1
|
Stopper D, Biermann L, Watson PR, Li J, König B, Gaynes MN, Pessanha de Carvalho L, Klose J, Hanl M, Hamacher A, Schäker-Hübner L, Ramsbeck D, Held J, Christianson DW, Kassack MU, Hansen FK. Exploring Alternative Zinc-Binding Groups in Histone Deacetylase (HDAC) Inhibitors Uncovers DS-103 as a Potent Ethylhydrazide-Based HDAC Inhibitor with Chemosensitizing Properties. J Med Chem 2025; 68:4426-4452. [PMID: 39946728 PMCID: PMC11867874 DOI: 10.1021/acs.jmedchem.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
In this work, we synthesized a series of peptoid-based histone deacetylase (HDAC) inhibitors with variations in the linker region and zinc-binding groups. All compounds were investigated for their HDAC inhibition, antiplasmodial activity, and cytotoxicity against native and cisplatin-resistant carcinoma cell lines. The ethylhydrazide 20 (DS-103) proved to be the most effective compound in these primary screenings. DS-103 showed nanomolar inhibition of class I HDACs and of HDAC6 (class IIb). To further investigate the binding mode of DS-103, a crystal structure of DS-103 in complex with HDAC6 was obtained, which represents the first reported crystal structure of an alkylhydrazide in complex with an HDAC enzyme. Importantly, DS-103 completely reversed cisplatin resistance in two different platinum-resistant solid cancer cell lines and demonstrated strong synergism with cisplatin. The synergistic anticancer effects are mediated by increased DNA damage and p21 expression, resulting in caspase-mediated apoptosis and cell death.
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Lukas Biermann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jingyu Li
- Institute of Pharmaceutical and Medicinal Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Beate König
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Matthew N Gaynes
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | | | - Jana Klose
- Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Daniel Ramsbeck
- Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72074 Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
2
|
Kraft FB, Biermann L, Schäker-Hübner L, Hanl M, Hamacher A, Kassack MU, Hansen FK. Hydrazide-Based Class I Selective HDAC Inhibitors Completely Reverse Chemoresistance Synergistically in Platinum-Resistant Solid Cancer Cells. J Med Chem 2024; 67:17796-17819. [PMID: 39356226 DOI: 10.1021/acs.jmedchem.4c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this work, we have synthesized a set of peptoid-based histone deacetylase inhibitors (HDACi) with a substituted hydrazide moiety as zinc-binding group. Subsequently, all compounds were evaluated in biochemical HDAC inhibition assays and for their antiproliferative activity against native and cisplatin-resistant cancer cell lines. The hydrazide derivatives with a propyl or butyl substituent (compounds 5 and 6) emerged as the most potent class I HDAC selective inhibitors (HDAC1-3). Further, compounds 5 and 6 outperformed entinostat in cytotoxicity assays and were able to reverse chemoresistance in cisplatin-resistant A2780 (ovarian) and Cal27 (head-neck) cancer cell lines. Moreover, the hydrazide derivatives 5 and 6 showed strong synergism with cisplatin (combination indices <0.2), again outperforming entinostat, and increased DNA damage, p21, and pro-apoptotic BIM expression, leading to caspase-mediated apoptosis and cell death. Thus, compounds 5 and 6 represent promising lead structures for developing new HDACi capable of reversing chemoresistance in cisplatin resistant cancer cells.
