1
|
Trease AJ, Totusek S, Lichter EZ, Stauch KL, Fox HS. Mitochondrial DNA Instability Supersedes Parkin Mutations in Driving Mitochondrial Proteomic Alterations and Functional Deficits in Polg Mutator Mice. Int J Mol Sci 2024; 25:6441. [PMID: 38928146 PMCID: PMC11203920 DOI: 10.3390/ijms25126441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we crossed either the Parkin knockout mouse or ParkinW402A knock-in mouse lines to the Polg mitochondrial mutator line to generate homozygous double mutants. In vivo longitudinal isotopic metabolic labeling was followed by isolation of liver mitochondria and synaptic terminals from the brain, which are rich in mitochondria. Mass spectrometry and bioenergetics analysis were assessed. We demonstrate that slower mitochondrial protein turnover is associated with loss of mtDNA fidelity in liver mitochondria but not synaptic terminals, and bioenergetic function in both tissues is impaired. Pathway analysis revealed loss of mtDNA fidelity is associated with disturbances of key metabolic pathways, consistent with its association with metabolic disorders and neurodegeneration. Furthermore, we find that loss of Parkin leads to exacerbation of Polg-driven proteomic consequences, though it may be bioenergetically protective in tissues exhibiting rapid mitochondrial turnover. Finally, we provide evidence that, surprisingly, dis-autoinhibition of Parkin (ParkinW402A) functionally resembles Parkin knockout and fails to rescue deleterious Polg-driven effects. Our study accomplishes three main outcomes: (1) it supports recent studies suggesting that Parkin dependence is low in response to an increased mtDNA mutational load, (2) it provides evidence of a potential protective role of Parkin insufficiency, and (3) it draws into question the therapeutic attractiveness of enhancing Parkin function.
Collapse
Affiliation(s)
- Andrew J. Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| | - Steven Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| | - Eliezer Z. Lichter
- Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kelly L. Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| |
Collapse
|
2
|
Qiu F, Liu Y, Liu Z. The Role of Protein S-Nitrosylation in Mitochondrial Quality Control in Central Nervous System Diseases. Aging Dis 2024:AD.2024.0099. [PMID: 38739938 DOI: 10.14336/ad.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
S-Nitrosylation is a reversible covalent post-translational modification. Under physiological conditions, S-nitrosylation plays a dynamic role in a wide range of biological processes by regulating the function of substrate proteins. Like other post-translational modifications, S-nitrosylation can affect protein conformation, activity, localization, aggregation, and protein interactions. Aberrant S-nitrosylation can lead to protein misfolding, mitochondrial fragmentation, synaptic damage, and autophagy. Mitochondria are essential organelles in energy production, metabolite biosynthesis, cell death, and immune responses, among other processes. Mitochondrial dysfunction can result in cell death and has been implicated in the development of many human diseases. Recent evidence suggests that S-nitrosylation and mitochondrial dysfunction are important modulators of the progression of several diseases. In this review, we highlight recent findings regarding the aberrant S- nitrosylation of mitochondrial proteins that regulate mitochondrial biosynthesis, fission and fusion, and autophagy. Specifically, we discuss the mechanisms by which S-nitrosylated mitochondrial proteins exercise mitochondrial quality control under pathological conditions, thereby influencing disease. A better understanding of these pathological events may provide novel therapeutic targets to mitigate the development of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Stauch KL, Totusek S, Trease AJ, Estrella LD, Emanuel K, Fangmeier A, Fox HS. Longitudinal in vivo metabolic labeling reveals tissue-specific mitochondrial proteome turnover rates and proteins selectively altered by parkin deficiency. Sci Rep 2023; 13:11414. [PMID: 37452120 PMCID: PMC10349111 DOI: 10.1038/s41598-023-38484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Our study utilizes a longitudinal isotopic metabolic labeling approach in vivo in combination with organelle fraction proteomics to address the role of parkin in mitochondrial protein turnover in mice. The use of metabolic labeling provides a method to quantitatively determine the global changes in protein half-lives whilst simultaneously assessing protein expression. Studying two diverse mitochondrial populations, we demonstrated the median half-life of brain striatal synaptic mitochondrial proteins is significantly greater than that of hepatic mitochondrial proteins (25.7 vs. 3.5 days). Furthermore, loss of parkin resulted in an overall, albeit modest, increase in both mitochondrial protein abundance and half-life. Pathway and functional analysis of our proteomics data identified both known and novel pathways affected by loss of parkin that are consistent with its role in both mitochondrial quality control and neurodegeneration. Our study therefore adds to a growing body of evidence suggesting dependence on parkin is low for basal mitophagy in vivo and provides a foundation for the investigation of novel parkin targets.
