1
|
Machado IF, Palmeira CM, Rolo AP. Sestrin2 is a central regulator of mitochondrial stress responses in disease and aging. Ageing Res Rev 2025; 109:102762. [PMID: 40320152 DOI: 10.1016/j.arr.2025.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/09/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Mitochondria supply most of the energy for cellular functions and coordinate numerous cellular pathways. Their dynamic nature allows them to adjust to stress and cellular metabolic demands, thus ensuring the preservation of cellular homeostasis. Loss of normal mitochondrial function compromises cell survival and has been implicated in the development of many diseases and in aging. Although exposure to continuous or severe stress has adverse effects on cells, mild mitochondrial stress enhances mitochondrial function and potentially extends health span through mitochondrial adaptive responses. Over the past few decades, sestrin2 (SESN2) has emerged as a pivotal regulator of stress responses. For instance, SESN2 responds to genotoxic, oxidative, and metabolic stress, promoting cellular defense against stress-associated damage. Here, we focus on recent findings that establish SESN2 as an orchestrator of mitochondrial stress adaptation, which is supported by its involvement in the integrated stress response, mitochondrial biogenesis, and mitophagy. Additionally, we discuss the integral role of SESN2 in mediating the health benefits of exercise as well as its impact on skeletal muscle, liver and heart injury, and aging.
Collapse
Affiliation(s)
- Ivo F Machado
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CiBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Institute of Interdisciplinary Research, Doctoral Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CiBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Anabela P Rolo
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CiBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Mussulini BHM, Wasilewski M, Chacinska A. Methods to monitor mitochondrial disulfide bonds. Methods Enzymol 2024; 706:125-158. [PMID: 39455213 DOI: 10.1016/bs.mie.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.
Collapse
|
3
|
Needs HI, Lorriman JS, Pereira GC, Henley JM, Collinson I. The MitoLuc Assay System for Accurate Real-Time Monitoring of Mitochondrial Protein Import Within Mammalian Cells. J Mol Biol 2023; 435:168129. [PMID: 37105499 PMCID: PMC7616392 DOI: 10.1016/j.jmb.2023.168129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Mitochondrial protein import is critical for organelle biogenesis, bioenergetic function, and health. The mechanism of which is poorly understood, particularly of the mammalian system. To address this problem we have established an assay to quantitatively monitor mitochondrial import inside mammalian cells. The reporter is based on a split luciferase, whereby the large fragment is segregated in the mitochondrial matrix and the small complementary fragment is fused to the C-terminus of a purified recombinant precursor protein destined for import. Following import the complementary fragments combine to form an active luciferase-providing a sensitive, accurate and continuous measure of protein import. This advance allows detailed mechanistic examination of the transport process in live cells, including the analysis of import breakdown associated with disease, and high-throughput drug screening. Furthermore, the set-up has the potential to be adapted for the analysis of alternative protein transport systems within different cell types, and multicellular model organisms.
Collapse
Affiliation(s)
- Hope I Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK. https://twitter.com/hopeneeds
| | - James S Lorriman
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK. https://twitter.com/JamesLorriman
| | - Gonçalo C Pereira
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK. https://twitter.com/MitoPereira_GC
| | - Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
4
|
The Journey of Mitochondrial Protein Import and the Roadmap to Follow. Int J Mol Sci 2023; 24:ijms24032479. [PMID: 36768800 PMCID: PMC9916854 DOI: 10.3390/ijms24032479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are double membrane-bound organelles that play critical functions in cells including metabolism, energy production, regulation of intrinsic apoptosis, and maintenance of calcium homeostasis. Mitochondria are fascinatingly equipped with their own genome and machinery for transcribing and translating 13 essential proteins of the oxidative phosphorylation system (OXPHOS). The rest of the proteins (99%) that function in mitochondria in the various pathways described above are nuclear-transcribed and synthesized as precursors in the cytosol. These proteins are imported into the mitochondria by the unique mitochondrial protein import system that consists of seven machineries. Proper functioning of the mitochondrial protein import system is crucial for optimal mitochondrial deliverables, as well as mitochondrial and cellular homeostasis. Impaired mitochondrial protein import leads to proteotoxic stress in both mitochondria and cytosol, inducing mitochondrial unfolded protein response (UPRmt). Altered UPRmt is associated with the development of various disease conditions including neurodegenerative and cardiovascular diseases, as well as cancer. This review sheds light on the molecular mechanisms underlying the import of nuclear-encoded mitochondrial proteins, the consequences of defective mitochondrial protein import, and the pathological conditions that arise due to altered UPRmt.
Collapse
|
5
|
He L, Tronstad KJ, Maheshwari A. Mitochondrial Dynamics during Development. NEWBORN (CLARKSVILLE, MD.) 2023; 2:19-44. [PMID: 37206581 PMCID: PMC10193651 DOI: 10.5005/jp-journals-11002-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are dynamic membrane-bound organelles in eukaryotic cells. These are important for the generation of chemical energy needed to power various cellular functions and also support metabolic, energetic, and epigenetic regulation in various cells. These organelles are also important for communication with the nucleus and other cellular structures, to maintain developmental sequences and somatic homeostasis, and for cellular adaptation to stress. Increasing information shows mitochondrial defects as an important cause of inherited disorders in different organ systems. In this article, we provide an extensive review of ontogeny, ultrastructural morphology, biogenesis, functional dynamics, important clinical manifestations of mitochondrial dysfunction, and possibilities for clinical intervention. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Ling He
- Department of Pediatrics and Pharmacology, Johns Hopkins University, Baltimore, United States of America
| | | | - Akhil Maheshwari
- Founding Chairman, Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
6
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
7
|
Jardim FR, Almeida FJSD, Luckachaki MD, Oliveira MRD. Effects of sulforaphane on brain mitochondria: mechanistic view and future directions. J Zhejiang Univ Sci B 2021; 21:263-279. [PMID: 32253837 DOI: 10.1631/jzus.b1900614] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The organosulfur compound sulforaphane (SFN; C6H11NOS2) is a potent cytoprotective agent promoting antioxidant, anti-inflammatory, antiglycative, and antimicrobial effects in in vitro and in vivo experimental models. Mitochondria are the major site of adenosine triphosphate (ATP) production due to the work of the oxidative phosphorylation (OXPHOS) system. They are also the main site of reactive oxygen species (ROS) production in nucleated human cells. Mitochondrial impairment is central in several human diseases, including neurodegeneration and metabolic disorders. In this paper, we describe and discuss the effects and mechanisms of action by which SFN modulates mitochondrial function and dynamics in mammalian cells. Mitochondria-related pro-apoptotic effects promoted by SFN in tumor cells are also discussed. SFN may be considered a cytoprotective agent, at least in part, because of the effects this organosulfur agent induces in mitochondria. Nonetheless, there are certain points that should be addressed in further experiments, indicated here as future directions, which may help researchers in this field of research.
