1
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
2
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
3
|
Luo A, Jia Y, Hao R, Yu Y, Zhou X, Gu C, Ren M, Tang H. Quantitative Proteomic and Phosphoproteomic Profiling of Lung Tissues from Pulmonary Arterial Hypertension Rat Model. Int J Mol Sci 2023; 24:ijms24119629. [PMID: 37298580 DOI: 10.3390/ijms24119629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by elevated pulmonary vascular resistance and increased pressure in the distal pulmonary arteries. Systematic analysis of the proteins and pathways involved in the progression of PAH is crucial for understanding the underlying molecular mechanism. In this study, we performed tandem mass tags (TMT)-based relative quantitative proteomic profiling of lung tissues from rats treated with monocrotaline (MCT) for 1, 2, 3 and 4 weeks. A total of 6759 proteins were quantified, among which 2660 proteins exhibited significant changes (p-value < 0.05, fold change < 0.83 or >1.2). Notably, these changes included several known PAH-related proteins, such as Retnla (resistin-like alpha) and arginase-1. Furthermore, the expression of potential PAH-related proteins, including Aurora kinase B and Cyclin-A2, was verified via Western blot analysis. In addition, we performed quantitative phosphoproteomic analysis on the lungs from MCT-induced PAH rats and identified 1412 upregulated phosphopeptides and 390 downregulated phosphopeptides. Pathway enrichment analysis revealed significant involvement of pathways such as complement and coagulation cascades and the signaling pathway of vascular smooth muscle contraction. Overall, this comprehensive analysis of proteins and phosphoproteins involved in the development and progression of PAH in lung tissues provides valuable insights for the development of potential diagnostic and treatment targets for PAH.
Collapse
Affiliation(s)
- Ang Luo
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Rongrong Hao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yafang Yu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Xia Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Chenxin Gu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Meijuan Ren
- Life Science Research Core Service, Northwest A&F University, Xianyang 712100, China
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
4
|
Baptista de Barros Ribeiro Dourado LP, Santos M, Moreira-Gonçalves D. Nets, pulmonary arterial hypertension, and thrombo-inflammation. J Mol Med (Berl) 2022; 100:713-722. [PMID: 35441845 DOI: 10.1007/s00109-022-02197-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/28/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal vascular disease in which high blood pressure in the pulmonary artery and remodeling of the pulmonary vasculature ensues. This disorder is characterized by the presence of thrombotic lesions, resulting from chronic platelet, coagulation factors, and endothelium activation, which translate into platelet aggregation, vasoconstriction, and medial thickening. Neutrophil extracellular traps (NETs), a network of chromatin and cytoplasmatic enzymes (myeloperoxidase and neutrophil elastase) forming after neutrophil programmed cell death, were described in multiple cardiovascular diseases as thrombotic mediators, by creating a scaffold or by surface receptor interaction. In this review, we analyze the possible involvement of NETs in PAH, to enlighten future studies to explore this hypothesis. NETs may have a determining role in pulmonary hypertension through activation of platelets and endothelial cells. Simultaneously, NETosis may be induced by endothelial signaling and/or cell-cell interaction between platelets and primed neutrophils, creating a positive feedback loop. Confirming its role in the pathophysiology and prognosis of PAH may represent a new opportunity to explore new therapeutic options. KEY MESSAGES: Thrombosis and innate immunity are relevant axes in PAH. Patients with PAH display elevated levels of NETs. NETs could activate platelets/endothelium with proliferative and thrombotic effects. Activated platelets and endothelium could contribute to NETosis. NETs could open new therapy research avenues.