Collapse
Affiliation(s)
- K L Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - S Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A J Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - L D Estrella
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Fangmeier
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - H S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Yamada Y, Daikuhara S, Tamura A, Nishida K, Yui N, Harashima H. Differences in the Intracellular Localization of Methylated β-Cyclodextrins-Threaded Polyrotaxanes Lead to Different Cellular States. Biomolecules 2023; 13:903. [PMID: 37371483 DOI: 10.3390/biom13060903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Activation of autophagy represents a potential therapeutic strategy for the treatment of diseases that are caused by the accumulation of defective proteins and the formation of abnormal organelles. Methylated β-cyclodextrins-threaded polyrotaxane (Me-PRX), a supramolecular structured polymer, induces autophagy by interacting with the endoplasmic reticulum. We previously reported on the successful activation of mitochondria-targeted autophagy by delivering Me-RRX to mitochondria using a MITO-Porter, a mitochondria-targeted nanocarrier. The same level of autophagy induction was achieved at one-twentieth the dosage for the MITO-Porter (Me-PRX) compared to the naked Me-PRX. We report herein on the quantitative evaluation of the intracellular organelle localization of both naked Me-PRX and the MITO-Porter (Me-PRX). Mitochondria, endoplasmic reticulum and lysosomes were selected as target organelles because they would be involved in autophagy induction. In addition, organelle injury and cell viability assays were performed. The results showed that the naked Me-PRX and the MITO-Porter (Me-PRX) were localized in different intracellular organelles, and organelle injury was different, depending on the route of administration, indicating that different organelles contribute to autophagy induction. These findings indicate that the organelle to which the autophagy-inducing molecules are delivered plays an important role in the level of induction of autophagy.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST), Tokyo 102-8666, Japan
| | - Shinnosuke Daikuhara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Atsushi Tamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Kei Nishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
5
|
Chen N, Yan J, Hu Y, Hao L, Liu H, Yang H. Study of the mechanism underlying the role of PINK1/Parkin in the formic acid-induced autophagy of PC12 cells. Basic Clin Pharmacol Toxicol 2023; 132:329-342. [PMID: 36598398 DOI: 10.1111/bcpt.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
This study aimed to explore PINK1/Parkin's role in methanol metabolite formic acid-induced autophagy in PC12 cells and provide a theoretical basis for elucidating methanol-induced neurotoxicity. After treatment with different formic acid concentrations, we observed the morphology and mitochondria of PC12 cells. We used an ultra-micro enzyme kit to detect the mitochondrial Na+ -K+ -ATPase and Ca2+ -Mg2+ -ATPase activities; a JC-1 kit to detect changes in the mitochondrial membrane potential (MMP); MDC staining to detect the autophagy levels; and western blotting to measure the expression levels of the mitochondrial marker protein COX IV and the autophagy-related proteins Beclin1, P62 and LC3II/LC3I, and the mitochondrial and cytoplasmic levels of PINK1, Parkin and P-Parkin. Compared with the control group, the mitochondrial diameters, the mitochondrial Na+ -K+ -ATP and Ca2+ -Mg2+ -ATPase activities, the MMP, and the COX IV expression levels decreased significantly (P < 0.05). The fluorescence signal intensity (indicating autophagy); relative Beclin1 and LC3II/LC3I protein expression levels; and relative mitochondrial PINK1, Parkin and P-Parkin levels increased significantly, and the relative P62 protein expression levels and relative cytoplasmic PINK1, Parkin and P-Parkin levels decreased significantly (P < 0.05) compared with the control group. Thus, formic acid alters mitochondrial morphology, causes mitochondrial dysfunction, affects the PINK/Parkin pathway and, thus, activates the process of mitochondrial autophagy.
Collapse
Affiliation(s)
- Nan Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Jiao Yan
- Xi'an Chang'an District Center for Disease Control and Prevention, Xi'an, Shanxi, People's Republic of China
| | - Yundi Hu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Lele Hao
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Herong Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
6
|
Wu A, Zhang W, Zhang G, Ding X, Kang L, Zhou T, Ji M, Guan H. Age-related cataract: GSTP1 ubiquitination and degradation by Parkin inhibits its anti-apoptosis in lens epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119450. [PMID: 36871745 DOI: 10.1016/j.bbamcr.2023.119450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE Oxidative stress-induced apoptosis of lens epithelial cells (LECs) contributes to the pathogenesis of age-related cataract (ARC). The purpose of this research is to underlie the potential mechanism of E3 ligase Parkin and its oxidative stress-associated substrate in cataractogenesis. METHODS The central anterior capsules were obtained from patients with ARC, Emory mice, and corresponding controls. SRA01/04 cells were exposed to H2O2 combined with cycloheximide (a translational inhibitor), MG-132 (a proteasome inhibitor), chloroquine (an autophagy inhibitor), Mdivi-1 (a mitochondrial division inhibitor), respectively. Co-immunoprecipitation was employed to detect protein-protein interactions and ubiquitin-tagged protein products. Levels of proteins and mRNA were evaluated by western blotting and quantitative RT-PCR assays. RESULTS Glutathione-S-transferase P1 (GSTP1) was identified as a novel Parkin substrate. Compared with corresponding controls, GSTP1 was significantly decreased in the anterior lens capsules obtained from human cataracts and Emory mice. Similarly, GSTP1 was declined in H2O2-stimulated SRA01/04 cells. Ectopic expression of GSTP1 mitigated H2O2-induced apoptosis, whereas silencing GSTP1 aggregated apoptosis. In addition, H2O2 stimulation and Parkin overexpression could promote the degradation of GSTP1 through the ubiquitin-proteasome system, autophagy-lysosome pathway, and mitophagy. After co-transfection with Parkin, the non-ubiquitinatable GSTP1 mutant maintained its anti-apoptotic function, while wildtype GSTP1 failed. Mechanistically, GSTP1 might promote mitochondrial fusion through upregulating Mitofusins 1/2 (MFN1/2). CONCLUSION Oxidative stress induces LECs apoptosis via Parkin-regulated degradation of GSTP1, which may provide potential targets for ARC therapy.
