1
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2025; 203:1251-1268. [PMID: 38829477 PMCID: PMC11872778 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
2
|
Gogianu LI, Ruta LL, Farcasanu IC. Shedding Light on Calcium Dynamics in the Budding Yeast: A Review on Calcium Monitoring with Recombinant Aequorin. Molecules 2024; 29:5627. [PMID: 39683786 DOI: 10.3390/molecules29235627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Recombinant aequorin has been extensively used in mammalian and plant systems as a powerful tool for calcium monitoring. While aequorin has also been widely applied in yeast research, a notable gap exists in the literature regarding comprehensive reviews of these applications. This review aims to address that gap by providing an overview of how aequorin has been used to explore calcium homeostasis, signaling pathways, and responses to stressors, heavy metals, and toxic compounds in Saccharomyces cerevisiae. We also discuss strategies for further developing the aequorin system in yeast, with particular emphasis on its use as a model for human calcium signaling studies, such as the reproduction of the mitochondrial calcium uniporter. By highlighting previous research and pinpointing potential future applications, we discuss the untapped potential of aequorin in yeast for drug screening, environmental toxicity testing, and disease-related studies.
Collapse
Affiliation(s)
- Larisa Ioana Gogianu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Str. 126A, 077190 Voluntari, Romania
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania
| |
Collapse
|
3
|
Zhou M, Kang S, Xia Y, Zhang D, Chen W. ATP2C1 knockdown induces abnormal expressions of cytoskeletal and tight junction proteins mimicking Hailey-Hailey disease. Indian J Dermatol Venereol Leprol 2024; 90:722-730. [PMID: 38841932 DOI: 10.25259/ijdvl_853_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/29/2023] [Indexed: 06/07/2024]
Abstract
Background Hailey-Hailey disease (HHD) is a rare, autosomal dominant, hereditary skin disorder characterised by epidermal acantholysis. The HHD-associated gene ATPase calcium-transporting type 2C member 1 (ATP2C1) encodes the protein secretory pathway Ca2+ ATPase1 (SPCA1), playing a critical role in HHD pathogenesis. Aims We aimed to investigate the effect of ATP2C1 knockdown on keratinocytes that mimicked acantholysis in HHD. Methods Immunohistochemistry (IHC) was employed to evaluate the levels of cytoskeletal and tight junction proteins such as SPCA1, P-cofilin, F-actin, claudins, occludin, and zonula occludens 1 in the skin biopsies of patients with HHD. Subsequently, the expression of these proteins in cultured ATP2C1 knockdown keratinocytes was analysed using Western blotting and immunofluorescence. Furthermore, we assessed the proliferation, apoptosis, and intracellular Ca2+ concentrations in the ATP2C1-knocked keratinocytes. Results The results showed decreased levels of these proteins (SPCA1, P-cofilin, F-actin, claudins, occluding, and zonula occludens 1) in HHD skin lesions. Moreover, their levels decreased in human keratinocytes transfected with ATP2C1 short hairpin RNA, accompanied by morphological acantholysis. Furthermore, the proliferation and apoptosis of the keratinocytes, as well as intracellular calcium concentrations in these cells, were not affected. Limitations The limitations of this study are the absence of animal experiments and the failure to explore the relationship between skeletal and tight junction proteins. Conclusion The present study indicated that ATP2C1 inhibition led to abnormal levels of the cytoskeletal and tight junction proteins in the keratinocytes. Therefore, keratinocytes can mimic HHD-like acantholysis and serve as an in vitro model, helping develop treatment strategies against HHD.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiran Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dingwei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenwen Chen
- Department of Dermatology, Yangling Demonstration Zone Hospital, Yangling, China
| |
Collapse
|
4
|
Roohvand F, Ehsani P, Abdollahpour-Alitappeh M, Shokri M, Kossari N. Biomedical applications of yeasts - a patent view, part two: era of humanized yeasts and expanded applications. Expert Opin Ther Pat 2020; 30:609-631. [PMID: 32529867 DOI: 10.1080/13543776.2020.1781816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Yeast humanization, ranging from a simple point mutation to substitution of yeast gene(s) or even a complete pathway by human counterparts has enormously expanded yeast biomedical applications. AREAS COVERED General and patent-oriented insights into the application of native and humanized yeasts for production of human glycoproteins (gps) and antibodies (Abs), toxicity/mutagenicity assays, treatments of gastrointestinal (GI) disorders and potential drug delivery as a probiotic (with emphasis on Saccharomyces bulardii) and studies on human diseases/cancers and screening effective drugs. EXPERT OPINION Humanized yeasts cover the classical advantageous features of a 'microbial eukaryote' together with advanced human cellular processes. These unique characteristics would permit their use in the production of functional and stable therapeutic gps and Abs in lower prices compared to mammalian (CHO) production-based systems. Availability of yeasts humanized for cytochrome P450 s will expand their application in metabolism-related chemical toxicity assays. Engineered S. bulardii for expression of human proteins might expand its application by synergistically combining the probiotic activity with the treatment of metabolic diseases such as phenylketonuria via GI-delivery. Yeast models of human diseases will facilitate rapid functional/phenotypic characterization of the disease-producing mutant genes and screening of the therapeutic compounds using yeast-based high-throughput research techniques (Yeast one/two hybrid systems) and viability assays.