Collapse
Affiliation(s)
| | - Mário Santos
- Cardiology Department, Hospital Santo António, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, 4099-001, Porto, Portugal.,Unit of Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sport, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
5
|
Fan Y, Hao Y, Gao D, Li G, Zhang Z. Phenotype and function of macrophage polarization in monocrotaline-induced pulmonary arterial hypertension rat model. Physiol Res 2021; 70:213-226. [PMID: 33676385 PMCID: PMC8820576 DOI: 10.33549/physiolres.934456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) isa fatal disease characterized by vascular remodeling and chronic inflammation. Macrophages are the key orchestrators of inflammatory and repair responses, and have been demonstrated to be vital in the pathogenesis of PAH. However, specific phenotype of macrophage polarization (M1 & M2 macrophage) in the development of PAH and the underlying mechanisms how they work are still largely unclear. A rat model of monocrotaline (MCT) induced PAH was used. Hemodynamic analysis and histopathological experiments were conducted at day 3, 7, 14, 21 and 28, respectively. In PAH rat lung tissue, confocal microscopic images showed that CD68+NOS2+ M1-like macrophages were remarkably infiltrated on early stage, but dramatically decreased in mid-late stage. Meanwhile, CD68+CD206+ M2-like macrophages in lung tissue accumulated gradually since day 7 to day 28, and the relative ratio of M2/M1 macrophage increased over time. Results detected by western blot and immunohistochemistry were consistent. Further vitro functional studies revealed the possible mechanism involved in this pathophysiological process. By using Transwell co-culture system, it was found that M1 macrophages inducedendothelial cellapoptosis, while M2 macrophages significantly promoted proliferation of both endothelial cell and smooth muscle cell.These data preliminarily demonstrated a temporal dynamic change of macrophage M1/M2 polarization status in the development of experimental PAH. M1 macrophages participated in the initial stage of inflammation by accelerating apoptosis of endothelial cell, while M2 macrophages predominated in the reparative stage of inflammation and the followed stage of aberrant tissue remodeling.
Collapse
Affiliation(s)
- Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China.
| | | | | | | | | |
Collapse
|
6
|
The Role and Regulation of Pulmonary Artery Smooth Muscle Cells in Pulmonary Hypertension. Int J Hypertens 2020; 2020:1478291. [PMID: 32850144 PMCID: PMC7441461 DOI: 10.1155/2020/1478291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is one of the most devastating cardiovascular diseases worldwide and it draws much attention from numerous scientists. As an indispensable part of pulmonary artery, smooth muscle cells are worthy of being carefully investigated. To elucidate the pathogenesis of PH, several theories focusing on pulmonary artery smooth muscle cells (PASMC), such as hyperproliferation, resistance to apoptosis, and cancer theory, have been proposed and widely studied. Here, we tried to summarize the studies, concentrating on the role of PASMC in the development of PH, feasible molecular basis to intervene, and potential treatment to PH.
Collapse
|
7
|
Wilson KS, Buist H, Suveizdyte K, Liles JT, Budas GR, Hughes C, MacLean MR, Johnson M, Church AC, Peacock AJ, Welsh DJ. Apoptosis signal-regulating kinase 1 inhibition in in vivo and in vitro models of pulmonary hypertension. Pulm Circ 2020; 10:2045894020922810. [PMID: 32523684 PMCID: PMC7235684 DOI: 10.1177/2045894020922810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension, group 1 of the pulmonary hypertension disease family, involves pulmonary vascular remodelling, right ventricular dysfunction and cardiac failure. Oxidative stress, through activation of mitogen-activated protein kinases is implicated in these changes. Inhibition of apoptosis signal-regulating kinase 1, an apical mitogen-activated protein kinase, prevented pulmonary arterial hypertension developing in rodent models. Here, we investigate apoptosis signal-regulating kinase 1 in pulmonary arterial hypertension by examining the impact that its inhibition has on the molecular and cellular signalling in established disease. Apoptosis signal-regulating kinase 1 inhibition was investigated in in vivo pulmonary arterial hypertension and in vitro pulmonary hypertension models. In the in vivo model, male Sprague Dawley rats received a single subcutaneous injection of Sugen SU5416 (20 mg/kg) prior to two weeks of hypobaric hypoxia (380 mmHg) followed by three weeks normoxia (Sugen/hypoxic), then animals were either maintained for three weeks on control chow or one containing apoptosis signal-regulating kinase 1 inhibitor (100 mg/kg/day). Cardiovascular measurements were carried out. In the in vitro model, primary cultures of rat pulmonary artery fibroblasts and rat pulmonary artery smooth muscle cells were maintained in hypoxia (5% O2) and investigated for proliferation, migration and molecular signalling in the presence or absence of apoptosis signal-regulating kinase 1 inhibitor. Sugen/hypoxic animals displayed significant pulmonary arterial hypertension compared to normoxic controls at eight weeks. Apoptosis signal-regulating kinase 1 inhibitor decreased right ventricular systolic pressure to control levels and reduced muscularised vessels in lung tissue. Apoptosis signal-regulating kinase 1 inhibition was found to prevent hypoxia-induced proliferation, migration and cytokine release in rat pulmonary artery fibroblasts and also prevented rat pulmonary artery fibroblast-induced rat pulmonary artery smooth muscle cell migration and proliferation. Apoptosis signal-regulating kinase 1 inhibition reversed pulmonary arterial hypertension in the Sugen/hypoxic rat model. These effects may be a result of intrinsic changes in the signalling of adventitial fibroblast.