Collapse
Affiliation(s)
- Fernanda Rafaela Jardim
- Forensic Institute, Forensic Toxicology Division, Postmortem Toxicology Sector, CEP 90160-093, Porto Alegre, RS, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Mato Grosso (UFMT), CEP 78060-900, Cuiaba, MT, Brazil
| | | | - Marcos Roberto de Oliveira
- Postgraduate Program in Chemistry (PPGQ), Federal University of Mato Grosso (UFMT), CEP 78060-900, Cuiaba, MT, Brazil.,Department of Biochemistry Prof. "Tuiskon Dick", Federal University of Rio Grande do Sul (UFRGS), CEP 90035-000, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Skuratovskaia D, Komar A, Vulf M, Litvinova L. Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ 2020; 8:e9741. [PMID: 32904391 PMCID: PMC7453922 DOI: 10.7717/peerj.9741] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background One reason for the development of insulin resistance is the chronic inflammation in obesity. Materials & Methods Scientific articles in the field of knowledge on the involvement of mitochondria and mitochondrial DNA (mtDNA) in obesity and type 2 diabetes were analyzed. Results Oxidative stress developed during obesity contributes to the formation of peroxynitrite, which causes cytochrome C-related damage in the mitochondrial electron transfer chain and increases the production of reactive oxygen species (ROS), which is associated with the development of type 2 diabetes. Oxidative stress contributes to the nuclease activity of the mitochondrial matrix, which leads to the accumulation of cleaved fragments and an increase in heteroplasmy. Mitochondrial dysfunction and mtDNA variations during insulin resistance may be connected with a change in ATP levels, generation of ROS, mitochondrial division/fusion and mitophagy. This review discusses the main role of mitochondria in the development of insulin resistance, which leads to pathological processes in insulin-dependent tissues, and considers potential therapeutic directions based on the modulation of mitochondrial biogenesis. In this regard, the development of drugs aimed at the regulation of these processes is gaining attention. Conclusion Changes in the mtDNA copy number can help to protect mitochondria from severe damage during conditions of increased oxidative stress. Mitochondrial proteome studies are conducted to search for potential therapeutic targets. The use of mitochondrial peptides encoded by mtDNA also represents a promising new approach to therapy.
Collapse
Affiliation(s)
| | - Alexandra Komar
- Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Maria Vulf
- Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Larisa Litvinova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| |
Collapse
|
10
|
Reina S, Pittalà MGG, Guarino F, Messina A, De Pinto V, Foti S, Saletti R. Cysteine Oxidations in Mitochondrial Membrane Proteins: The Case of VDAC Isoforms in Mammals. Front Cell Dev Biol 2020; 8:397. [PMID: 32582695 PMCID: PMC7287182 DOI: 10.3389/fcell.2020.00397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cysteine residues are reactive amino acids that can undergo several modifications driven by redox reagents. Mitochondria are the source of an abundant production of radical species, and it is surprising that such a large availability of highly reactive chemicals is compatible with viable and active organelles, needed for the cell functions. In this work, we review the results highlighting the modifications of cysteines in the most abundant proteins of the outer mitochondrial membrane (OMM), that is, the voltage-dependent anion selective channel (VDAC) isoforms. This interesting protein family carries several cysteines exposed to the oxidative intermembrane space (IMS). Through mass spectrometry (MS) analysis, cysteine posttranslational modifications (PTMs) were precisely determined, and it was discovered that such cysteines can be subject to several oxidization degrees, ranging from the disulfide bridge to the most oxidized, the sulfonic acid, one. The large spectra of VDAC cysteine oxidations, which is unique for OMM proteins, indicate that they have both a regulative function and a buffering capacity able to counteract excess of mitochondrial reactive oxygen species (ROS) load. The consequence of these peculiar cysteine PTMs is discussed.
Collapse
Affiliation(s)
- Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Maria Gaetana Giovanna Pittalà
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesca Guarino
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Foti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Rosaria Saletti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Singh RP, Jeyaraju DV, Voisin V, Hurren R, Xu C, Hawley JR, Barghout SH, Khan DH, Gronda M, Wang X, Jitkova Y, Sharon D, Liyanagae S, MacLean N, Seneviratene AK, Mirali S, Borenstein A, Thomas GE, Soriano J, Orouji E, Minden MD, Arruda A, Chan SM, Bader GD, Lupien M, Schimmer AD. Disrupting Mitochondrial Copper Distribution Inhibits Leukemic Stem Cell Self-Renewal. Cell Stem Cell 2020; 26:926-937.e10. [PMID: 32416059 DOI: 10.1016/j.stem.2020.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Leukemic stem cells (LSCs) rely on oxidative metabolism and are differentially sensitive to targeting mitochondrial pathways, which spares normal hematopoietic cells. A subset of mitochondrial proteins is folded in the intermembrane space via the mitochondrial intermembrane assembly (MIA) pathway. We found increased mRNA expression of MIA pathway substrates in acute myeloid leukemia (AML) stem cells. Therefore, we evaluated the effects of inhibiting this pathway in AML. Genetic and chemical inhibition of ALR reduces AML growth and viability, disrupts LSC self-renewal, and induces their differentiation. ALR inhibition preferentially decreases its substrate COX17, a mitochondrial copper chaperone, and knockdown of COX17 phenocopies ALR loss. Inhibiting ALR and COX17 increases mitochondrial copper levels which in turn inhibit S-adenosylhomocysteine hydrolase (SAHH) and lower levels of S-adenosylmethionine (SAM), DNA methylation, and chromatin accessibility to lower LSC viability. These results provide insight into mechanisms through which mitochondrial copper controls epigenetic status and viability of LSCs.