Collapse
Affiliation(s)
- Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran , Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran , Tehran, Iran
| | | | - Mehdi Shokri
- ; Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Niloufar Kossari
- ; Universite de Versailles, Service de ne 'phrologie-transplantation re'nale, Hopital Foch, 40 rue Worth, Suresnes , Paris, France
| |
Collapse
|
5
|
Li X, Zhang D, Ding J, Li L, Wang Z. Identification of ATP2C1 mutations in the patients of Hailey-Hailey disease. BMC MEDICAL GENETICS 2020; 21:120. [PMID: 32487029 PMCID: PMC7268385 DOI: 10.1186/s12881-020-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/20/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Familial benign chronic pemphigus, also known as Hailey-Hailey disease (HHD), is a clinically rare bullous Dermatosis. However the mechanism has not been clarified. The study aim to detect novel mutations in exons of ATP2C1 gene in HHD patients; to explore the possible mechnism of HHD pathogenesis by examining the expression profile of hSPCA1, miR-203, p63, Notch1 and HKII proteins in the skin lesions of HHD patients. METHODS Genomic DNA was extracted from peripheral blood of HHD patients. All exons of ATP2C1 gene in HHD patients were amplified by PCR and the products were purified and sequenced. All related signaling proteins of interest were stained by using skin lesion tissues from HHD patients and miR-203 levels were also determined. RESULTS One synonymous mutation c.G2598A (in exon 26), one nonsense mutation c.C635A and two missense mutations c.C1286A (p.A429D) and c. A1931G (p. D644G) were identified. The nonsense mutation changed codon UCG to stop codon UAG, causing a premature polypeptide chain of the functional region A. The two missense mutations were located in the region P (phosphorylation region) and the Mn binding site of hSPCA1. The level of hSPCA1 was significantly decreased in HHD patients compared to the normal human controls, accompanied by an increase of miR-203 level and a decrease of p63 and HKII levels. CONCLUSION In our study, we found four mutations in HHD. Meanwhile we found increase of miR-203 level and a decrease of p63 and HKII levels. In addition, Notch1, which was negatively regulated p63, is downregulated. These factors may be involved in the signaling pathways of HHD pathogenesis. Our data showed that both p63 and miR-203 may have significant regulatory effects on Notch1 in the skin.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Dingwei Zhang
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiahui Ding
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Li Li
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhenghui Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, NO. 157 Xi Wu Road, Xi'an, 710004, Shaan'xi Province, China.
| |
Collapse
|
6
|
Ficociello G, Zonfrilli A, Cialfi S, Talora C, Uccelletti D. Yeast-Based Screen to Identify Natural Compounds with a Potential Therapeutic Effect in Hailey-Hailey Disease. Int J Mol Sci 2018; 19:ijms19061814. [PMID: 29925776 PMCID: PMC6032253 DOI: 10.3390/ijms19061814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 01/22/2023] Open
Abstract
The term orthodisease defines human disorders in which the pathogenic gene has orthologs in model organism genomes. Yeasts have been instrumental for gaining insights into the molecular basis of many human disorders, particularly those resulting from impaired cellular metabolism. We and others have used yeasts as a model system to study the molecular basis of Hailey-Hailey disease (HHD), a human blistering skin disorder caused by haploinsufficiency of the gene ATP2C1 the orthologous of the yeast gene PMR1. We observed that K. lactis cells defective for PMR1 gene share several biological similarities with HHD derived keratinocytes. Based on the conservation of ATP2C1/PMR1 function from yeast to human, here we used a yeast-based assay to screen for molecules able to influence the pleiotropy associated with PMR1 deletion. We identified six compounds, Kaempferol, Indirubin, Lappaconite, Cyclocytidine, Azomycin and Nalidixic Acid that induced different major shape phenotypes in K. lactis. These include mitochondrial and the cell-wall morphology-related phenotypes. Interestingly, a secondary assay in mammalian cells confirmed activity for Kaempferol. Indeed, this compound was also active on human keratinocytes depleted of ATP2C1 function by siRNA-treatment used as an in-vitro model of HHD. We found that Kaempferol was a potent NRF2 regulator, strongly inducing its expression and its downstream target NQO1. In addition, Kaempferol could decrease oxidative stress of ATP2C1 defective keratinocytes, characterized by reduced NRF2-expression. Our results indicated that the activation of these pathways might provide protection to the HHD-skin cells. As oxidative stress plays pivotal roles in promoting the skin lesions of Hailey-Hailey, the NRF2 pathway could be a viable therapeutic target for HHD.