Collapse
Affiliation(s)
- Kathryn S Wilson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Hanna Buist
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kornelija Suveizdyte
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Colin Hughes
- Central Research Facility, University of Glasgow, Glasgow, UK
| | - Margaret R MacLean
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Martin Johnson
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Clydebank, UK
| | - Alistair C Church
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Clydebank, UK
| | - Andrew J Peacock
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Clydebank, UK
| | - David J Welsh
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Biological and Biomedical Science, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
8
|
Sheikh AQ, Saddouk FZ, Ntokou A, Mazurek R, Greif DM. Cell Autonomous and Non-cell Autonomous Regulation of SMC Progenitors in Pulmonary Hypertension. Cell Rep 2019; 23:1152-1165. [PMID: 29694892 PMCID: PMC5959296 DOI: 10.1016/j.celrep.2018.03.043] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension is a devastating disease characterized by excessive vascular muscularization. We previously demonstrated primed platelet-derived growth factor receptor β+ (PDGFR-β+)/smooth muscle cell (SMC) marker+ progenitors at the muscular-unmuscular arteriole border in the normal lung, and in hypoxia-induced pulmonary hypertension, a single primed cell migrates distally and expands clonally, giving rise to most of the pathological smooth muscle coating of small arterioles. Little is known regarding the molecular mechanisms underlying this process. Herein, we show that primed cell expression of Kruppel-like factor 4 and hypoxia-inducible factor 1-α(HIF1-α) are required, respectively, for distal migration and smooth muscle expansion in a sequential manner. In addition, the HIF1-α/PDGF-B axis in endothelial cells non-cell autonomously regulates primed cell induction, proliferation, and differentiation. Finally, myeloid cells transdifferentiate into or fuse with distal arteriole SMCs during hypoxia, and Pdgfb deletion in myeloid cells attenuates pathological muscularization. Thus, primed cell autonomous and non-cell autonomous pathways are attractive therapeutic targets for pulmonary hypertension.
Collapse
Affiliation(s)
- Abdul Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Fatima Zahra Saddouk
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Renata Mazurek
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
9
|
Chung H, Sohn IS. Moving Beyond the Endothelium is Still Challenging-Complex Interplay between Endothelin and Reactive Oxygen Species in Pulmonary Arterial Hypertension. Korean Circ J 2019; 49:877-878. [PMID: 31347318 PMCID: PMC6713820 DOI: 10.4070/kcj.2019.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hyemoon Chung
- Department of Cardiology, Kyung Hee University Medical Center, Seoul, Korea
| | - Il Suk Sohn
- Department of Cardiology, Kyung Hee University Hospital at Gangdong, Seoul, Korea.
| |
Collapse
|
10
|
Rode B, Bailey MA, Marthan R, Beech DJ, Guibert C. ORAI Channels as Potential Therapeutic Targets in Pulmonary Hypertension. Physiology (Bethesda) 2019; 33:261-268. [PMID: 29897302 DOI: 10.1152/physiol.00016.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension is a complex and fatal disease that lacks treatments. Its pathophysiology involves pulmonary artery hyperreactivity, endothelial dysfunction, wall remodelling, inflammation, and thrombosis, which could all depend on ORAI Ca2+ channels. We review the knowledge about ORAI channels in pulmonary artery and discuss the interest to target them in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Baptiste Rode
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Univ. of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,CHU de Bordeaux, Pôle Cardio-Thoracique, Bordeaux , France
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Univ. of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France
| |
Collapse
|
11
|