Collapse
Affiliation(s)
- Rashim Pal Singh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Danny V Jeyaraju
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Changjiang Xu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dilshad H Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xiaoming Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David Sharon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sanduni Liyanagae
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Sara Mirali
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Adina Borenstein
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Geethu E Thomas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Joelle Soriano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Elias Orouji
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
12
|
Dinca AA, Chien WM, Chin MT. Identification of novel mitochondrial localization signals in human Tafazzin, the cause of the inherited cardiomyopathic disorder Barth syndrome. J Mol Cell Cardiol 2018; 114:83-92. [PMID: 29129703 PMCID: PMC5801207 DOI: 10.1016/j.yjmcc.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 01/15/2023]
Abstract
Mutations in the gene tafazzin (TAZ) result in Barth syndrome (BTHS). Patients present with hypotonia, cyclic neutropenia, 3-methyglutaconic aciduria, and cardiomyopathy, which is the major cause of mortality. The recessive, X-linked TAZ gene encodes a mitochondrial membrane-associated phospholipid modifying enzyme, which adds unsaturated fatty acid species to monolysocardiolipin to generate mature cardiolipin in the mitochondrial membrane that is essential for mitochondrial morphology and function. To identify intrinsic mitochondrial localization sequences in the human TAZ protein, we made sequential TAZ peptide-eGFP fusion protein expression constructs and analyzed the localization of eGFP fluorescence by confocal microscopy. We assessed these fusion proteins for mitochondrial localization through cotransfection of H9c2 cells with plasmids encoding organellar markers linked to TdTomato. We have identified two peptides of TAZ that are independently responsible for mitochondrial localization. Using CRISPR-generated TAZ knock out cell lines, we found that these peptides are able to direct proteins to mitochondria in the absence of endogenous TAZ. These peptides are not located within the predicted enzymatic clefts of TAZ, implying that some BTHS disease causing mutations may affect mitochondrial localization without affecting transacylase activity. These novel peptides improve our understanding of TAZ intracellular trafficking, provide insight into the molecular basis of BTHS and provide molecular reagents for developing targeted mitochondrial therapies.
Collapse
Affiliation(s)
- Ana A Dinca
- Department of Pathology, Division of Cardiology, University of Washington, Seattle, Washington, United States
| | - Wei-Ming Chien
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington, United States
| | - Michael T Chin
- Department of Pathology, Division of Cardiology, University of Washington, Seattle, Washington, United States; Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington, United States.
| |
Collapse
|
13
|
Mokranjac D. Mitochondrial protein import: An unexpected disulfide bond. J Cell Biol 2016; 214:363-5. [PMID: 27502488 PMCID: PMC4987298 DOI: 10.1083/jcb.201607117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023] Open
Abstract
Most mitochondrial proteins are imported through the TIM23 translocation channel, the structure and molecular nature of which are still unclear. In this issue, Ramesh et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201602074) show that the TIM23 subunit Tim17 contains a disulfide bond that is crucial for protein translocation and channel gating.
Collapse
Affiliation(s)
- Dejana Mokranjac
- Biomedical Center Munich - Physiological Chemistry, LMU Munich, 82152 Martinsried, Germany
| |
Collapse
|
14
|
Giancaspero TA, Colella M, Brizio C, Difonzo G, Fiorino GM, Leone P, Brandsch R, Bonomi F, Iametti S, Barile M. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis. Front Chem 2015; 3:30. [PMID: 25954742 PMCID: PMC4406087 DOI: 10.3389/fchem.2015.00030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/05/2015] [Indexed: 12/27/2022] Open
Abstract
The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD “chaperone.” The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.
Collapse
Affiliation(s)
- Teresa A Giancaspero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Matilde Colella
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Carmen Brizio
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Graziana Difonzo
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Giuseppina M Fiorino
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Piero Leone
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Roderich Brandsch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg Freiburg, Germany
| | - Francesco Bonomi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano Milano, Italy
| | - Stefania Iametti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano Milano, Italy
| | - Maria Barile
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy ; Dipartimento di Scienze della Vita, Istituto di Biomembrane e Bioenergetica, CNR Bari, Italy
| |
Collapse
|
15
|
Horvath SE, Rampelt H, Oeljeklaus S, Warscheid B, van der Laan M, Pfanner N. Role of membrane contact sites in protein import into mitochondria. Protein Sci 2015; 24:277-97. [PMID: 25514890 DOI: 10.1002/pro.2625] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022]
Abstract
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Ng F, Tang BL. Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix. Mol Membr Biol 2014; 31:207-10. [DOI: 10.3109/09687688.2014.987183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Koch JR, Schmid FX. Mia40 is optimized for function in mitochondrial oxidative protein folding and import. ACS Chem Biol 2014; 9:2049-57. [PMID: 24983157 DOI: 10.1021/cb500408n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mia40 catalyzes oxidative protein folding in mitochondria. It contains a unique catalytic CPC dithiol flanked by a hydrophobic groove, and unlike other oxidoreductases, it forms long-lived mixed disulfides with substrates. We show that this distinctive property originates neither from particular properties of mitochondrial substrates nor from the CPC motif of Mia40. The catalytic cysteines of Mia40 display unusually low chemical reactivity, as expressed in conventional pK values and reduction potentials. The stability of the mixed disulfide intermediate is coupled energetically with hydrophobic interactions between Mia40 and the substrate. Based on these properties, we suggest a mechanism for Mia40, where the hydrophobic binding site is employed to select a substrate thiol for forming the initial mixed disulfide. Its long lifetime is used to retain partially folded proteins in the mitochondria and to direct folding toward forming the native disulfide bonds.
Collapse
Affiliation(s)
- Johanna R. Koch
- Laboratorium
für Biochemie
und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Franz X. Schmid
- Laboratorium
für Biochemie
und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
18
|
Abstract
Despite the simplicity of the yeast Saccharomyces cerevisiae, its basic cellular machinery tremendously mirrors that of higher eukaryotic counterparts. Thus, this unicellular organism turned out to be an invaluable model system to study the countless mechanisms that govern life of the cell. Recently, it has also enabled the deciphering of signalling pathways that control flux of mitochondrial proteins to the organelle according to metabolic requirements. For decades mitochondria were considered autonomous organelles that are only partially incorporated into cellular signalling networks. Consequently, only little has been known about the role of reversible phosphorylation as a meaningful mechanism that orchestrates mitochondrial biology accordingly to cellular needs. Therefore, research in this direction has been vastly neglected. However, findings over the past few years have changed this view and new exciting fields in mitochondrial biology have emerged. Here, we summarize recent discoveries in the yeast model system that point towards a vital role of reversible phosphorylation in regulation of mitochondrial protein import.
