory granules, which contain salivary components, such as amylase, mucins and immunoglobulins. This secretion process involves secretory vesicle trafficking, docking, priming and membrane fusion. A failure during any of the steps in exocytosis in the salivary glands results in the altered secretion of saliva. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors, actin, tight junctions and aquaporin 5 all serve an important role in the trafficking regulation of secretory vesicles in the secretion of saliva via exocytosis. Alterations in the expression and distribution of these selected proteins leads to salivary gland dysfunction, including SS. Several studies have demonstrated that green tea polyphenols, most notably Epigallocatechin gallate (EGCG), possess both anti-inflammatory and anti-apoptotic properties in normal human cells. Molecular, cellular and animal studies have indicated that EGCG can provide protective effects against autoimmune and inflammatory reactions in salivary glands in diseases such as SS. The aim of the present article is to provide a comprehensive and up-to-date review on the possible therapeutic interactions between EGCG and the selected molecular mechanisms associated with SS.
Collapse
Affiliation(s)
- Abdelmounaim Errachid
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland.,Earth and Life Institute, University Catholique of Louvain, B-1348 Louvain-la-Neuve, Ottignies-Louvain-la-Neuve, Belgium
| | - Michal Nohawica
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| | - Marzena Wyganowska-Swiatkowska
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| |
Collapse
|
46
|
Wong FC, Ye L, Demir IE, Kahlert C. Schwann cell-derived exosomes: Janus-faced mediators of regeneration and disease. Glia 2021; 70:20-34. [PMID: 34519370 DOI: 10.1002/glia.24087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022]
Abstract
The phenotypic plasticity of Schwann cells (SCs) has contributed to the regenerative potential of the peripheral nervous system (PNS), but also pathological processes. This double-sided effect has led to an increasing attention to the role of extracellular vesicles (EVs) or exosomes in SCs to examine the intercellular communication between SCs and their surroundings. Here, we first describe the current knowledge of SC and EV biology, which forms the basis for the updates on advances in SC-derived exosomes research. We seek to explore in-depth the exosome-mediated molecular mechanisms involved in the regulation of SCs and their microenvironment. This review concludes with potential applications of SC-derived exosomes as delivery vehicles for therapeutics and biomarkers. The goal of this review is to emphasize the crucial role of SC-derived exosomes in the functional integration of the PNS, highlighting an emerging area in which there is much to explore and re-explore.
Collapse
Affiliation(s)
- Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Linhan Ye
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany.,Else Kröner Clinician Scientist Professor for "Translational Pancreatic Surgery
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| |
Collapse
|
47
|
Protein Sorting in Plasmodium Falciparum. Life (Basel) 2021; 11:life11090937. [PMID: 34575086 PMCID: PMC8467625 DOI: 10.3390/life11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum is a unicellular eukaryote with a very polarized secretory system composed of micronemes rhoptries and dense granules that are required for host cell invasion. P. falciparum, like its relative T. gondii, uses the endolysosomal system to produce the secretory organelles and to ingest host cell proteins. The parasite also has an apicoplast, a secondary endosymbiotic organelle, which depends on vesicular trafficking for appropriate incorporation of nuclear-encoded proteins into the apicoplast. Recently, the central molecules responsible for sorting and trafficking in P. falciparum and T. gondii have been characterized. From these studies, it is now evident that P. falciparum has repurposed the molecules of the endosomal system to the secretory pathway. Additionally, the sorting and vesicular trafficking mechanism seem to be conserved among apicomplexans. This review described the most recent findings on the molecular mechanisms of protein sorting and vesicular trafficking in P. falciparum and revealed that P. falciparum has an amazing secretory machinery that has been cleverly modified to its intracellular lifestyle.