Smolders VF, Zodda E, Quax PHA, Carini M, Barberà JA, Thomson TM, Tura-Ceide O, Cascante M. Metabolic Alterations in Cardiopulmonary Vascular Dysfunction. Front Mol Biosci 2019; 5:120. [PMID: 30723719 PMCID: PMC6349769 DOI: 10.3389/fmolb.2018.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. CVD comprise a range of diseases affecting the functionality of the heart and blood vessels, including acute myocardial infarction (AMI) and pulmonary hypertension (PH). Despite their different causative mechanisms, both AMI and PH involve narrowed or blocked blood vessels, hypoxia, and tissue infarction. The endothelium plays a pivotal role in the development of CVD. Disruption of the normal homeostasis of endothelia, alterations in the blood vessel structure, and abnormal functionality are essential factors in the onset and progression of both AMI and PH. An emerging theory proposes that pathological blood vessel responses and endothelial dysfunction develop as a result of an abnormal endothelial metabolism. It has been suggested that, in CVD, endothelial cell metabolism switches to higher glycolysis, rather than oxidative phosphorylation, as the main source of ATP, a process designated as the Warburg effect. The evidence of these alterations suggests that understanding endothelial metabolism and mitochondrial function may be central to unveiling fundamental mechanisms underlying cardiovascular pathogenesis and to identifying novel critical metabolic biomarkers and therapeutic targets. Here, we review the role of the endothelium in the regulation of vascular homeostasis and we detail key aspects of endothelial cell metabolism. We also describe recent findings concerning metabolic endothelial cell alterations in acute myocardial infarction and pulmonary hypertension, their relationship with disease pathogenesis and we discuss the future potential of pharmacological modulation of cellular metabolism in the treatment of cardiopulmonary vascular dysfunction. Although targeting endothelial cell metabolism is still in its infancy, it is a promising strategy to restore normal endothelial functions and thus forestall or revert the development of CVD in personalized multi-hit interventions at the metabolic level.
Collapse
Affiliation(s)
- Valérie Françoise Smolders
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Erika Zodda
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Timothy M. Thomson
- Institute for Molecular Biology of Barcelona, National Research Council (IBMB-CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
12
|
Hogan SE, Rodriguez Salazar MP, Cheadle J, Glenn R, Medrano C, Petersen TH, Ilagan RM. Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316:L723-L737. [PMID: 30652491 DOI: 10.1152/ajplung.00058.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Secreted exosomes are bioactive particles that elicit profound responses in target cells. Using targeted metabolomics and global microarray analysis, we identified a role of exosomes in promoting mitochondrial function in the context of pulmonary arterial hypertension (PAH). Whereas chronic hypoxia results in a glycolytic shift in pulmonary artery smooth muscle cells (PASMCs), exosomes restore energy balance and improve O2 consumption. These results were confirmed in a hypoxia-induced mouse model and a semaxanib/hypoxia rat model of PAH wherein exosomes improved the mitochondrial dysfunction associated with disease. Importantly, exosome exposure increased PASMC expression of pyruvate dehydrogenase (PDH) and glutamate dehydrogenase 1 (GLUD1), linking exosome treatment to the TCA cycle. Furthermore, we show that although prolonged hypoxia induced sirtuin 4 expression, an upstream inhibitor of both GLUD1 and PDH, exosomes reduced its expression. These data provide direct evidence of an exosome-mediated improvement in mitochondrial function and contribute new insights into the therapeutic potential of exosomes in PAH.
Collapse
Affiliation(s)
- Sarah E Hogan
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | | | - John Cheadle
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | - Rachel Glenn
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | - Carolina Medrano
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | - Thomas H Petersen
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | - Roger M Ilagan
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| |
Collapse
|
13
|
Affiliation(s)
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine and the Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Yu W, Chen H, Yang H, Ding J, Xia P, Mei X, Wang L, Chen S, Zou C, Wang LX. Dissecting Molecular Mechanisms Underlying Pulmonary Vascular Smooth Muscle Cell Dedifferentiation in Pulmonary Hypertension: Role of Mutated Caveolin-1 (Cav1 F92A)-Bone Marrow Mesenchymal Stem Cells. Heart Lung Circ 2018; 28:1587-1597. [PMID: 30262154 DOI: 10.1016/j.hlc.