Collapse
Affiliation(s)
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ ; BIOSS Centre for Biological Signalling Studies
| |
Collapse
|
19
|
Mia40 targets cysteines in a hydrophobic environment to direct oxidative protein folding in the mitochondria. Nat Commun 2014; 5:3041. [DOI: 10.1038/ncomms4041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/29/2013] [Indexed: 11/08/2022] Open
|
20
|
Hewitt VL, Gabriel K, Traven A. The ins and outs of the intermembrane space: diverse mechanisms and evolutionary rewiring of mitochondrial protein import routes. Biochim Biophys Acta Gen Subj 2013; 1840:1246-53. [PMID: 23994494 DOI: 10.1016/j.bbagen.2013.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/09/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mitochondrial biogenesis is an essential process in all eukaryotes. Import of proteins from the cytosol into mitochondria is a key step in organelle biogenesis. Recent evidence suggests that a given mitochondrial protein does not take the same import route in all organisms, suggesting that pathways of mitochondrial protein import can be rewired through evolution. Examples of this process so far involve proteins destined to the mitochondrial intermembrane space (IMS). SCOPE OF REVIEW Here we review the components, substrates and energy sources of the known mechanisms of protein import into the IMS. We discuss evolutionary rewiring of the IMS import routes, focusing on the example of the lactate utilisation enzyme cytochrome b2 (Cyb2) in the model yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans. MAJOR CONCLUSIONS There are multiple import pathways used for protein entry into the IMS and they form a network capable of importing a diverse range of substrates. These pathways have been rewired, possibly in response to environmental pressures, such as those found in the niches in the human body inhabited by C. albicans. GENERAL SIGNIFICANCE We propose that evolutionary rewiring of mitochondrial import pathways can adjust the metabolic fitness of a given species to their environmental niche. This article is part of a Special Issue entitled Frontiers of Mitochondrial.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| | - Kipros Gabriel
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| |
Collapse
|
21
|
Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochim Biophys Acta Gen Subj 2013; 1830:5299-304. [PMID: 23948593 DOI: 10.1016/j.bbagen.2013.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches. METHODS The effect of GSH and GSSG on the [(3)H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody. RESULTS GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37°C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC. CONCLUSIONS CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation. GENERAL SIGNIFICANCE CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.
Collapse
|
22
|
Fischer M, Horn S, Belkacemi A, Kojer K, Petrungaro C, Habich M, Ali M, Küttner V, Bien M, Kauff F, Dengjel J, Herrmann JM, Riemer J. Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells. Mol Biol Cell 2013; 24:2160-70. [PMID: 23676665 PMCID: PMC3708723 DOI: 10.1091/mbc.e12-12-0862] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oxidative folding facilitates protein import into the mitochondrial intermembrane space. An analysis of the process in intact mammalian cells reveals the contributions of Mia40, ALR, glutathione, and the membrane potential. Proteins that rely on oxidative folding remain stable and reduced in the cytosol for several minutes. Oxidation of cysteine residues to disulfides drives import of many proteins into the intermembrane space of mitochondria. Recent studies in yeast unraveled the basic principles of mitochondrial protein oxidation, but the kinetics under physiological conditions is unknown. We developed assays to follow protein oxidation in living mammalian cells, which reveal that import and oxidative folding of proteins are kinetically and functionally coupled and depend on the oxidoreductase Mia40, the sulfhydryl oxidase augmenter of liver regeneration (ALR), and the intracellular glutathione pool. Kinetics of substrate oxidation depends on the amount of Mia40 and requires tightly balanced amounts of ALR. Mia40-dependent import of Cox19 in human cells depends on the inner membrane potential. Our observations reveal considerable differences in the velocities of mitochondrial import pathways: whereas preproteins with bipartite targeting sequences are imported within seconds, substrates of Mia40 remain in the cytosol for several minutes and apparently escape premature degradation and oxidation.
Collapse
Affiliation(s)
- Manuel Fischer
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baker MJ, Mooga VP, Guiard B, Langer T, Ryan MT, Stojanovski D. Impaired folding of the mitochondrial small TIM chaperones induces clearance by the i-AAA protease. J Mol Biol 2012; 424:227-39. [PMID: 23036860 DOI: 10.1016/j.jmb.2012.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 11/24/2022]
Abstract
The intermembrane space of mitochondria contains a dedicated chaperone network-the small translocase of the inner membrane (TIM) family-for the sorting of hydrophobic precursors. All small TIMs are defined by the presence of a twin CX(3)C motif and the monomeric proteins are stabilized by two intramolecular disulfide bonds formed between the cysteines of these motifs. The conserved cysteine residues within small TIM members have also been shown to participate in early biogenesis events, with the most N-terminal cysteine residue important for import and retention within the intermembrane space via the receptor and disulfide oxidase, Mia40. In this study, we have analyzed the in vivo consequences of improper folding of small TIM chaperones by generating site-specific cysteine mutants and assessed the fate of the incompletely oxidized proteins within mitochondria. We show that no individual cysteine residue is required for the function of Tim9 or Tim10 in yeast and that defective assembly of the small TIMs induces their proteolytic clearance from mitochondria. We delineate a clearance mechanism for the mutant proteins and their unassembled wild-type partner protein by the mitochondrial ATP-dependent protease, Yme1 (yeast mitochondrial escape 1).