Collapse
Affiliation(s)
- Anran Wu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Wenyi Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Xuemeng Ding
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
7
|
Pal P, Roy S, Chowdhury A, Chatterjee R, Ray K, Ray J. Parkinson's disease-associated 18 bp promoter variant of DJ-1 alters REST binding and regulates its expression. Neurosci Lett 2023; 795:137051. [PMID: 36603736 DOI: 10.1016/j.neulet.2023.137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Presence of autosomal mutations in PARK7/DJ-1 gene has been associated with early-onset PD. Growing evidence has suggested that DJ-1 acts as a putative sensor of oxidative stress. Reduced levels of DJ-1 protein have been reported in the cerebrospinal fluid of sporadic PD patients. Several case-control association studies have identified DJ-1 g.168_185del (rs200968609) variants conferring susceptibility towards PD pathogenesis. Similarly, among the PD patients in eastern India, the deletion allele (g.168_185) of this DJ-1 promoter polymorphism was found to be associated with PD. Hence, we aimed to find out the functional contribution of this promoter variant of DJ-1 in PD pathogenesis. The expression of DJ-1 was observed to be significantly reduced in the presence of both deletion and duplication sequences as identified from the luciferase promoter activity assay. The transcription factor binding prediction tool identified DJ-1 promoter 18 bp insertion polymorphism as the only binding partner of REST (RE1 Silencing Transcription Factor). Transient Chromatin Immuno-precipitation (ChIP) assay further confirmed this prediction. Previous reports have highlighted the role of REST in regulating the expression of stress-responsive genes. Our study has identified the functional involvement of DJ-1 promoter variants and REST-mediated regulation of DJ-1 expression in PD pathogenesis.
Collapse
Affiliation(s)
- Prosenjit Pal
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| | - Shubhrajit Roy
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Abhishek Chowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Molecular and Human Genetics Division, Kolkata, India
| | | | - Kunal Ray
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, India
| | - Jharna Ray
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| |
Collapse
|
8
|
Pedriali G, Ramaccini D, Bouhamida E, Wieckowski MR, Giorgi C, Tremoli E, Pinton P. Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury. Front Cell Dev Biol 2022; 10:1082095. [PMID: 36561366 PMCID: PMC9763599 DOI: 10.3389/fcell.2022.1082095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the most common cause of death worldwide and in particular, ischemic heart disease holds the most considerable position. Even if it has been deeply studied, myocardial ischemia-reperfusion injury (IRI) is still a side-effect of the clinical treatment for several heart diseases: ischemia process itself leads to temporary damage to heart tissue and obviously the recovery of blood flow is promptly required even if it worsens the ischemic injury. There is no doubt that mitochondria play a key role in pathogenesis of IRI: dysfunctions of these important organelles alter cell homeostasis and survival. It has been demonstrated that during IRI the system of mitochondrial quality control undergoes alterations with the disruption of the complex balance between the processes of mitochondrial fusion, fission, biogenesis and mitophagy. The fundamental role of mitochondria is carried out thanks to the finely regulated connection to other organelles such as plasma membrane, endoplasmic reticulum and nucleus, therefore impairments of these inter-organelle communications exacerbate IRI. This review pointed to enhance the importance of the mitochondrial network in the pathogenesis of IRI with the aim to focus on potential mitochondria-targeting therapies as new approach to control heart tissue damage after ischemia and reperfusion process.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | | | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| |
Collapse
|
9
|
Targetable Pathways for Alleviating Mitochondrial Dysfunction in Neurodegeneration of Metabolic and Non-Metabolic Diseases. Int J Mol Sci 2021; 22:ijms222111444. [PMID: 34768878 PMCID: PMC8583882 DOI: 10.3390/ijms222111444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Many neurodegenerative and inherited metabolic diseases frequently compromise nervous system function, and mitochondrial dysfunction and oxidative stress have been implicated as key events leading to neurodegeneration. Mitochondria are essential for neuronal function; however, these organelles are major sources of endogenous reactive oxygen species and are vulnerable targets for oxidative stress-induced damage. The brain is very susceptible to oxidative damage due to its high metabolic demand and low antioxidant defence systems, therefore minimal imbalances in the redox state can result in an oxidative environment that favours tissue damage and activates neuroinflammatory processes. Mitochondrial-associated molecular pathways are often compromised in the pathophysiology of neurodegeneration, including the parkin/PINK1, Nrf2, PGC1α, and PPARγ pathways. Impairments to these signalling pathways consequently effect the removal of dysfunctional mitochondria, which has been suggested as contributing to the development of neurodegeneration. Mitochondrial dysfunction prevention has become an attractive therapeutic target, and there are several molecular pathways that can be pharmacologically targeted to remove damaged mitochondria by inducing mitochondrial biogenesis or mitophagy, as well as increasing the antioxidant capacity of the brain, in order to alleviate mitochondrial dysfunction and prevent the development and progression of neurodegeneration in these disorders. Compounds such as natural polyphenolic compounds, bioactive quinones, and Nrf2 activators have been reported in the literature as novel therapeutic candidates capable of targeting defective mitochondrial pathways in order to improve mitochondrial function and reduce the severity of neurodegeneration in these disorders.
Collapse
|
10
|
Fuseya Y, Iwai K. Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase. Cells 2021; 10:cells10102706. [PMID: 34685685 PMCID: PMC8534859 DOI: 10.3390/cells10102706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin system modulates protein functions by decorating target proteins with ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival, proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN; HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore, we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.
Collapse
|
11
|
Sircar E, Rai SR, Wilson MA, Schlossmacher MG, Sengupta R. Neurodegeneration: Impact of S-nitrosylated Parkin, DJ-1 and PINK1 on the pathogenesis of Parkinson's disease. Arch Biochem Biophys 2021; 704:108869. [PMID: 33819447 DOI: 10.1016/j.abb.2021.108869] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is one of the fastest-growing neurodegenerative disorders of increasing global prevalence. It represents the second most common movement disorder after tremor and the second most common neurodegenerative disorder after Alzheimer's disease. The incidence rate of idiopathic PD increases steadily with age, however, some variants of autosomal recessive inheritance are present with an early age-at-onset (ARPD). Approximately 50 percent of ARPD cases have been linked to bi-allelic mutations in genes encoding Parkin, DJ-1, and PINK1. Each protein has been implicated in maintaining proper mitochondrial function, which is particularly important for neuronal health. Aberrant post-translational modifications of these proteins may disrupt their cellular functions and thus contributing to the development of idiopathic PD. Some post-translational modifictions can be attributed to the dysregulation of potentially harmful reactive oxygen and nitrogen species inside the cell, which promote oxidative and nitrosative stress, respectively. Unlike oxidative modifications, the covalent modification by Nitric Oxide under nitrosative stress, leading to S-nitrosylation of Parkin, DJ-1; and PINK1, is less studied. Here, we review the available literature on S-nitrosylation of these three proteins, their implications in the pathogenesis of PD, and provide an overview of currently known, denitrosylating systems in eukaryotic cells.