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/29/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterised by remodelling in vascular smooth muscles, and switching from contractile (differentiated) to synthetic (dedifferentiated) phenotype. This study aimed to investigate the effect of a mutated caveolin-1 (Cav1F92A) gene from bone marrow mesenchymal stem cells (rBMSCs) on phenotypic switching in the smooth muscle cells during PAH. METHODS Human pulmonary smooth muscle cells (HPASMCs) were treated with monocrotaline (MCT,1μM), and co-cultured with Cav1F92A gene modified rBMSCs (rBMSCs/Cav1F92A). The nitric oxide (NO) production, cell adhesion, cell viability and inflammatory cytokines expression in rBMSCs was measured to evaluate the survival rate of rBMSCs and the changes of inflammatory cytokines. The concentration of NO/cGMP (nitric oxide/Guanosine-3',5'-cyclic monophosphate), the tumour necrosis factor-alpha (TNF-α), transforming growth factor-beta1 (TGF-β1) mRNA, the expression of contractile smooth muscle cells (SMCs) phenotype markers (thrombospondin-1 and Matrix Gla protein, MGP), the synthetic SMCs phenotype markers (H-caldesmon and smooth muscle gene SM22 alpha, SM22α), cell migration and the morphological changes in rBMSCs/Cav1F92A co-cultured HPASMCs were investigated. RESULTS Cav1F92A increased NO concentration, cell adhesion, cell viability, anti-inflammatory cytokines interleukin-4 (IL-4), and interleukin-10 (IL-10), but decreased the inflammatory cytokines interleukin-1α (IL-1α), interferon-γ (INF-γ) and TNF-α expression in rBMSCs. rBMSCs/Cav1F92A activated the NO/cGMP, down-regulated TNF-α, TGF-β1, thrombospondin-1 and MGP expression, up-regulated SM22α and H-caldesmon expression, restored cell morphology, and inhibited cell migration in MCT treated HPASMCs. CONCLUSIONS rBMSCs/Cav1F92A inhibits switching from contractile to synthetic phenotype in HPASMCs. It also inhibits migration and promotes morphological restoration of these cells. rBMSCs/Cav1F92A may be used as a therapeutic modality for PAH.
Collapse
Affiliation(s)
- Wancheng Yu
- Department of Cardiac Surgery, Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Haiying Chen
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Hongli Yang
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Jie Ding
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Peng Xia
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Xu Mei
- Department of Geriatrics, Shandong University Qilu Hospital, Shandong, China
| | - Lei Wang
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Shuangfeng Chen
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Chengwei Zou
- Department of Cardiac Surgery, Provincial Hospital Affiliated to Shandong University, Shandong 250021, China.
| | - Le-Xin Wang
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China; School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.
| |
Collapse
|
15
|
Fazakas C, Nagaraj C, Zabini D, Végh AG, Marsh LM, Wilhelm I, Krizbai IA, Olschewski H, Olschewski A, Bálint Z. Rho-Kinase Inhibition Ameliorates Dasatinib-Induced Endothelial Dysfunction and Pulmonary Hypertension. Front Physiol 2018; 9:537. [PMID: 29867576 PMCID: PMC5962749 DOI: 10.3389/fphys.2018.00537] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/24/2018] [Indexed: 02/02/2023] Open
Abstract
The multi-kinase inhibitor dasatinib is used for treatment of imatinib-resistant chronic myeloid leukemia, but is prone to induce microvascular dysfunction. In lung this can manifest as capillary leakage with pleural effusion, pulmonary edema or even pulmonary arterial hypertension. To understand how dasatinib causes endothelial dysfunction we examined the effects of clinically relevant concentrations of dasatinib on both human pulmonary arterial macro- and microvascular endothelial cells (ECs). The effects of dasatinib was compared to imatinib and nilotinib, two other clinically used BCR/Abl kinase inhibitors that do not inhibit Src. Real three-dimensional morphology and high resolution stiffness mapping revealed softening of both macro- and microvascular ECs upon dasatinib treatment, which was not observed in response to imatinib. In a dose-dependent manner, dasatinib decreased transendothelial electrical resistance/impedance and caused a permeability increase as well as disruption of tight adherens junctions in both cell types. In isolated perfused and ventilated rat lungs, dasatinib increased mean pulmonary arterial pressure, which was accompanied by a gain in lung weight. The Rho-kinase inhibitor Y27632 partly reversed the dasatinib-induced changes in vitro and ex vivo, presumably by acting downstream of Src. Co-administration of the Rho-kinase inhibitor Y27632 completely blunted the increased pulmonary pressure in response to dasatinib. In conclusion, a dasatinib-induced permeability increase in human pulmonary arterial macro- and microvascular ECs might explain many of the adverse effects of dasatinib in patients. Rho-kinase inhibition might be suitable to ameliorate these effects.