Collapse
Affiliation(s)
- Graziella Ficociello
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Azzurra Zonfrilli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
7
|
Maruyama M, Kobayashi M, Uchida T, Shimizu E, Higashio H, Ohno M, Uesugi S, Kimura KI. Anti-allergy activities of Kuji amber extract and kujigamberol. Fitoterapia 2018. [DOI: 10.1016/j.fitote.2018.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Cialfi S, Le Pera L, De Blasio C, Mariano G, Palermo R, Zonfrilli A, Uccelletti D, Palleschi C, Biolcati G, Barbieri L, Screpanti I, Talora C. The loss of ATP2C1 impairs the DNA damage response and induces altered skin homeostasis: Consequences for epidermal biology in Hailey-Hailey disease. Sci Rep 2016; 6:31567. [PMID: 27528123 PMCID: PMC4985699 DOI: 10.1038/srep31567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023] Open
Abstract
Mutation of the Golgi Ca(2+)-ATPase ATP2C1 is associated with deregulated calcium homeostasis and altered skin function. ATP2C1 mutations have been identified as having a causative role in Hailey-Hailey disease, an autosomal-dominant skin disorder. Here, we identified ATP2C1 as a crucial regulator of epidermal homeostasis through the regulation of oxidative stress. Upon ATP2C1 inactivation, oxidative stress and Notch1 activation were increased in cultured human keratinocytes. Using RNA-seq experiments, we found that the DNA damage response (DDR) was consistently down-regulated in keratinocytes derived from the lesions of patients with Hailey-Hailey disease. Although oxidative stress activates the DDR, ATP2C1 inactivation down-regulates DDR gene expression. We showed that the DDR response was a major target of oxidative stress-induced Notch1 activation. Here, we show that this activation is functionally important because early Notch1 activation in keratinocytes induces keratinocyte differentiation and represses the DDR. These results indicate that an ATP2C1/NOTCH1 axis might be critical for keratinocyte function and cutaneous homeostasis, suggesting a plausible model for the pathological features of Hailey-Hailey disease.
Collapse
Affiliation(s)
- Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Loredana Le Pera
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Carlo De Blasio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Germano Mariano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Azzurra Zonfrilli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome, Rome, Italy
| | - Claudio Palleschi
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome, Rome, Italy
| | | | - Luca Barbieri
- Porphyria Center, San Gallicano Institute IRCCS, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Ficociello G, Zanni E, Cialfi S, Aurizi C, Biolcati G, Palleschi C, Talora C, Uccelletti D. Glutathione S-transferase ϴ-subunit as a phenotypic suppressor of pmr1Δ strain, the Kluyveromyces lactis model for Hailey-Hailey disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2650-2657. [PMID: 27523793 DOI: 10.1016/j.bbamcr.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hailey-Hailey disease (HHD), also known as familial benign chronic pemphigus, is a rare, chronic and recurrent blistering disorder, histologically characterized by suprabasal acantholysis. HHD has been linked to mutations in ATP2C1, the gene encoding the human adenosine triphosphate (ATP)-powered calcium channel pump. METHODS In this work, the genetically tractable yeast Kluyveromyces lactis has been used to study the molecular basis of Hailey-Hailey disease. The K. lactis strain depleted of PMR1, the orthologue of the human ATP2C1 gene, was used to screen a Madin-Darby canine kidney (MDCK) cDNA library to identify genetic interactors able to suppress the oxidative stress occurring in those cells. RESULTS We have identified the Glutathione S-transferase ϴ-subunit (GST), an important detoxifying enzyme, which restores many of the defects associated with the pmr1Δmutant. GST overexpression in those cells suppressed the sensitivity to calcium chelating agents and partially re-established calcium (Ca2+) homeostasis by decreasing the high cytosolic Ca2+ levels in pmr1Δstrain. Moreover, we found that in the K. lactis mutant the mitochondrial dysfunction was suppressed by GST overexpression independently from calcineurin. In agreement with yeast results, a decreased expression of the human GST counterpart (GSTT1/M1) was observed in lesion-derived keratinocytes from HHD patients. CONCLUSIONS These data highlighted the Glutathione S-transferase as a candidate gene associated with Hailey-Hailey disease. GENERAL SIGNIFICANCE Kluyveromyces lactis can be considered a good model to study the molecular basis of this pathology.