Collapse
Affiliation(s)
- Esha Sircar
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Sristi Raj Rai
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Mark A Wilson
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, NE, USA
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Rajib Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Picca A, Calvani R, Coelho-Junior HJ, Marzetti E. Cell Death and Inflammation: The Role of Mitochondria in Health and Disease. Cells 2021; 10:cells10030537. [PMID: 33802550 PMCID: PMC7998762 DOI: 10.3390/cells10030537] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria serve as a hub for a multitude of vital cellular processes. To ensure an efficient deployment of mitochondrial tasks, organelle homeostasis needs to be preserved. Mitochondrial quality control (MQC) mechanisms (i.e., mitochondrial dynamics, biogenesis, proteostasis, and autophagy) are in place to safeguard organelle integrity and functionality. Defective MQC has been reported in several conditions characterized by chronic low-grade inflammation. In this context, the displacement of mitochondrial components, including mitochondrial DNA (mtDNA), into the extracellular compartment is a possible factor eliciting an innate immune response. The presence of bacterial-like CpG islands in mtDNA makes this molecule recognized as a damaged-associated molecular pattern by the innate immune system. Following cell death-triggering stressors, mtDNA can be released from the cell and ignite inflammation via several pathways. Crosstalk between autophagy and apoptosis has emerged as a pivotal factor for the regulation of mtDNA release, cell’s fate, and inflammation. The repression of mtDNA-mediated interferon production, a powerful driver of immunological cell death, is also regulated by autophagy–apoptosis crosstalk. Interferon production during mtDNA-mediated inflammation may be exploited for the elimination of dying cells and their conversion into elements driving anti-tumor immunity.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 17165 Stockholm, Sweden
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 17165 Stockholm, Sweden
- Correspondence: ; Tel.: +39-(06)-3015-5559; Fax: +39-(06)-3051-911
| | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy;
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.)
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy;
| |
Collapse
|
13
|
Medala VK, Gollapelli B, Dewanjee S, Ogunmokun G, Kandimalla R, Vallamkondu J. Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in Alzheimer's disease. J Neurosci Res 2021; 99:1120-1135. [PMID: 33465841 DOI: 10.1002/jnr.24781] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and progressive neurodegenerative disease. The presence of β-amyloid (Aβ) plaques and phosphorylated Tau tangles are considered to be the two main hallmarks of AD. Recent findings have shown that different changes in the structure and dynamics of mitochondria play an important role in AD pathology progression. Mitochondrial changes in AD are expressed as enhanced mitochondrial fragmentation, altered mitochondrial dynamics, and changes in the expression of mitochondrial biogenesis genes in vitro and in vivo models. Therefore, targeting mitochondria and associated mitochondrial proteins seems to be a promising alternative instead of targeting Aβ and Tau in the prevention of Alzheimer's disease. The dynamin-related protein (Drp1) is one such protein that plays an important role in the regulation of mitochondrial division and maintenance of mitochondrial structures. Few researchers have shown that inhibition of Drp1 GTPase activity in neuronal cells rescues excessive mitochondrial fragmentation. In addition, the growing evidence revealed that Drp1 can interact with both Aβ and Tau protein in human brain tissues and mouse models. In this review, we would like to update existing knowledge about various changes in and around mitochondria related to the pathogenesis of Alzheimer's disease, with particular emphasis on mitophagy and autophagy.
Collapse
Affiliation(s)
| | - Buchaiah Gollapelli
- Department of Physics, National Institute of Technology-Warangal, Warangal, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Department of Biochemistry, Kakatiya Medical College, Warangal, India
| | | |
Collapse
|
14
|
Domingues AV, Pereira IM, Vilaça-Faria H, Salgado AJ, Rodrigues AJ, Teixeira FG. Glial cells in Parkinson´s disease: protective or deleterious? Cell Mol Life Sci 2020; 77:5171-5188. [PMID: 32617639 PMCID: PMC11104819 DOI: 10.1007/s00018-020-03584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Glial cells have been identified more than 100 years ago, and are known to play a key role in the central nervous system (CNS) function. A recent piece of evidence is emerging showing that in addition to the capacity of CNS modulation and homeostasis, glial cells are also being looked like as a promising cell source not only to study CNS pathologies initiation and progression but also to the establishment and development of new therapeutic strategies. Thus, in the present review, we will discuss the current evidence regarding glial cells' contribution to neurodegenerative diseases as Parkinson's disease, providing cellular, molecular, functional, and behavioral data supporting its active role in disease initiation, progression, and treatment. As so, considering their functional relevance, glial cells may be important to the understanding of the underlying mechanisms regarding neuronal-glial networks in neurodegeneration/regeneration processes, which may open new research opportunities for their future use as a target or treatment in human clinical trials.