Collapse
Affiliation(s)
- Michael J Baker
- Department of Biochemistry, La Trobe Institute for Molecular Science and ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne 3086, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Schreiner B, Westerburg H, Forné I, Imhof A, Neupert W, Mokranjac D. Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria. Mol Biol Cell 2012; 23:4335-46. [PMID: 22993211 PMCID: PMC3496608 DOI: 10.1091/mbc.e12-05-0420] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We show here that the i-AAA protease Yme1 has a role in folding of proteins in the intermembrane space of mitochondria and identify a number of endogenous proteins that aggregate in its absence. Thus the function of Yme1 in mitochondrial proteostasis extends beyond its role in proteolytic removal of misfolded and nonassembled inner membrane proteins. The vast majority of mitochondrial proteins are synthesized in the cytosol and transported into the organelle in a largely, if not completely, unfolded state. The proper function of mitochondria thus depends on folding of several hundreds of proteins in the various subcompartments of the organelle. Whereas folding of proteins in the mitochondrial matrix is supported by members of several chaperone families, very little is known about folding of proteins in the intermembrane space (IMS). We targeted dihydrofolate reductase (DHFR) as a model substrate to the IMS of yeast mitochondria and analyzed its folding. DHFR can fold in this compartment, and its aggregation upon heat shock can be prevented in an ATP-dependent manner. Yme1, an AAA (ATPases associated with diverse cellular activities) protease of the IMS, prevented aggregation of DHFR. Analysis of protein aggregates in mitochondria lacking Yme1 revealed the presence of a number of proteins involved in the establishment of mitochondrial ultrastructure, lipid metabolism, protein import, and respiratory growth. These findings explain the pleiotropic effects of deletion of YME1 and suggest an important role for Yme1 as a folding assistant, in addition to its proteolytic function, in the protein homeostasis of mitochondria
Collapse
Affiliation(s)
- Bernadette Schreiner
- Adolf Butenandt Institute, Physiological Chemistry, University of Munich, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Böttinger L, Gornicka A, Czerwik T, Bragoszewski P, Loniewska-Lwowska A, Schulze-Specking A, Truscott KN, Guiard B, Milenkovic D, Chacinska A. In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins. Mol Biol Cell 2012; 23:3957-69. [PMID: 22918950 PMCID: PMC3469512 DOI: 10.1091/mbc.e12-05-0358] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The intermembrane space of mitochondria accommodates the essential mitochondrial intermembrane space assembly (MIA) machinery that catalyzes oxidative folding of proteins. The disulfide bond formation pathway is based on a relay of reactions involving disulfide transfer from the sulfhydryl oxidase Erv1 to Mia40 and from Mia40 to substrate proteins. However, the substrates of the MIA typically contain two disulfide bonds. It was unclear what the mechanisms are that ensure that proteins are released from Mia40 in a fully oxidized form. In this work, we dissect the stage of the oxidative folding relay, in which Mia40 binds to its substrate. We identify dynamics of the Mia40-substrate intermediate complex. Our experiments performed in a native environment, both in organello and in vivo, show that Erv1 directly participates in Mia40-substrate complex dynamics by forming a ternary complex. Thus Mia40 in cooperation with Erv1 promotes the formation of two disulfide bonds in the substrate protein, ensuring the efficiency of oxidative folding in the intermembrane space of mitochondria.
Collapse
Affiliation(s)
- Lena Böttinger
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stojanovski D, Bragoszewski P, Chacinska A. The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1142-50. [PMID: 22579494 DOI: 10.1016/j.bbamcr.2012.04.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
Many newly synthesized proteins obtain disulfide bonds in the bacterial periplasm, the endoplasmic reticulum (ER) and the mitochondrial intermembrane space. The acquisition of disulfide bonds is critical for the folding, assembly and activity of these proteins. Spontaneous oxidation of thiol groups is inefficient in vivo, therefore cells have developed machineries that catalyse the oxidation of substrate proteins. The identification of the machinery that mediates this process in the intermembrane space of mitochondria, known as MIA (mitochondrial intermembrane space assembly), provided a unique mechanism of protein transport. The MIA machinery introduces disulfide bonds into incoming intermembrane space precursors and thus tightly couples the process of precursor translocation to precursor oxidation. We discuss our current understanding of the MIA pathway and the mechanisms that oversee thiol-exchange reactions in mitochondria.
Collapse
Affiliation(s)
- Diana Stojanovski
- La Trobe Institute for Molecular Sciences, 3086 Melbourne, Australia
| | | | | |
Collapse
|
27
|
Gross DP, Burgard CA, Reddehase S, Leitch JM, Culotta VC, Hell K. Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Mol Biol Cell 2011; 22:3758-67. [PMID: 21865601 PMCID: PMC3192856 DOI: 10.1091/mbc.e11-04-0296] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Mia40/Erv1 disulfide relay system forms a structural disulfide bond in Ccs1, an unconventional substrate of this system. Thereby it promotes import of Ccs1 into mitochondria and controls its cellular distribution. Thus this system is unexpectedly able to form single disulfide bonds in complex multidomain proteins. The copper chaperone for superoxide dismutase 1 (Ccs1) provides an important cellular function against oxidative stress. Ccs1 is present in the cytosol and in the intermembrane space (IMS) of mitochondria. Its import into the IMS depends on the Mia40/Erv1 disulfide relay system, although Ccs1 is, in contrast to typical substrates, a multidomain protein and lacks twin CxnC motifs. We report on the molecular mechanism of the mitochondrial import of Saccharomyces cerevisiae Ccs1 as the first member of a novel class of unconventional substrates of the disulfide relay system. We show that the mitochondrial form of Ccs1 contains a stable disulfide bond between cysteine residues C27 and C64. In the absence of these cysteines, the levels of Ccs1 and Sod1 in mitochondria are strongly reduced. Furthermore, C64 of Ccs1 is required for formation of a Ccs1 disulfide intermediate with Mia40. We conclude that the Mia40/Erv1 disulfide relay system introduces a structural disulfide bond in Ccs1 between the cysteine residues C27 and C64, thereby promoting mitochondrial import of this unconventional substrate. Thus the disulfide relay system is able to form, in addition to double disulfide bonds in twin CxnC motifs, single structural disulfide bonds in complex protein domains.
Collapse
Affiliation(s)
- Dominik P Gross
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 2011; 14:1729-60. [PMID: 21241169 DOI: 10.1089/ars.2010.3344] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Gebert N, Ryan MT, Pfanner N, Wiedemann N, Stojanovski D. Mitochondrial protein import machineries and lipids: A functional connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1002-11. [DOI: 10.1016/j.bbamem.2010.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 01/01/2023]
|
30
|
Endo T, Yamano K, Kawano S. Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Antioxid Redox Signal 2010; 13:1359-73. [PMID: 20136511 DOI: 10.1089/ars.2010.3099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mitochondria contain two biological membranes. Although reducing agents can diffuse from the cytosol into the intermembrane space (IMS) between the outer and inner mitochondrial membranes, the IMS has a dedicated disulfide relay system to introduce disulfide bonds into mainly small and soluble proteins. This system consists of two essential proteins, a disulfide carrier Tim40/Mia40 and a flavin-dependent sulfhydryl oxidase Erv1, high-resolution structures that have recently become available. Tim40/Mia40 transfers disulfide bonds to newly imported IMS proteins by dithiol/disulfide exchange reactions involving mixed disulfide intermediates. Tight folding by introduction of disulfide bonds prevents egress of these small IMS proteins, resulting in their selective retention in the compartment. After disulfide transfer from Tim40/Mia40 to substrate proteins, Tim40/Mia40 is reoxidized again by Erv1, which is then oxidized by electron transfer to either cytochrome c or molecular oxygen. Here we review the recent advancement of the knowledge on the mechanism of the disulfide relay system in the mitochondrial IMS, especially shedding light on the structural aspects of its components.