Collapse
Affiliation(s)
- Fabian B Kraft
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lukas Biermann
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alexandra Hamacher
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
3
|
Sinitsky M, Asanov M, Sinitskaya A, Shishkova D, Khutornaya M, Minina V, Ponasenko A. Atorvastatin Can Modulate DNA Damage Repair in Endothelial Cells Exposed to Mitomycin C. Int J Mol Sci 2023; 24:ijms24076783. [PMID: 37047754 PMCID: PMC10094919 DOI: 10.3390/ijms24076783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
HMG-CoA reductase inhibitors (statins) are widely used in the therapy of atherosclerosis and have a number of pleiotropic effects, including DNA repair regulation. We studied the cytogenetic damage and the expression of DNA repair genes (DDB1, ERCC4, and ERCC5) in human coronary artery (HCAEC) and internal thoracic artery endothelial cells (HITAEC) in vitro exposed to mitomycin C (MMC) (positive control), MMC and atorvastatin (MMC+Atv), MMC followed by atorvastatin treatment (MMC/Atv) and 0.9% NaCl (negative control). MMC/Atv treated HCAEC were characterized by significantly decreased micronuclei (MN) frequency compared to the MMC+Atv group and increased nucleoplasmic bridges (NPBs) frequency compared to both MMC+Atv treated cells and positive control; DDB1, ERCC4, and ERCC5 genes were upregulated in MMC+Atv and MMC/Atv treated HCAEC in comparison with the positive control. MMC+Atv treated HITAEC were characterized by reduced MN frequency compared to positive control and decreased NPBs frequency in comparison with both the positive control and MMC/Atv group. Nuclear buds (NBUDs) frequency was significantly lower in MMC/Atv treated cells than in the positive control. The DDB1 gene was downregulated in the MMC+Atv group compared to the positive control, and the ERCC5 gene was upregulated in MMC/Atv group compared to both the positive control and MMC+Atv group. We propose that atorvastatin can modulate the DNA damage repair response in primary human endothelial cells exposed to MMC in a cell line- and incubation scheme-dependent manner that can be extremely important for understanding the fundamental aspects of pleoitropic action of atorvastatin and can also be used to correct the therapy of patients with atherosclerosis characterized by a high genotoxic load.
Collapse
Affiliation(s)
- Maxim Sinitsky
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Maxim Asanov
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Anna Sinitskaya
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Daria Shishkova
- Laboratory for Molecular, Translation and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Maria Khutornaya
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Varvara Minina
- Department of Genetic and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
| | - Anastasia Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| |
Collapse
|
4
|
Wei MF, Cheng CH, Wen SY, Lin JC, Chen YH, Wang CW, Lee YH, Kuo SH. Atorvastatin Attenuates Radiotherapy-Induced Intestinal Damage through Activation of Autophagy and Antioxidant Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7957255. [PMID: 36092168 PMCID: PMC9459441 DOI: 10.1155/2022/7957255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/06/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Abdominal or pelvic radiotherapy (RT) often results in small intestinal injury, such as apoptosis of epithelial cells and shortening of the villi. Atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has many biological effects including cholesterol reduction, protection from cell damage, and autophagy activation. To reduce the extent of radiotherapy- (RT-) induced enteritis, we investigated the protective effects of atorvastatin against RT-induced damage of the intestinal tract. In this study, C57BL/6 mice were randomly distributed into the following groups (n = 8 per group): (1) control group: mice were fed water only, (2) atorvastatin group (Ator): mice were administered atorvastatin, (3) irradiation group (IR): mice received abdominal RT, (4) Ator+IR group: mice received abdominal RT following atorvastatin administration, and (5) Ator+IR+3-MA group: abdominal RT following atorvastatin and 3-methyladenine (an autophagy inhibitor) administration. Based on the assessment of modified Chiu's injury score and villus/crypt ratio, we found that atorvastatin administration significantly reduced intestinal mucosal damage induced by RT. Atorvastatin treatment reduced apoptosis (cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase), DNA damage (γH2AX and 53BP1), oxidative stress (OS, 4-hydroxynonenal), inflammatory molecules (phospho-NF-κB p65 and TGF-β), fibrosis (collagen I and collagen III), barrier leakage (claudin-2 and fluorescein isothiocyanate-dextran), disintegrity (fatty acid-binding protein 2), and dysfunction (lipopolysaccharide) caused by RT in small intestinal tissue. In addition, atorvastatin upregulated the expression of autophagy-active molecules (LC3B), antioxidants (heme oxygenase 1 and thioredoxin 1), and tight junction proteins (occludin and zonula occludens 1). However, the biological functions of atorvastatin in decreasing RT-induced enteritis were reversed after the administration of 3-MA; the function of antioxidant molecules and activity of thioredoxin reductase were independent of autophagy activation. Our results indicate that atorvastatin can effectively relieve RT-induced enteritis through autophagy activation and associated biological functions, including maintaining integrity and function and decreasing apoptosis, DNA damage, inflammation, OS, and fibrosis. It also acts via its antioxidative capabilities.