Collapse
Affiliation(s)
- G Ficociello
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - E Zanni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - S Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - C Aurizi
- Porphyria Center, San Gallicano Institute IRCCS, Rome, Italy
| | - G Biolcati
- Porphyria Center, San Gallicano Institute IRCCS, Rome, Italy
| | - C Palleschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - C Talora
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,.
| | - D Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Voisset C, Blondel M. [Chemobiology at happy hour: yeast as a model for pharmacological screening]. Med Sci (Paris) 2014; 30:1161-8. [PMID: 25537047 DOI: 10.1051/medsci/20143012020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since its discovery and description by Louis Pasteur, the budding yeast Saccharomyces cerevisiae, which was used for thousands of years for alcoholic fermentation and as a leavening agent, has become a popular model system in biology. One of the reasons for this popularity is the strong conservation from yeast to human of most of the pathways controlling cell growth and fate. In addition, at least 30 % of human genes involved in diseases have a functional homolog in yeast. Hence, yeast is now widely used for modelling and deciphering physiopathological mechanisms as well as for developing pharmacological approaches like phenotype-based drug screening. Three examples of such yeast-based chemobiological studies are presented.
Collapse
Affiliation(s)
- Cécile Voisset
- Inserm UMR 1078 ; Université de Bretagne occidentale, Faculté de médecine et des sciences de la santé ; Établissement français du sang (EFS) ; CHRU Brest, hôpital Morvan, laboratoire de génétique moléculaire, 22, avenue Camille Desmoulins 29200 Brest, France
| | - Marc Blondel
- Inserm UMR 1078 ; Université de Bretagne occidentale, Faculté de médecine et des sciences de la santé ; Établissement français du sang (EFS) ; CHRU Brest, hôpital Morvan, laboratoire de génétique moléculaire, 22, avenue Camille Desmoulins 29200 Brest, France
| |
Collapse
|
11
|
Fernandes JTS, Tenreiro S, Gameiro A, Chu V, Outeiro TF, Conde JP. Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. LAB ON A CHIP 2014; 14:3949-3957. [PMID: 25167219 DOI: 10.1039/c4lc00756e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Parkinson's disease (PD) is a common age-associated neurodegenerative disorder. The protein α-synuclein (aSyn) is a key factor in PD both due to its association with familial and sporadic cases and because it is the main component of the pathological protein aggregates known as Lewy bodies. However, the precise cellular effects of aSyn aggregation are still elusive. Here, we developed an elastomeric microfluidic device equipped with a chemical gradient generator and 9 chambers containing cell traps to study aSyn production and aggregation in Saccharomyces cerevisiae. This study involved capturing single cells, exposing them to specific chemical environments and imaging the expression of aSyn by means of a GFP fusion (aSyn-GFP). Using a galactose (GAL) gradient we modulated aSyn expression and, surprisingly, by tracking the behavior of single cells, we found that the response of individual cells in a population to a given stimulus can differ widely. To study the combined effect of environmental factors and aSyn expression levels, we exposed cells to a gradient of FeCl3. We found a dramatic increase in the percentage of cells displaying aSyn inclusions from 27% to 96%. Finally, we studied the effects of ascorbic acid, an antioxidant, on aSyn aggregation and found a significant reduction in the percentage of cells bearing aSyn inclusions from 87% to 37%. In summary, the device developed here offers a powerful way of studying aSyn biology with single-cell resolution and high throughput using genetically modified yeast cells.
Collapse
Affiliation(s)
- João Tiago S Fernandes
- INESC Microsistemas e Nanotecnologias and IN - Institute of Nanoscience and Nanotechnology, R. Alves Redol, 9, 1000-029, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|