Collapse
Affiliation(s)
- Csilla Fazakas
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Diana Zabini
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Attila G. Végh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Zoltán Bálint
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Costa J, Zhu Y, Cox T, Fawcett P, Shaffer T, Alapati D. Inflammatory Response of Pulmonary Artery Smooth Muscle Cells Exposed to Oxidative and Biophysical Stress. Inflammation 2018; 41:1250-1258. [DOI: 10.1007/s10753-018-0772-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Mechanisms underlying the impact of exercise training in pulmonary arterial hypertension. Respir Med 2018; 134:70-78. [DOI: 10.1016/j.rmed.2017.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/10/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022]
|
18
|
Vaidya B, Pangallo M, Ruffenach G, Cunningham CM, Perron JC, Kolluru S, Eghbali M, Gupta V. Advances in treatment of pulmonary arterial hypertension: patent review. Expert Opin Ther Pat 2017; 27:907-918. [DOI: 10.1080/13543776.2017.1313232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Matthew Pangallo
- School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christine Marie Cunningham
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeanette C. Perron
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | | | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| |
Collapse
|
19
|
Nogueira-Ferreira R, Ferreira-Pinto MJ, Silva AF, Vitorino R, Justino J, Costa R, Moreira-Gonçalves D, Quignard JF, Ducret T, Savineau JP, Leite-Moreira AF, Ferreira R, Henriques-Coelho T. HMGB1 down-regulation mediates terameprocol vascular anti-proliferative effect in experimental pulmonary hypertension. J Cell Physiol 2017; 232:3128-3138. [PMID: 28036116 DOI: 10.1002/jcp.25763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 11/07/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a poor prognosis. Pulmonary artery smooth muscle cells (PASMCs) play a crucial role in PAH pathophysiology, displaying a hyperproliferative, and apoptotic-resistant phenotype. In the present study, we evaluated the potential therapeutic role of terameprocol (TMP), an inhibitor of cellular proliferation and promoter of apoptosis, in a well-established pre-clinical model of PAH induced by monocrotaline (MCT) and studied the biological pathways modulated by TMP in PASMCs. Wistar rats injected with MCT or saline (SHAM group) were treated with TMP or vehicle. On day 21 after injection, we assessed bi-ventricular hemodynamics and cardiac and pulmonary morphometry. The effects of TMP on PASMCs were studied in a primary culture isolated from SHAM and MCT-treated rats, using an iTRAQ-based proteomic approach to investigate the molecular pathways modulated by this drug. In vivo, TMP significantly reduced pulmonary and cardiac remodeling and improved cardiac function in PAH. In vitro, TMP inhibited proliferation and induced apoptosis of PASMCs. A total of 65 proteins were differentially expressed in PASMCs from MCT rats treated with TMP, some of which involved in the modulation of transforming growth factor beta pathway and DNA transcription. Anti-proliferative effect of TMP seems to be explained, at least in part, by the down-regulation of the transcription factor HMGB1. Our findings support the beneficial role of TMP in PAH and suggest that it may be an effective therapeutic option to be considered in the clinical management of PAH.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Manuel J Ferreira-Pinto
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Ana Filipa Silva
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Rui Vitorino
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.,iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Joana Justino
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Raquel Costa
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.,CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
| | - Jean-François Quignard
- Université Bordeaux Segalen, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Thomas Ducret
- Université Bordeaux Segalen, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Jean-Pierre Savineau
- Université Bordeaux Segalen, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Adelino F Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Tiago Henriques-Coelho
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
20
|
Zhao L, Luo H, Li X, Li T, He J, Qi Q, Liu Y, Yu Z. Exosomes Derived from Human Pulmonary Artery Endothelial Cells Shift the Balance between Proliferation and Apoptosis of Smooth Muscle Cells. Cardiology 2017; 137:43-53. [DOI: 10.1159/000453544] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022]
Abstract
Background: The overproliferation of pulmonary vascular cells is noted in pulmonary hypertension. The role of exosomes from pulmonary artery endothelial cells (PAEC) in the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMC) remains unclear. Methods: Exosomes were isolated and purified from the culture medium of PAEC using a commercial kit. Lipopolysaccharide (LPS), hypoxia, and hydrogen peroxide were utilized to induce PAEC injury. Coculture of PAEC and PASMC was conducted using Transwell plates, and GW4869 was applied to inhibit exosome release. The proliferation and apoptosis level of PASMC was assayed by MTT assay, apoptosis staining, and cleaved caspase-3 immunoblotting. Plasma exosomes were isolated by differential ultracentrifugation. Results: LPS or hypoxia enhance exosome release from PAEC. Release of PAEC-derived exosomes positively correlates with LPS concentration. The coculture of LPS-disposed PAEC with PASMC leads to overproliferation and apoptosis resistance in PASMC, and the exosome inhibitor GW4869 can partly cancel out this effect. Exosomes derived from PAEC could be internalized into PASMC, and thus promote proliferation and induce apoptosis resistance in PASMC. Idiopathic pulmonary arterial hypertension patients exhibit a higher circulation level of endothelium-derived exosomes. Conclusions: Inflammation and hypoxia could induce PAEC to release exosomes. PAEC- derived exosomes are involved in overproliferation and apoptosis resistance in PASMC, by which they may contribute to the pathogenesis of pulmonary hypertension.