Collapse
Affiliation(s)
- Ana V Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Helena Vilaça-Faria
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Ana J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
15
|
Picca A, Guerra F, Calvani R, Coelho-Junior HJ, Bossola M, Landi F, Bernabei R, Bucci C, Marzetti E. Generation and Release of Mitochondrial-Derived Vesicles in Health, Aging and Disease. J Clin Med 2020; 9:jcm9051440. [PMID: 32408624 PMCID: PMC7290979 DOI: 10.3390/jcm9051440] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are intracellular organelles involved in a myriad of activities. To safeguard their vital functions, mitochondrial quality control (MQC) systems are in place to support organelle plasticity as well as physical and functional connections with other cellular compartments. In particular, mitochondrial interactions with the endosomal compartment support the shuttle of ions and metabolites across organelles, while those with lysosomes ensure the recycling of obsolete materials. The extrusion of mitochondrial components via the generation and release of mitochondrial-derived vesicles (MDVs) has recently been described. MDV trafficking is now included among MQC pathways, possibly operating via mitochondrial-lysosomal contacts. Since mitochondrial dysfunction is acknowledged as a hallmark of aging and a major pathogenic factor of multiple age-associated conditions, the analysis of MDVs and, more generally, of extracellular vesicles (EVs) is recognized as a valuable research tool. The dissection of EV trafficking may help unravel new pathophysiological pathways of aging and diseases as well as novel biomarkers to be used in research and clinical settings. Here, we discuss (1) MQC pathways with a focus on mitophagy and MDV generation; (2) changes of MQC pathways during aging and their contribution to inflamm-aging and progeroid conditions; and (3) the relevance of MQC failure to several disorders, including neurodegenerative conditions (i.e., Parkinson's disease, Alzheimer's disease) and cardiovascular disease.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy;
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Correspondence: (R.C.); (C.B.); Tel.: +39-06-3015-5559 (R.C.); +39-0832-29-8900 (C.B.); Fax: +39-06-305-1911 (R.C.); +39-0832-29-8941 (C.B.)
| | - Hélio José Coelho-Junior
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Maurizio Bossola
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy;
- Correspondence: (R.C.); (C.B.); Tel.: +39-06-3015-5559 (R.C.); +39-0832-29-8900 (C.B.); Fax: +39-06-305-1911 (R.C.); +39-0832-29-8941 (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
16
|
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Inter-Organelle Membrane Contact Sites and Mitochondrial Quality Control during Aging: A Geroscience View. Cells 2020; 9:cells9030598. [PMID: 32138154 PMCID: PMC7140483 DOI: 10.3390/cells9030598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction and failing mitochondrial quality control (MQC) are major determinants of aging. Far from being standalone organelles, mitochondria are intricately related with cellular other compartments, including lysosomes. The intimate relationship between mitochondria and lysosomes is reflected by the fact that lysosomal degradation of dysfunctional mitochondria is the final step of mitophagy. Inter-organelle membrane contact sites also allow bidirectional communication between mitochondria and lysosomes as part of nondegradative pathways. This interaction establishes a functional unit that regulates metabolic signaling, mitochondrial dynamics, and, hence, MQC. Contacts of mitochondria with the endoplasmic reticulum (ER) have also been described. ER-mitochondrial interactions are relevant to Ca2+ homeostasis, transfer of phospholipid precursors to mitochondria, and integration of apoptotic signaling. Many proteins involved in mitochondrial contact sites with other organelles also participate to degradative MQC pathways. Hence, a comprehensive assessment of mitochondrial dysfunction during aging requires a thorough evaluation of degradative and nondegradative inter-organelle pathways. Here, we present a geroscience overview on (1) degradative MQC pathways, (2) nondegradative processes involving inter-organelle tethering, (3) age-related changes in inter-organelle degradative and nondegradative pathways, and (4) relevance of MQC failure to inflammaging and age-related conditions, with a focus on Parkinson’s disease as a prototypical geroscience condition.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Correspondence: (R.C.); (R.B.); Tel.: +39-(06)-3015-5559 (R.C. & R.B.); Fax: +39-(06)-3051-911 (R.C. & R.B.)
| | - Hélio José Coelho-Junior
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: (R.C.); (R.B.); Tel.: +39-(06)-3015-5559 (R.C. & R.B.); Fax: +39-(06)-3051-911 (R.C. & R.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
17
|
Positive regulation of human PINK1 and Parkin gene expression by nuclear respiratory factor 1. Mitochondrion 2020; 51:22-29. [DOI: 10.1016/j.mito.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 01/24/2023]
|
18
|
Yamada Y, Daikuhara S, Tamura A, Nishida K, Yui N, Harashima H. Enhanced autophagy induction via the mitochondrial delivery of methylated β-cyclodextrin-threaded polyrotaxanes using a MITO-Porter. Chem Commun (Camb) 2019; 55:7203-7206. [DOI: 10.1039/c9cc03272j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Failure of autophagy induction results in the accumulation of abnormal mitochondria to cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Sapporo 060-0812
- Japan
| | | | - Atsushi Tamura
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
| | - Kei Nishida
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
| | | |
Collapse
|
19
|
Xu Y, Zhi F, Peng Y, Shao N, Khiati D, Balboni G, Yang Y, Xia Y. δ-Opioid Receptor Activation Attenuates Hypoxia/MPP +-Induced Downregulation of PINK1: a Novel Mechanism of Neuroprotection Against Parkinsonian Injury. Mol Neurobiol 2018; 56:252-266. [PMID: 29687347 DOI: 10.1007/s12035-018-1043-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