Collapse
|
48
|
Glueck NK, O'Brien KM, Seguin DC, Starai VJ. Legionella pneumophila LegC7 effector protein drives aberrant endoplasmic reticulum:endosome contacts in yeast. Traffic 2021; 22:284-302. [PMID: 34184807 DOI: 10.1111/tra.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
Legionella pneumophila is a facultative intracellular bacterial pathogen, causing the severe form of pneumonia known as Legionnaires' disease. Legionella actively alters host organelle trafficking through the activities of "effector" proteins secreted via a type-IVB secretion system, in order to construct the bacteria-laden Legionella-containing vacuole (LCV) and prevent lysosomal degradation. The LCV is created with membrane derived from host endoplasmic reticulum (ER), secretory vesicles and phagosomes, although the precise molecular mechanisms that drive its synthesis remain poorly understood. In an effort to characterize the in vivo activity of the LegC7/YlfA SNARE-like effector protein from Legionella in the context of eukaryotic membrane trafficking in yeast, we find that LegC7 interacts with the Emp46p/Emp47p ER-to-Golgi glycoprotein cargo adapter complex, alters ER morphology and induces aberrant ER:endosome interactions, as measured by visualization of ER cargo degradation, reconstitution of split-GFP proteins and enhanced oxidation of the ER lumen. LegC7-dependent toxicity, disruption of ER morphology and ER:endosome fusion events were dependent upon endosomal VPS class C tethering complexes and the endosomal t-SNARE, Pep12p. This work establishes a model in which LegC7 functions to recruit host ER material to the bacterial phagosome during infection by driving ER:endosome contacts, potentially through interaction with host membrane tethering complexes and/or cargo adapters.
Collapse
Affiliation(s)
- Nathan K Glueck
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Kevin M O'Brien
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Danielle C Seguin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, USA.,Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
49
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
50
|
Salinas-Cornejo J, Madrid-Espinoza J, Verdugo I, Pérez-Díaz J, Martín-Davison AS, Norambuena L, Ruiz-Lara S. The Exocytosis Associated SNAP25-Type Protein, SlSNAP33, Increases Salt Stress Tolerance by Modulating Endocytosis in Tomato. PLANTS 2021; 10:plants10071322. [PMID: 34209492 PMCID: PMC8309203 DOI: 10.3390/plants10071322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
In plants, vesicular trafficking is crucial for the response and survival to environmental challenges. The active trafficking of vesicles is essential to maintain cell homeostasis during salt stress. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are regulatory proteins of vesicular trafficking. They mediate membrane fusion and guarantee cargo delivery to the correct cellular compartments. SNAREs from the Qbc subfamily are the best-characterized plasma membrane SNAREs, where they control exocytosis during cell division and defense response. The Solanum lycopersicum gene SlSNAP33.2 encodes a Qbc-SNARE protein and is induced under salt stress conditions. SlSNAP33.2 localizes on the plasma membrane of root cells of Arabidopsis thaliana. In order to study its role in endocytosis and salt stress response, we overexpressed the SlSNAP33.2 cDNA in a tomato cultivar. Constitutive overexpression promoted endocytosis along with the accumulation of sodium (Na+) in the vacuoles. It also protected the plant from cell damage by decreasing the accumulation of hydrogen peroxide (H2O2) in the cytoplasm of stressed root cells. Subsequently, the higher level of SlSNAP33.2 conferred tolerance to salt stress in tomato plants. The analysis of physiological and biochemical parameters such as relative water content, the efficiency of the photosystem II, performance index, chlorophyll, and MDA contents showed that tomato plants overexpressing SlSNAP33.2 displayed a better performance under salt stress than wild type plants. These results reveal a role for SlSNAP33.2 in the endocytosis pathway involved in plant response to salt stress. This research shows that SlSNAP33.2 can be an effective tool for the genetic improvement of crop plants.
Collapse
Affiliation(s)
- Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Isabel Verdugo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Jorge Pérez-Díaz
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Alex San Martín-Davison
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Lorena Norambuena
- Facultad de Ciencias, Universidad de Chile, Santiago, Ñuñoa 7750000, Chile;
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
- Correspondence:
| |
Collapse
|