Collapse
|
21
|
Xiao T, Xie L, Huang M, Shen J. Differential expression of microRNA in the lungs of rats with pulmonary arterial hypertension. Mol Med Rep 2016; 15:591-596. [PMID: 28000863 PMCID: PMC5364860 DOI: 10.3892/mmr.2016.6043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/03/2016] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disorder of the small pulmonary arteries, and the efficacy of the therapies and the prognosis remain poor. The pathobiology of PAH is complex, and needs to be elucidated by multiple approaches. The present study used a monocrotaline-induced PAH rat model to perform a comprehensive microRNA (miRNA) microarray screening in the lungs and identified 16 downregulated miRNAs in the lungs from PAH rats. High-enrichment gene ontology (GO) analysis identified several sets of genes, and established the miRNA-mRNA network by outlining the interactions of miRNA and GO-associated genes. Three downregulated miRNAs [miRNA 125-3p (miR-125-3p), miR-148-3p and miR-193] displayed the most marked regulatory function, and miR-148-3p and miR-193 were observed to have the highest number of target mRNAs. Signaling pathway analysis demonstrated 26 signal transduction pathways, with MAPK, TGF-β and cell cycle signaling as the most prominent. In addition, 342 genes were identified as the potential targets of these 16 miRNAs. Thus, a set of miRNAs in the lungs from rats with PAH and novel associations between biological events and PAH pathogenesis were identified, providing potential therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Tingting Xiao
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Lijian Xie
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Min Huang
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jie Shen
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| |
Collapse
|
22
|
Gao Y, Chen T, Raj JU. Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension. Am J Respir Cell Mol Biol 2016; 54:451-60. [PMID: 26744837 DOI: 10.1165/rcmb.2015-0323tr] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the pulmonary vasculature, the endothelial and smooth muscle cells are two key cell types that play a major role in the pathobiology of pulmonary vascular disease and pulmonary hypertension. The normal interactions between these two cell types are important for the homeostasis of the pulmonary circulation, and any aberrant interaction between them may lead to various disease states including pulmonary vascular remodeling and pulmonary hypertension. It is well recognized that the endothelial cell can regulate the function of the underlying smooth muscle cell by releasing various bioactive agents such as nitric oxide and endothelin-1. In addition to such paracrine regulation, other mechanisms exist by which there is cross-talk between these two cell types, including communication via the myoendothelial injunctions and information transfer via extracellular vesicles. Emerging evidence suggests that these nonparacrine mechanisms play an important role in the regulation of pulmonary vascular tone and the determination of cell phenotype and that they are critically involved in the pathobiology of pulmonary hypertension.
Collapse
Affiliation(s)
- Yuansheng Gao
- 1 Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China; and
| | - Tianji Chen
- 2 Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - J Usha Raj
- 2 Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease without effective treatment. Despite decades of research and the development of novel treatments, PAH remains a fatal disease, suggesting an urgent need for better understanding of the pathogenesis of PAH. Recent studies suggest that microRNAs (miRNAs) are dysregulated in patients with PAH and in experimental pulmonary hypertension. Furthermore, normalization of a few miRNAs is reported to inhibit experimental pulmonary hypertension. We have reviewed the current knowledge about miRNA biogenesis, miRNA expression pattern, and their roles in regulation of pulmonary artery smooth muscle cells, endothelial cells, and fibroblasts. We have also identified emerging trends in our understanding of the role of miRNAs in the pathogenesis of PAH and propose future studies that might lead to novel therapeutic strategies for the treatment of PAH.