Collapse
Affiliation(s)
- Ming-Feng Wei
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Hsueh Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Yu Wen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jui-Chueh Lin
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Hsuan Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital HsinChu Branch, HsinChu, Taiwan
| | - Chun-Wei Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Medical Physics Program, College of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Pokorna Z, Vyslouzil J, Vojtesek B, Coates PJ. Identifying pathways regulating the oncogenic p53 family member ΔNp63 provides therapeutic avenues for squamous cell carcinoma. Cell Mol Biol Lett 2022; 27:18. [PMID: 35196980 PMCID: PMC8903560 DOI: 10.1186/s11658-022-00323-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Background ΔNp63 overexpression is a common event in squamous cell carcinoma (SCC) that contributes to tumorigenesis, making ΔNp63 a potential target for therapy. Methods We created inducible TP63-shRNA cells to study the effects of p63-depletion in SCC cell lines and non-malignant HaCaT keratinocytes. DNA damaging agents, growth factors, signaling pathway inhibitors, histone deacetylase inhibitors, and metabolism-modifying drugs were also investigated for their ability to influence ΔNp63 protein and mRNA levels. Results HaCaT keratinocytes, FaDu and SCC-25 cells express high levels of ΔNp63. HaCaT and FaDu inducible TP63-shRNA cells showed reduced proliferation after p63 depletion, with greater effects on FaDu than HaCaT cells, compatible with oncogene addiction in SCC. Genotoxic insults and histone deacetylase inhibitors variably reduced ΔNp63 levels in keratinocytes and SCC cells. Growth factors that regulate proliferation/survival of squamous cells (IGF-1, EGF, amphiregulin, KGF, and HGF) and PI3K, mTOR, MAPK/ERK or EGFR inhibitors showed lesser and inconsistent effects, with dual inhibition of PI3K and mTOR or EGFR inhibition selectively reducing ΔNp63 levels in HaCaT cells. In contrast, the antihyperlipidemic drug lovastatin selectively increased ΔNp63 in HaCaT cells. Conclusions These data confirm that ΔNp63-positive SCC cells require p63 for continued growth and provide proof of concept that p63 reduction is a therapeutic option for these tumors. Investigations of ΔNp63 regulation identified agent-specific and cell-specific pathways. In particular, dual inhibition of the PI3K and mTOR pathways reduced ΔNp63 more effectively than single pathway inhibition, and broad-spectrum histone deacetylase inhibitors showed a time-dependent biphasic response, with high level downregulation at the transcriptional level within 24 h. In addition to furthering our understanding of ΔNp63 regulation in squamous cells, these data identify novel drug combinations that may be useful for p63-based therapy of SCC. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00323-x.
Collapse
Affiliation(s)
- Zuzana Pokorna
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Jan Vyslouzil
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Philip J Coates
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
6
|
Arafat EA, El-Khair SMA, Elsamanoudy AZ, Shabaan DA. Study of the Possible Alleviated Role of Atorvastatin on Irinotecan-Induced Lingual Mucosal Damage: Histological and Molecular Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9690047. [PMID: 34630855 PMCID: PMC8497104 DOI: 10.1155/2021/9690047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Oral mucositis is the most debilitating and troublesome adverse effect of irinotecan (CPT-11) treatment. It adversely affects the patient quality of life. The aim of this work was to study the histological, immunohistochemical, and molecular changes in the oral mucosa by CPT-11 and the possible alleviated role of atorvastatin. METHODS Rats were randomly divided into control, CPT-11-treated group, and CPT-11+ atorvastatin-treated group. At the end of the experiment, the anterior two-thirds of the tongue was dissected out and divided into two parts: one part for light microscopic examination and the second for molecular study. RESULTS CPT-11-treated group revealed loss of normal mucosal organization, areas of ulceration and inflammation, and loss of architecture of lingual papillae. A significant decrease in immunohistochemical and molecular gene expression of Ki-67 and antiapoptotic Bcl-2 levels was observed. A significant increase in NF-κB immunohistochemical and mRNA gene expression level and a nonsignificant increase in Nrf2 gene expression were detected. Coadministration of atorvastatin showed remarkable improvement in the histopathological picture with a significant increase in Ki-67 and Bcl-2, a significant decrease in NF-κB protein and gene expression, and a significant increase in Nrf2 gene expression. CONCLUSION Atorvastatin substantially attenuates CPT-11-induced oral mucositis through the initiation of the antiapoptotic gene, modulation of the inflammatory, and antioxidant gene expression.