There is emerging evidence suggesting that neurotoxic insults and hypoxic/ischemic injury are underlying causes of Parkinson's disease (PD). Since PTEN-induced kinase 1 (PINK1) dysfunction is involved in the molecular genesis of PD and since our recent studies have demonstrated that the δ-opioid receptor (DOR) induced neuroprotection against hypoxic and 1-methyl-4-phenyl-pyridimium (MPP+) insults, we sought to explore whether DOR protects neuronal cells from hypoxic and/or MPP+ injury via the regulation of PINK1-related pathways. Using highly differentiated rat PC12 cells exposed to either severe hypoxia (0.5-1% O2) for 24-48 h or varying concentrations of MPP+, we found that both hypoxic and MPP+ stress reduced the level of PINK1 expression, while incubation with the specific DOR agonist UFP-512 reversed this reduction and protected the cells from hypoxia and/or MPP+-induced injury. However, the DOR-mediated cytoprotection largely disappeared after knocking down PINK1 by PINK1 small interfering RNA. Moreover, we examined several important signaling molecules related to cell survival and apoptosis and found that DOR activation attenuated the hypoxic and/or MPP+-induced reduction in phosphorylated Akt and inhibited the activation of cleaved caspase-3, whereas PINK1 knockdown largely deprived the cell of the DOR-induced effects. Our novel data suggests a unique mechanism underlying DOR-mediated cytoprotection against hypoxic and MPP+ stress via a PINK1-mediated regulation of signaling.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Dhiaedin Khiati
- Royal College of Surgeons of Ireland - Medical University of Bahrain, Busaiteen, Bahrain
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Yilin Yang
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China. .,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Morris G, Puri BK, Walder K, Berk M, Stubbs B, Maes M, Carvalho AF. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications. Mol Neurobiol 2018; 55:8765-8787. [PMID: 29594942 PMCID: PMC6208857 DOI: 10.1007/s12035-018-1028-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Ken Walder
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
21
|
Matsuda N, Kimura M, Queliconi BB, Kojima W, Mishima M, Takagi K, Koyano F, Yamano K, Mizushima T, Ito Y, Tanaka K. Parkinson's disease-related DJ-1 functions in thiol quality control against aldehyde attack in vitro. Sci Rep 2017; 7:12816. [PMID: 28993701 PMCID: PMC5634459 DOI: 10.1038/s41598-017-13146-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
DJ-1 (also known as PARK7) has been identified as a causal gene for hereditary recessive Parkinson’s disease (PD). Consequently, the full elucidation of DJ-1 function will help decipher the molecular mechanisms underlying PD pathogenesis. However, because various, and sometimes inconsistent, roles for DJ-1 have been reported, the molecular function of DJ-1 remains controversial. Recently, a number of papers have suggested that DJ-1 family proteins are involved in aldehyde detoxification. We found that DJ-1 indeed converts methylglyoxal (pyruvaldehyde)-adducted glutathione (GSH) to intact GSH and lactate. Based on evidence that DJ-1 functions in mitochondrial homeostasis, we focused on the possibility that DJ-1 protects co-enzyme A (CoA) and its precursor in the CoA synthetic pathway from aldehyde attack. Here, we show that intact CoA and β-alanine, an intermediate in CoA synthesis, are recovered from methylglyoxal-adducts by recombinant DJ-1 purified from E. coli. In this process, methylglyoxal is converted to L-lactate rather than the D-lactate produced by a conventional glyoxalase. PD-related pathogenic mutations of DJ-1 (L10P, M26I, A104T, D149A, and L166P) impair or abolish detoxification activity, suggesting a pathological significance. We infer that a key to understanding the biological function of DJ-1 resides in its methylglyoxal-adduct hydrolase activity, which protects low-molecular thiols, including CoA, from aldehydes.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan. .,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Mayumi Kimura
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Bruno Barros Queliconi
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Mishima
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Kenji Takagi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Fumika Koyano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Yutaka Ito
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
22
|
Crompton LA, Cordero‐Llana O, Caldwell MA. Astrocytes in a dish: Using pluripotent stem cells to model neurodegenerative and neurodevelopmental disorders. Brain Pathol 2017; 27:530-544. [PMID: 28585380 PMCID: PMC8028895 DOI: 10.1111/bpa.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Neuroscience and Neurobiology have historically been neuron biased, yet up to 40% of the cells in the brain are astrocytes. These cells are heterogeneous and regionally diverse but universally essential for brain homeostasis. Astrocytes regulate synaptic transmission as part of the tripartite synapse, provide metabolic and neurotrophic support, recycle neurotransmitters, modulate blood flow and brain blood barrier permeability and are implicated in the mechanisms of neurodegeneration. Using pluripotent stem cells (PSC), it is now possible to study regionalised human astrocytes in a dish and to model their contribution to neurodevelopmental and neurodegenerative disorders. The evidence challenging the traditional neuron-centric view of degeneration within the CNS is reviewed here, with focus on recent findings and disease phenotypes from human PSC-derived astrocytes. In addition we compare current protocols for the generation of regionalised astrocytes and how these can be further refined by our growing knowledge of neurodevelopment. We conclude by proposing a functional and phenotypical characterisation of PSC-derived astrocytic cultures that is critical for reproducible and robust disease modelling.
Collapse
Affiliation(s)
- Lucy A. Crompton
- School of Biochemistry, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Oscar Cordero‐Llana
- Bristol Medical School, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Maeve A. Caldwell
- Trinity College Institute for NeuroscienceTrinity College Dublin 2Ireland
| |
Collapse
|
23
|
Booth HDE, Hirst WD, Wade-Martins R. The Role of Astrocyte Dysfunction in Parkinson's Disease Pathogenesis. Trends Neurosci 2017; 40:358-370. [PMID: 28527591 PMCID: PMC5462417 DOI: 10.1016/j.tins.2017.04.001] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes are the most populous glial subtype and are critical for brain function. Despite this, historically there have been few studies into the role that they may have in neurodegenerative diseases, such as Parkinson's disease (PD). Recently, however, several studies have determined that genes known to have a causative role in the development of PD are expressed in astrocytes and have important roles in astrocyte function. Here, we review these recent developments and discuss their impact on our understanding of the pathophysiology of PD, and the implications that this might have for its treatment.
