1
|
Wroński A, Gęgotek A, Skrzydlewska E. Protein adducts with lipid peroxidation products in patients with psoriasis. Redox Biol 2023; 63:102729. [PMID: 37150149 DOI: 10.1016/j.redox.2023.102729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023] Open
Abstract
Psoriasis, one of the most frequent immune-mediated skin diseases, is manifested by numerous psoriatic lessons on the skin caused by excessive proliferation and keratinization of epidermal cells. These disorders of keratinocyte metabolism are caused by a pathological interaction with the cells of the immune system, including lymphocytes, which in psoriasis are also responsible for systemic inflammation. This is accompanied by oxidative stress, which promotes the formation of lipid peroxidation products, including reactive aldehydes and isoprostanes, which are additional pro-inflammatory signaling molecules. Therefore, the presented review is focused on highlighting changes that occur during psoriasis development at the level of lipid peroxidation products, including 4-hydroxynonenal, 4-oxononenal, malondialdehyde, and acrolein, and their influence on protein structures. Furthermore, we will examine inducing agents of cellular functioning, as well as intercellular signaling. These lipid peroxidation products can form adducts with a variety of proteins with different functions in the body, including proteins within skin cells and cells of the immune system. This is especially true in autoimmune diseases such as psoriasis. For example, these changes concern proteins involved in maintaining redox homeostasis or pro-inflammatory signaling. Therefore, the formation of such adducts should attract attention, especially during the design of preventive cosmetics or anti-psoriasis therapies.
Collapse
Affiliation(s)
- Adam Wroński
- Dermatological Specialized Center "DERMAL" NZOZ in Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland.
| | | |
Collapse
|
2
|
Brace N, Megson IL, Rossi AG, Doherty MK, Whitfield PD. SILAC-based quantitative proteomics to investigate the eicosanoid associated inflammatory response in activated macrophages. J Inflamm (Lond) 2022; 19:12. [PMID: 36050729 PMCID: PMC9438320 DOI: 10.1186/s12950-022-00309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Macrophages play a central role in inflammation by phagocytosing invading pathogens, apoptotic cells and debris, as well as mediating repair of tissues damaged by trauma. In order to do this, these dynamic cells generate a variety of inflammatory mediators including eicosanoids such as prostaglandins, leukotrienes and hydroxyeicosatraenoic acids (HETEs) that are formed through the cyclooxygenase, lipoxygenase and cytochrome P450 pathways. The ability to examine the effects of eicosanoid production at the protein level is therefore critical to understanding the mechanisms associated with macrophage activation. RESULTS This study presents a stable isotope labelling with amino acids in cell culture (SILAC) -based proteomics strategy to quantify the changes in macrophage protein abundance following inflammatory stimulation with Kdo2-lipid A and ATP, with a focus on eicosanoid metabolism and regulation. Detailed gene ontology analysis, at the protein level, revealed several key pathways with a decrease in expression in response to macrophage activation, which included a promotion of macrophage polarisation and dynamic changes to energy requirements, transcription and translation. These findings suggest that, whilst there is evidence for the induction of a pro-inflammatory response in the form of prostaglandin secretion, there is also metabolic reprogramming along with a change in cell polarisation towards a reduced pro-inflammatory phenotype. CONCLUSIONS Advanced quantitative proteomics in conjunction with functional pathway network analysis is a useful tool to investigate the molecular pathways involved in inflammation.
Collapse
Affiliation(s)
- Nicole Brace
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Ian L Megson
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mary K Doherty
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Phillip D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK.