Collapse
Affiliation(s)
- Toshiya Endo
- Department of Chemistry, Nagoya University, Japan.
| | | | | |
Collapse
|
31
|
Koopman WJH, Nijtmans LGJ, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, Willems PHGM. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010; 12:1431-70. [PMID: 19803744 DOI: 10.1089/ars.2009.2743] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
32
|
Roede JR, Jones DP. Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:380-90. [PMID: 20544880 PMCID: PMC5906392 DOI: 10.1002/em.20553] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial dysfunction is a global term used in the context of "unhealthy" mitochondria. In practical terms, mitochondria are extremely complex and highly adaptive in structure, chemical and enzymatic composition, subcellular distribution and functional interaction with other components of cells. Consequently, altered mitochondrial properties that are used in experimental studies as measures of mitochondrial dysfunction often provide little or no distinction between adaptive and maladaptive changes. This is especially a problem in terms of generation of oxidant species by mitochondria, wherein increased generation of superoxide anion radical (O(2*)(-)) or hydrogen peroxide (H(2)O(2)) is often considered synonymously with mitochondrial dysfunction. However, these oxidative species are signaling molecules in normal physiology so that a change in production or abundance is not a good criterion for mitochondrial dysfunction. In this review, we consider generation of reactive electrophiles and consequent modification of mitochondrial proteins as a means to define mitochondrial dysfunction. Accumulated evidence indicates that 4-hydroxynonenal (HNE) modification of proteins reflects mitochondrial dysfunction and provides an operational criterion for experimental definition of mitochondrial dysfunction. Improved means to detect and quantify mitochondrial HNE-protein adduct formation could allow its use for environmental healthrisk assessment. Furthermore, application of improved mass spectrometry-based proteomic methods will lead to further understanding of the critical targets contributing to disease risk.
Collapse
Affiliation(s)
- James R. Roede
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
33
|
Mitochondrial Disulfide Bond Formation Is Driven by Intersubunit Electron Transfer in Erv1 and Proofread by Glutathione. Mol Cell 2010; 37:516-28. [DOI: 10.1016/j.molcel.2010.01.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/05/2009] [Accepted: 11/24/2009] [Indexed: 01/21/2023]
|
34
|
Systematic Analysis of the Twin Cx9C Protein Family. J Mol Biol 2009; 393:356-68. [DOI: 10.1016/j.jmb.2009.08.041] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 11/20/2022]
|
35
|
Deponte M, Hell K. Disulphide Bond Formation in the Intermembrane Space of Mitochondria. J Biochem 2009; 146:599-608. [DOI: 10.1093/jb/mvp133] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
36
|
Jeyaraju DV, Cisbani G, De Brito OM, Koonin EV, Pellegrini L. Hax1 lacks BH modules and is peripherally associated to heavy membranes: implications for Omi/HtrA2 and PARL activity in the regulation of mitochondrial stress and apoptosis. Cell Death Differ 2009; 16:1622-9. [PMID: 19680265 DOI: 10.1038/cdd.2009.110] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hax1 has an important role in immunodeficiency syndromes and apoptosis. A recent report (Chao et al., Nature, 2008) proposed that the Bcl-2-family-related protein, Hax1, suppresses apoptosis in lymphocytes and neurons through a mechanism that involves its association to the inner mitochondrial membrane rhomboid protease PARL, to proteolytically activate the serine protease Omi/HtrA2 and eliminate active Bax. This model implies that the control of cell-type sensitivity to pro-apoptotic stimuli is governed by the PARL/Hax1 complex in the mitochondria intermembrane space and, more generally, that Bcl-2-family-related proteins can control mitochondrial outer-membrane permeabilization from inside the mitochondrion. Further, it defines a novel, anti-apoptotic Opa1-independent pathway for PARL. In this study, we present evidence that, in vivo, the activity of Hax1 cannot be mechanistically coupled to PARL because the two proteins are confined in distinct cellular compartments and their interaction in vitro is an artifact. We also show by sequence analysis and secondary structure prediction that Hax1 is extremely unlikely to be a Bcl-2-family-related protein because it lacks Bcl-2 homology modules. These results indicate a different function and mechanism of Hax1 in apoptosis and re-opens the question of whether mammalian PARL, in addition to apoptosis, regulates mitochondrial stress response through Omi/HtrA2 processing.
Collapse
Affiliation(s)
- D V Jeyaraju
- Mitochondria Biology Laboratory, CRULRG, Université Laval, Quebec, QC, Canada G1J 2G3
| | | | | | | | | |
Collapse
|
37
|
Ang SK, Lu H. Deciphering structural and functional roles of individual disulfide bonds of the mitochondrial sulfhydryl oxidase Erv1p. J Biol Chem 2009; 284:28754-61. [PMID: 19679655 DOI: 10.1074/jbc.m109.021113] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erv1p is a FAD-dependent sulfhydryl oxidase of the mitochondrial intermembrane space. It contains three conserved disulfide bonds arranged in two CXXC motifs and one CX(16)C motif. Experimental evidence for the specific roles of the individual disulfide bonds is lacking. In this study, structural and functional roles of the disulfides were dissected systematically using a wide range of biochemical and biophysical methods. Three double cysteine mutants with each pair of cysteines mutated to serines were generated. All of the mutants were purified with the normal FAD binding properties as the wild type Erv1p, showing that none of the three disulfides are essential for FAD binding. Thermal denaturation and trypsin digestion studies showed that the CX(16)C disulfide plays an important role in stabilizing the folding of Erv1p. To understand the functional role of each disulfide, small molecules and the physiological substrate protein Mia40 were used as electron donors in oxygen consumption assays. We show that both CXXC disulfides are required for Erv1 oxidase activity. The active site disulfide is well protected thus requires the shuttle disulfide for its function. Although both mutants of the CXXC motifs were individually inactive, Erv1p activity was partially recovered by mixing these two mutants together, and the recovery was rapid. Thus, we provided the first experimental evidence of electron transfer between the shuttle and active site disulfides of Erv1p, and we propose that both intersubunit and intermolecular electron transfer can occur.