Collapse
Affiliation(s)
- Heather D E Booth
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Barodia SK, Creed RB, Goldberg MS. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res Bull 2016; 133:51-59. [PMID: 28017782 DOI: 10.1016/j.brainresbull.2016.12.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Loss-of-function mutations in the genes encoding Parkin and PINK1 are causally linked to autosomal recessive Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, and PINK1, a mitochondrial-targeted kinase, function together in a common pathway to remove dysfunctional mitochondria by autophagy. Presumably, deficiency for Parkin or PINK1 impairs mitochondrial autophagy and thereby increases oxidative stress due to the accumulation of dysfunctional mitochondria that release reactive oxygen species. Parkin and PINK1 likely have additional functions that may be relevant to the mechanisms by which mutations in these genes cause neurodegeneration, such as regulating inflammation, apoptosis, or dendritic morphogenesis. Here we briefly review what is known about functions of Parkin and PINK1 related to oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Sandeep K Barodia
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Rose B Creed
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Matthew S Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
25
|
Expression and purification of the kinase domain of PINK1 in Pichia pastoris. Protein Expr Purif 2016; 128:67-72. [DOI: 10.1016/j.pep.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/05/2023]
|
26
|
Multiple Roles of the Small GTPase Rab7. Cells 2016; 5:cells5030034. [PMID: 27548222 PMCID: PMC5040976 DOI: 10.3390/cells5030034] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for lysosomal biogenesis, positioning and functions, and for trafficking and degradation of several signaling receptors, thus also having implications on signal transduction. Several Rab7 interacting proteins have being identified leading to the discovery of a number of different important functions, beside its established role in endocytosis. Furthermore, Rab7 has specific functions in neurons. This review highlights and discusses the role and the importance of Rab7 on different cellular pathways and processes.
Collapse
|
27
|
Kojima W, Kujuro Y, Okatsu K, Bruno Q, Koyano F, Kimura M, Yamano K, Tanaka K, Matsuda N. Unexpected mitochondrial matrix localization of Parkinson's disease-related DJ-1 mutants but not wild-type DJ-1. Genes Cells 2016; 21:772-88. [PMID: 27270837 DOI: 10.1111/gtc.12382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 12/30/2022]
Abstract
DJ-1 has been identified as a gene responsible for recessive familial Parkinson's disease (familial Parkinsonism), which is caused by a mutation in the PARK7 locus. Consistent with the inferred correlation between Parkinson's disease and mitochondrial impairment, mitochondrial localization of DJ-1 and its implied role in mitochondrial quality control have been reported. However, the mechanism by which DJ-1 affects mitochondrial function remains poorly defined, and the mitochondrial localization of DJ-1 is still controversial. Here, we show the mitochondrial matrix localization of various pathogenic and artificial DJ-1 mutants by multiple independent experimental approaches including cellular fractionation, proteinase K protection assays, and specific immunocytochemistry. Localization of various DJ-1 mutants to the matrix is dependent on the membrane potential and translocase activity in both the outer and the inner membranes. Nevertheless, DJ-1 possesses neither an amino-terminal alpha-helix nor a predictable matrix-targeting signal, and a post-translocation processing-derived molecular weight change is not observed. In fact, wild-type DJ-1 does not show any evidence of mitochondrial localization at all. Such a mode of matrix localization of DJ-1 is difficult to explain by conventional mechanisms and implies a unique matrix import mechanism for DJ-1 mutants.
Collapse
Affiliation(s)
- Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yuki Kujuro
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Tachikawa Hospital, 4-2-22 Nishikimachi, Tachikawa, Tokyo, 190-8531, Japan.,Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kei Okatsu
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Structural Biology Laboratory, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan
| | - Queliconi Bruno
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Fumika Koyano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Mayumi Kimura
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Keiji Tanaka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
28
|
Matsuda N. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade. J Biochem 2016; 159:379-85. [PMID: 26839319 DOI: 10.1093/jb/mvv125] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/09/2015] [Indexed: 11/12/2022] Open
Abstract
Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson's disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1-Parkin-ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
29
|
Bondi H, Zilocchi M, Mare MG, D'Agostino G, Giovannardi S, Ambrosio S, Fasano M, Alberio T. Dopamine induces mitochondrial depolarization without activating PINK1-mediated mitophagy. J Neurochem 2016; 136:1219-1231. [DOI: 10.1111/jnc.13506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Heather Bondi
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Center of Neuroscience; University of Insubria; Busto Arsizio Italy
| | - Mara Zilocchi
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Center of Neuroscience; University of Insubria; Busto Arsizio Italy
| | - Maria Gabriella Mare
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
| | - Gianluca D'Agostino
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Biochemistry Unit; Second Department of Physiological Sciences; University of Barcelona; Barcelona Spain
| | - Stefano Giovannardi
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
| | - Santiago Ambrosio
- Biochemistry Unit; Second Department of Physiological Sciences; University of Barcelona; Barcelona Spain
| | - Mauro Fasano
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Center of Neuroscience; University of Insubria; Busto Arsizio Italy
| | - Tiziana Alberio
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Center of Neuroscience; University of Insubria; Busto Arsizio Italy
| |
Collapse
|
30
|
Ham SJ, Lee SY, Song S, Chung JR, Choi S, Chung J. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity. J Biol Chem 2015; 291:1803-1816. [PMID: 26631732 DOI: 10.1074/jbc.m115.687319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/06/2022] Open
Abstract
Parkin is an E3 ligase that contains a ubiquitin-like (UBL) domain in the N terminus and an R1-in-between-ring-RING2 motif in the C terminus. We showed that the UBL domain specifically interacts with the R1 domain and negatively regulates Parkin E3 ligase activity, Parkin-dependent mitophagy, and Parkin translocation to the mitochondria. The binding between the UBL domain and the R1 domain was suppressed by carbonyl cyanide m-chlorophenyl hydrazone treatment or by expression of PTEN-induced putative kinase 1 (PINK1), an upstream kinase that phosphorylates Parkin at the Ser-65 residue of the UBL domain. Moreover, we demonstrated that phosphorylation of the UBL domain at Ser-65 prevents its binding to the R1 domain and promotes Parkin activities. We further showed that mitochondrial translocation of Parkin, which depends on phosphorylation at Ser-65, and interaction between the R1 domain and a mitochondrial outer membrane protein, VDAC1, are suppressed by binding of the UBL domain to the R1 domain. Interestingly, Parkin with missense mutations associated with Parkinson disease (PD) in the UBL domain, such as K27N, R33Q, and A46P, did not translocate to the mitochondria and induce E3 ligase activity by m-chlorophenyl hydrazone treatment, which correlated with the interaction between the R1 domain and the UBL domain with those PD mutations. These findings provide a molecular mechanism of how Parkin recruitment to the mitochondria and Parkin activation as an E3 ubiquitin ligase are regulated by PINK1 and explain the previously unknown mechanism of how Parkin mutations in the UBL domain cause PD pathogenesis.