- Present Address: Glasgow Polyomics, Garscube Campus, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
3
|
Ye J, Qi L, Du Z, Yu L, Chen K, Li R, Feng R, Zhai W. Calreticulin: a potential diagnostic and therapeutic biomarker in gallbladder cancer. Aging (Albany NY) 2021; 13:5607-5620. [PMID: 33591948 PMCID: PMC7950265 DOI: 10.18632/aging.202488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
Recent studies suggested that calreticulin (CRT) has an important role in the progression of various types of cancer. Our previous study suggested that CRT was upregulated and acted as an oncogene in hepatocellular carcinoma. However, the role of CRT in gallbladder cancer (GBC) remains unclear. The expression level of CRT was upregulated in GBC tissues in comparison with adjacent non-tumor tissues and chronic cholecystitis tissues. Moreover, CRT expression was found to be correlated with the tumor size. Knockdown of CRT inhibited cell proliferation, induced apoptosis, arrested cell cycle and resulted in decreased resistance to gemcitabine, which was mediated by the inactivation of the PI3K/Akt pathway. Collectively, the present results suggested a potential role of CRT in GBC progression and provided novel insights into the mechanism underlying the CRT-mediated chemosensitivity in GBC cells.
Collapse
Affiliation(s)
- Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Lei Qi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhicheng Du
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Long Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Renfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Ruo Feng
- Department of Histology and Embryology, Medical College of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
4
|
Nanini HF, Bernardazzi C, Castro F, de Souza HSP. Damage-associated molecular patterns in inflammatory bowel disease: From biomarkers to therapeutic targets. World J Gastroenterol 2018; 24:4622-4634. [PMID: 30416310 PMCID: PMC6224468 DOI: 10.3748/wjg.v24.i41.4622] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. These components include environmental elements and gut microbiota a dysbiosis. For decades, immune abnormalities have been investigated as critically important in IBD pathogenesis, and attempts to develop effective therapies have predominantly targeted the immune system. Nevertheless, immune events represent only one of the constituents contributing to IBD pathogenesis within the context of the complex cellular and molecular network underlying chronic intestinal inflammation. These factors need to be appreciated within the milieu of non-immune components. Damage-associated molecular patterns (DAMPs), which are essentially endogenous stress proteins expressed or released as a result of cell or tissue damage, have been shown to act as direct pro-inflammatory mediators. Excessive or persistent signalling mediated by such molecules can underlie several chronic inflammatory disorders, including IBD. The release of endogenous DAMPs amplifies the inflammatory response driven by immune and non-immune cells and promotes epigenetic reprogramming in IBD. The effects determine pathologic changes, which may sustain chronic intestinal inflammation and also underlie specific disease phenotypes. In addition to highlighting the potential use of DAMPs such as calprotectin as biomarkers, research on DAMPs may reveal novel mechanistic associations in IBD pathogenesis and is expected to uncover putative therapeutic targets.
Collapse
Affiliation(s)
- Hayandra Ferreira Nanini
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Claudio Bernardazzi
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Fernando Castro
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Heitor Siffert Pereira de Souza
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| |
Collapse
|
5
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Antioxidants and HNE in redox homeostasis. Free Radic Biol Med 2017; 111:87-101. [PMID: 27888001 DOI: 10.1016/j.freeradbiomed.2016.11.033] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Abstract
Under physiological conditions, cells are in a stable state known as redox homeostasis, which is maintained by the balance between continuous ROS/RNS generation and several mechanisms involved in antioxidant activity. ROS overproduction results in alterations in the redox homeostasis that promote oxidative damage to major components of the cell, including the biomembrane phospholipids. Lipid peroxidation subsequently generates a diverse set of products, including α,β-unsaturated aldehydes. Of these products, 4-hydroxy-2-nonenal (HNE) is the most studied aldehyde on the basis of its involvement in cellular physiology and pathology. This review summarizes the current knowledge in the field of HNE generation, metabolism, and detoxification, as well as its interactions with various cellular macromolecules (protein, phospholipid, and nucleic acid). The formation of HNE-protein adducts enables HNE to participate in multi-step regulation of cellular metabolic pathways that include signaling and transcription of antioxidant enzymes, pro-inflammatory factors, and anti-apoptotic proteins. The most widely described roles for HNE in the signaling pathways are associated with its activation of kinases, as well as transcription factors that are responsible for redox homeostasis (Ref-1, Nrf2, p53, NFκB, and Hsf1). Depending on its level, HNE exerts harmful or protective effects associated with the induction of antioxidant defense mechanisms. These effects make HNE a key player in maintaining redox homeostasis, as well as producing imbalances in this system that participate in aging and the development of pathological conditions.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland.
| |
Collapse
|