Collapse
Affiliation(s)
- Guofei Zhou
- 1 Department of Pediatrics, University of Illinois at Chicago; and
| | | | | |
Collapse
|
24
|
Modulation of miRNAs in Pulmonary Hypertension. Int J Hypertens 2015; 2015:169069. [PMID: 25861465 PMCID: PMC4377470 DOI: 10.1155/2015/169069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as a new class of posttranscriptional regulators of many cardiac and vascular diseases. They are a class of small, noncoding RNAs that contributes crucial roles typically through binding of the 3′-untranslated region of mRNA. A single miRNA may influence several signaling pathways associated with cardiac remodeling by targeting multiple genes. Pulmonary hypertension (PH) is a rare disorder characterized by progressive obliteration of pulmonary (micro) vasculature that results in elevated vascular resistance, leading to right ventricular hypertrophy (RVH) and RV failure. The pathology of PH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC) dysfunction and pulmonary arterial smooth muscle cell (PASMC) proliferation. There is no cure for this disease. Thus, novel intervention pathways that govern PH induced RVH may result in new treatment modalities. Current therapies are limited to reverse the vascular remodeling. Recent studies have demonstrated the roles of various miRNAs in the pathogenesis of PH and pulmonary disorders. This review provides an overview of recent discoveries on the role of miRNAs in the pathogenesis of PH and discusses the potential for miRNAs as therapeutic targets and biomarkers of PH at clinical setting.
Collapse
|
25
|
Expression variations of connective tissue growth factor in pulmonary arteries from smokers with and without chronic obstructive pulmonary disease. Sci Rep 2015; 5:8564. [PMID: 25708588 PMCID: PMC4338434 DOI: 10.1038/srep08564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking contributes to the development of pulmonary hypertension (PH) complicated with chronic obstructive pulmonary disease (COPD), and the pulmonary vascular remodeling, the structural basis of PH, could be attributed to abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs).In this study, morphometrical analysis showed that the pulmonary vessel wall thickness in smoker group and COPD group was significantly greater than in nonsmokers. In addition, we determined the expression patterns of connective tissue growth factor (CTGF) and cyclin D1 in PASMCs harvested from smokers with normal lung function or mild to moderate COPD, finding that the expression levels of CTGF and cyclin D1 were significantly increased in smoker group and COPD group. In vitro experiment showed that the expression of CTGF, cyclin D1 and E2F were significantly increased in human PASMCs (HPASMCs) treated with 2% cigarette smoke extract (CSE), and two CTGF siRNAs with different mRNA hits successfully attenuated the upregulated cyclin D1 and E2F, and significantly restored the CSE-induced proliferation of HPASMCs by causing cell cycle arrest in G0. These findings suggest that CTGF may contribute to the pathogenesis of abnormal proliferation of HPASMCs by promoting the expression of its downstream effectors in smokers with or without COPD.
Collapse
|
26
|
Colvin KL, Yeager ME. Animal Models of Pulmonary Hypertension: Matching Disease Mechanisms to Etiology of the Human Disease. ACTA ACUST UNITED AC 2014; 4. [PMID: 25705569 PMCID: PMC4334132 DOI: 10.4172/2161-105x.1000198] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recently a great deal of progress has been made in our understanding of pulmonary hypertension (PH). Research from the past 30 years has resulted in newer treatments that provide symptomatic improvements and delayed disease progression. Unfortunately, the cure for patients with this lethal syndrome remains stubbornly elusive. With the relative explosion of scientific literature regarding PH, confusion has arisen regarding animal models of the disease and their correlation to the human condition. This short review uniquely focuses on the clear and present need to better correlate mechanistic insights from existing and emerging animal models of PH to specific etiologies and histopathologies of human PH. A better understanding of the pathologic processes in various animal models and how they relate to the human disease should accelerate the development of newer and more efficacious therapies.
Collapse
Affiliation(s)
- Kelley L Colvin
- Deptartment of Pediatrics-Critical Care, University of Colorado Denver, USA ; Cardiovascular Pulmonary Research, USA ; Department of Bioengineering, University of Colorado Denver, USA ; Linda Crnic Institute for Down Syndrome, USA
| | - Michael E Yeager
- Deptartment of Pediatrics-Critical Care, University of Colorado Denver, USA ; Cardiovascular Pulmonary Research, USA ; Department of Bioengineering, University of Colorado Denver, USA ; Linda Crnic Institute for Down Syndrome, USA
| |
Collapse
|