Collapse
Affiliation(s)
- Su Jin Ham
- From the Interdisciplinary Graduate Program in Genetic Engineering,; National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Soo Young Lee
- National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Saera Song
- National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Ju-Ryung Chung
- School of Biological Sciences, Seoul National University, Seoul 51-742, Republic of Korea
| | - Sekyu Choi
- National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Jongkyeong Chung
- From the Interdisciplinary Graduate Program in Genetic Engineering,; National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and; School of Biological Sciences, Seoul National University, Seoul 51-742, Republic of Korea.
| |
Collapse
|
31
|
Lai YC, Kondapalli C, Lehneck R, Procter JB, Dill BD, Woodroof HI, Gourlay R, Peggie M, Macartney TJ, Corti O, Corvol JC, Campbell DG, Itzen A, Trost M, Muqit MM. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1. EMBO J 2015; 34:2840-61. [PMID: 26471730 PMCID: PMC4654935 DOI: 10.15252/embj.201591593] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Collapse
Affiliation(s)
- Yu-Chiang Lai
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Chandana Kondapalli
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Ronny Lehneck
- Centre for Integrated Protein Science Munich, Department Chemistry Technische Universität München, Garching, Germany
| | - James B Procter
- Division of Computational Biology, College of Life Sciences University of Dundee, Dundee, UK
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Helen I Woodroof
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Robert Gourlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Mark Peggie
- Division of Signal Transduction Therapy, College of Life Sciences University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Division of Signal Transduction Therapy, College of Life Sciences University of Dundee, Dundee, UK
| | - Olga Corti
- Inserm U 1127, Paris, France CNRS UMR 7225, Paris, France Sorbonne Universités UPMC Paris 06 UMR S 1127, Paris, France Institut du Cerveau et de la Moelle épinière ICM, Paris, France
| | - Jean-Christophe Corvol
- Inserm U 1127, Paris, France CNRS UMR 7225, Paris, France Sorbonne Universités UPMC Paris 06 UMR S 1127, Paris, France Institut du Cerveau et de la Moelle épinière ICM, Paris, France Inserm Centre d'Investigation Clinique (CIC), Paris, France AP-HP, Département des maladies du système nerveux, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - David G Campbell
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Aymelt Itzen
- Centre for Integrated Protein Science Munich, Department Chemistry Technische Universität München, Garching, Germany
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Miratul Mk Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK College of Medicine, Dentistry & Nursing, University of Dundee, Dundee, UK
| |
Collapse
|
32
|
Ross JM, Olson L, Coppotelli G. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin? Int J Mol Sci 2015; 16:19458-76. [PMID: 26287188 PMCID: PMC4581307 DOI: 10.3390/ijms160819458] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/23/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing.
Collapse
Affiliation(s)
- Jaime M Ross
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm 171 77, Sweden.
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm 171 77, Sweden.
| | - Giuseppe Coppotelli
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm 171 77, Sweden.
| |
Collapse
|
33
|
Abstract
The E3 ubiquitin ligase PARKIN (encoded by PARK2) and the protein kinase PINK1 (encoded by PARK6) are mutated in autosomal recessive juvenile Parkinsonism (AR-JP) and work together in the disposal of damaged mitochondria by mitophagy1–3. PINK1 is stabilised on the outside of depolarised mitochondria, and phosphorylates poly-ubiquitin (polyUb)4–8 as well as the PARKIN Ub-like (Ubl) domain9,10. These phosphorylation events lead to PARKIN recruitment to mitochondria, and activation by an unknown allosteric mechanism4–12. Here we present the crystal structure of Pediculus humanus PARKIN in complex with Ser65-phosphorylated ubiquitin (phosphoUb), revealing the molecular basis for PARKIN recruitment and activation. The phosphoUb binding site on PARKIN comprises a conserved phosphate pocket and harbours residues mutated in AR-JP patients. PhosphoUb binding leads to straightening of a helix in the RING1 domain, and the resulting conformational changes release the Ubl domain from the PARKIN core; this activates PARKIN. Moreover, phosphoUb-mediated Ubl release enhances Ubl phosphorylation by PINK1, leading to conformational changes within the Ubl domain and stabilisation of an open, active conformation of PARKIN. We redefine the role of the Ubl domain not only as an inhibitory13 but also as an activating element that is restrained in inactive PARKIN and released by phosphoUb. Our work opens new avenues to identify small molecule PARKIN activators.
Collapse
|