Collapse
Affiliation(s)
- Swee Kim Ang
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
38
|
Daithankar VN, Farrell SR, Thorpe C. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Biochemistry 2009; 48:4828-37. [PMID: 19397338 DOI: 10.1021/bi900347v] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Augmenter of liver regeneration (ALR) is both a growth factor and a sulfhydryl oxidase that binds FAD in an unusual helix-rich domain containing a redox-active CxxC disulfide proximal to the flavin ring. In addition to the cytokine form of ALR (sfALR) that circulates in serum, a longer form, lfALR, is believed to participate in oxidative trapping of reduced proteins entering the mitochondrial intermembrane space (IMS). This longer form has an 80-residue N-terminal extension containing an additional, distal, CxxC motif. This work presents the first enzymological characterization of human lfALR. The N-terminal region conveys no catalytic advantage toward the oxidation of the model substrate dithiothreitol (DTT). In addition, a C71A or C74A mutation of the distal disulfide does not increase the turnover number toward DTT. Unlike Erv1p, the yeast homologue of lfALR, static spectrophotometric experiments with the human oxidase provide no evidence of communication between distal and proximal disulfides. An N-terminal His-tagged version of human Mia40, a resident oxidoreductase of the IMS and a putative physiological reductant of lfALR, was subcloned and expressed in Escherichia coli BL21 DE3 cells. Mia40, as isolated, shows a visible spectrum characteristic of an Fe-S center and contains 0.56 +/- 0.02 atom of iron per subunit. Treatment of Mia40 with guanidine hydrochloride and triscarboxyethylphosphine hydrochloride during purification removed this chromophore. The resulting protein, with a reduced CxC motif, was a good substrate of lfALR. However, neither sfALR nor lfALR mutants lacking the distal disulfide could oxidize reduced Mia40 efficiently. Thus, catalysis involves a flow of reducing equivalents from the reduced CxC motif of Mia40 to distal and then proximal CxxC motifs of lfALR to the flavin ring and, finally, to cytochrome c or molecular oxygen.
Collapse
Affiliation(s)
- Vidyadhar N Daithankar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
39
|
Kutik S, Stroud DA, Wiedemann N, Pfanner N. Evolution of mitochondrial protein biogenesis. Biochim Biophys Acta Gen Subj 2009; 1790:409-15. [DOI: 10.1016/j.bbagen.2009.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/02/2009] [Accepted: 04/06/2009] [Indexed: 02/08/2023]
|
40
|
Tienson HL, Dabir DV, Neal SE, Loo R, Hasson SA, Boontheung P, Kim SK, Loo JA, Koehler CM. Reconstitution of the mia40-erv1 oxidative folding pathway for the small tim proteins. Mol Biol Cell 2009; 20:3481-90. [PMID: 19477928 DOI: 10.1091/mbc.e08-10-1062] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mia40 and Erv1 execute a disulfide relay to import the small Tim proteins into the mitochondrial intermembrane space. Here, we have reconstituted the oxidative folding pathway in vitro with Tim13 as a substrate and determined the midpoint potentials of Mia40 and Tim13. Specifically, Mia40 served as a direct oxidant of Tim13, and Erv1 was required to reoxidize Mia40. During oxidation, four electrons were transferred from Tim13 with the insertion of two disulfide bonds in succession. The extent of Tim13 oxidation was directly dependent on Mia40 concentration and independent of Erv1 concentration. Characterization of the midpoint potentials showed that electrons flowed from Tim13 with a more negative midpoint potential of -310 mV via Mia40 with an intermediate midpoint potential of -290 mV to the C130-C133 pair of Erv1 with a positive midpoint potential of -150 mV. Intermediary complexes between Tim13-Mia40 and Mia40-Erv1 were trapped. Last, mutating C133 of the catalytic C130-C133 pair or C30 of the shuttle C30-C33 pair in Erv1 abolished oxidation of Tim13, whereas mutating the cysteines in the redox-active CPC motif, but not the structural disulfide linkages of the CX(9)C motif of Mia40, prevented Tim13 oxidation. Thus, we demonstrate that Mia40, Erv1, and oxygen are the minimal machinery for Tim13 oxidation.
Collapse
Affiliation(s)
- Heather L Tienson
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Milenkovic D, Ramming T, Müller JM, Wenz LS, Gebert N, Schulze-Specking A, Stojanovski D, Rospert S, Chacinska A. Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Mol Biol Cell 2009; 20:2530-9. [PMID: 19297525 DOI: 10.1091/mbc.e08-11-1108] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The intermembrane space of mitochondria contains the specific mitochondrial intermembrane space assembly (MIA) machinery that operates in the biogenesis pathway of precursor proteins destined to this compartment. The Mia40 component of the MIA pathway functions as a receptor and binds incoming precursors, forming an essential early intermediate in the biogenesis of intermembrane space proteins. The elements that are crucial for the association of the intermembrane space precursors with Mia40 have not been determined. In this study, we found that a region within the Tim9 and Tim10 precursors, consisting of only nine amino acid residues, functions as a signal for the engagement of substrate proteins with the Mia40 receptor. Furthermore, the signal contains sufficient information to facilitate the transfer of proteins across the outer membrane to the intermembrane space. Thus, here we have identified the mitochondrial intermembrane space sorting signal required for delivery of proteins to the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- Dusanka Milenkovic
- Institut für Biochemie und Molekularbiologie, ZBMZ and Centre for Biological Signalling Studies (BIOSS), Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Terziyska N, Grumbt B, Kozany C, Hell K. Structural and Functional Roles of the Conserved Cysteine Residues of the Redox-regulated Import Receptor Mia40 in the Intermembrane Space of Mitochondria. J Biol Chem 2009; 284:1353-63. [DOI: 10.1074/jbc.m805035200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Hell K, Neupert W. Oxidative Protein Folding in Mitochondria. OXIDATIVE FOLDING OF PEPTIDES AND PROTEINS 2008. [DOI: 10.1039/9781847559265-00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kai Hell
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5 81377 München Germany
| | - Walter Neupert
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5 81377 München Germany
| |
Collapse
|
44
|
Reddehase S, Grumbt B, Neupert W, Hell K. The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1. J Mol Biol 2008; 385:331-8. [PMID: 19010334 DOI: 10.1016/j.jmb.2008.10.088] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 11/24/2022]
Abstract
Cells protect themselves against oxygen stress and reactive oxygen species. An important enzyme in this process is superoxide dismutase, Sod1, which converts superoxide radicals into water and hydrogen peroxide. The biogenesis of functional Sod1 is dependent on its copper chaperone, Ccs1, which introduces a disulfide bond and a copper ion into Sod1. Ccs1 and Sod1 are present in the cytosol but are also found in the mitochondrial intermembrane space (IMS), the compartment between the outer and the inner membrane of mitochondria. Ccs1 mediates mitochondrial localization of Sod1. Here, we report on the biogenesis of the fractions of Ccs1 and Sod1 present in mitochondria of Saccharomyces cerevisiae. The IMS of mitochondria harbors a disulfide relay system consisting of the import receptor Mia40 and the thiol oxidase Erv1, which drives the import of substrates with conserved cysteine residues arranged in typical twin Cx(3)C and twin Cx(9)C motifs. We show that depletion of Mia40 results in decreased levels of Ccs1 and Sod1. On the other hand, overexpression of Mia40 increased the mitochondrial fraction of both proteins. In addition, the import rates of Ccs1 were enhanced by increased levels of Mia40 and reduced upon depletion of Mia40. Mia40 forms mixed disulfides with Ccs1, suggesting a role of Mia40 for the generation of disulfide bonds in Ccs1. We suggest that the disulfide relay system transfers disulfide bonds via Mia40 to Ccs1, which then shuttles disulfide bonds to Sod1. In conclusion, the disulfide relay system is crucial for the import of Ccs1, thereby affecting the transport of Sod1, and it can control the distribution of Ccs1 and Sod1 between the IMS of mitochondria and the cytosol.
Collapse
Affiliation(s)
- Silvia Reddehase
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 München, Germany
| | | | | | | |
Collapse
|
45
|
Mesecke N, Bihlmaier K, Grumbt B, Longen S, Terziyska N, Hell K, Herrmann JM. The zinc-binding protein Hot13 promotes oxidation of the mitochondrial import receptor Mia40. EMBO Rep 2008; 9:1107-13. [PMID: 18787558 PMCID: PMC2581857 DOI: 10.1038/embor.2008.173] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 11/09/2022] Open
Abstract
A disulphide relay system mediates the import of cysteine-containing proteins into the intermembrane space of mitochondria. This system consists of two essential proteins, Mia40 and Erv1, which bind to newly imported proteins by disulphide transfer. A third component, Hot13, was proposed to be important in the biogenesis of cysteine-rich proteins of the intermembrane space, but the molecular function of Hot13 remained unclear. Here, we show that Hot13, a conserved zinc-binding protein, interacts functionally and physically with the import receptor Mia40. It improves the Erv1-dependent oxidation of Mia40 both in vivo and in vitro. As a consequence, in mutants lacking Hot13, the import of substrates of Mia40 is impaired, particularly in the presence of zinc ions. In mitochondria as well as in vitro, Hot13 can be functionally replaced by zinc-binding chelators. We propose that Hot13 maintains Mia40 in a zinc-free state, thereby facilitating its efficient oxidation by Erv1.
Collapse
Affiliation(s)
- Nikola Mesecke
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
- Zellbiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Karl Bihlmaier
- Zellbiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Barbara Grumbt
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
| | - Sebastian Longen
- Zellbiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Nadia Terziyska
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
| | - Kai Hell
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
| | - Johannes M Herrmann
- Zellbiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| |
Collapse
|
46
|
Chacinska A, Guiard B, Müller JM, Schulze-Specking A, Gabriel K, Kutik S, Pfanner N. Mitochondrial biogenesis, switching the sorting pathway of the intermembrane space receptor Mia40. J Biol Chem 2008; 283:29723-9. [PMID: 18779329 DOI: 10.1074/jbc.m805356200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial precursor proteins are directed into the intermembrane space via two different routes, the presequence pathway and the redox-dependent MIA pathway. The pathways were assumed to be independent and transport different proteins. We report that the intermembrane space receptor Mia40 can switch between both pathways. In fungi, Mia40 is synthesized as large protein with an N-terminal presequence, whereas in metazoans and plants, Mia40 consists only of the conserved C-terminal domain. Human MIA40 and the C-terminal domain of yeast Mia40 (termed Mia40(core)) rescued the viability of Mia40-deficient yeast independently of the presence of a presequence. Purified Mia40(core) was imported into mitochondria via the MIA pathway. With cells expressing both full-length Mia40 and Mia40(core), we demonstrate that yeast Mia40 contains dual targeting information, directing the large precursor onto the presequence pathway and the smaller Mia40(core) onto the MIA pathway, raising interesting implications for the evolution of mitochondrial protein sorting.
Collapse
Affiliation(s)
- Agnieszka Chacinska
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Hu J, Dong L, Outten CE. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 2008; 283:29126-34. [PMID: 18708636 DOI: 10.1074/jbc.m803028200] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Redox control in the mitochondrion is essential for the proper functioning of this organelle. Disruption of mitochondrial redox processes contributes to a host of human disorders, including cancer, neurodegenerative diseases, and aging. To better characterize redox control pathways in this organelle, we have targeted a green fluorescent protein-based redox sensor to the intermembrane space (IMS) and matrix of yeast mitochondria. This approach allows us to separately monitor the redox state of the matrix and the IMS, providing a more detailed picture of redox processes in these two compartments. To verify that the sensors respond to localized glutathione (GSH) redox changes, we have genetically manipulated the subcellular redox state using oxidized GSH (GSSG) reductase localization mutants. These studies indicate that redox control in the cytosol and matrix are maintained separately by cytosolic and mitochondrial isoforms of GSSG reductase. Our studies also demonstrate that the mitochondrial IMS is considerably more oxidizing than the cytosol and mitochondrial matrix and is not directly influenced by endogenous GSSG reductase activity. These redox measurements are used to predict the oxidation state of thiol-containing proteins that are imported into the IMS.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
48
|
Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteine-rich proteins. FEBS Lett 2008; 582:2817-25. [DOI: 10.1016/j.febslet.2008.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/19/2022]
|
49
|
Mokranjac D, Neupert W. Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:33-41. [PMID: 18672008 DOI: 10.1016/j.bbamcr.2008.06.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/16/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
Abstract
Mitochondria are essential organelles of the eukaryotic cells that are made by expansion and division of pre-existing mitochondria. The majority of their protein constituents are synthesized in the cytosol. They are transported into and put together within the organelle. This complex process is facilitated by several protein translocases. Here we summarize current knowledge on these sophisticated molecular machines that mediate recognition, transport across membranes and intramitochondrial sorting of many hundreds of mitochondrial proteins.
Collapse
Affiliation(s)
- Dejana Mokranjac
- Institute for Physiological Chemistry, Ludwig-Maximilians University, Butenandtstr. 5, 81377 Munich, Germany
| | | |
Collapse
|
50
|
Energetics of protein translocation into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:758-62. [DOI: 10.1016/j.bbabio.2008.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/05/2008] [Indexed: 11/18/2022]
|