Collapse
Affiliation(s)
- Eetmad A Arafat
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - S M Abo El-Khair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - A Z Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dalia A Shabaan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
7
|
Manda K, Juerß D, Fischer P, Schröder A, Koenen A, Hildebrandt G. Simvastatin treatment varies the radiation response of human breast cells in 2D or 3D culture. Invest New Drugs 2021; 39:658-669. [PMID: 33313978 PMCID: PMC8068713 DOI: 10.1007/s10637-020-01046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/06/2020] [Indexed: 11/15/2022]
Abstract
Background Statins inhibit the cholesterol biosynthesis and are used as cholesterol-lowering agents in fat-metabolism disorders. Furthermore, several studies state that statins have supportive functions in breast cancer treatment. Therefore, simvastatin (SVA) as a potential radiosensitizer should be investigated on the basis of human breast cells. Methods First, an optimal concentration of SVA for normal (MCF10A) and cancer (MCF-7) cells was identified via growth and cytotoxicity assays that, according to the definition of a radiosensitizer in the narrower sense, enhances the effect of radiation therapy but has no cytotoxic effect. Next, in combination with radiation SVA's influence on DNA repair capacity and clonogenic survival in 2D and 3D was determined. Furthermore cell cycle distribution, expression of survivin and connective tissue growth factor (CTGF) as well as ERK1 map kinase were analysed. Results 1 μM SVA was identified as highest concentration without an influence on cell growth and cytotoxicity and was used for further analyses. In terms of early and residual γH2AX-foci, SVA affected the number of foci in both cell lines with or without irradiation. Different radiation responses were detected in 2D and 3D culture conditions. During the 2D cultivation, a radiosensitizing effect within the clonogenic survival was observable, but not in 3D. Conclusion The present study suggests that SVA may have potential for radiosensitization. Therefore, it is important to further investigate the role of SVA in relation to the extent of radiosensitization and how it could be used to positively influence the therapy of breast cancer or other entities.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Dajana Juerß
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Paul Fischer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Annemarie Schröder
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Annelie Koenen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| |
Collapse
|
8
|
Ziegler V, Deußen M, Schumacher L, Roos WP, Fritz G. Anticancer drug and ionizing radiation-induced DNA damage differently influences transcription activity and DDR-related stress responses of an endothelial monolayer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118678. [PMID: 32061892 DOI: 10.1016/j.bbamcr.2020.118678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 01/05/2023]
Abstract
The endothelium contributes to the pathophysiology of adverse effects caused by conventional (genotoxic) anticancer therapeutics (cAT). The relevance of structurally different types of cAT-induced DNA lesions for eliciting selected endothelial stress responses is largely unknown. Here, we analyzed the cAT-induced formation of DNA double-strand breaks (DSB), transcription blockage and DNA damage response (DDR) in time kinetic analyses employing a monolayer of primary human endothelial cells (HUVEC). We observed that the degree of cAT-induced transcription blockage, the number of DSB and activation of DDR-related factors diverge. For instance, ionizing radiation caused the formation of numerous DSB and triggerd a substantial activation of ATM/Chk2 signaling, which however were not accompanied by a significant transcription inhibition. By contrast, the DNA cross-linking cAT cisplatin triggered a rapid and substantial blockage of transcription, which yet was not reflected by an appreciable number of DSB or increased levels of pATM/pChk2. In general, cAT-stimulated ATM-dependent phosphorylation of Kap1 (Ser824) and p53 (Ser15) reflected best cAT-induced transcription blockage. In conclusion, cAT-induced formation of DSB and profound activation of prototypical DDR factors is independent of the inhibition of RNA polymerase II-regulated transcription in an endothelial monolayer. We suggest that DSB formed directly or indirectly following cAT-treatment do not act as comprehensive triggers of superior signaling pathways shutting-down transcription while, at the same time, causing an appreciable stimulation of the DDR. Rather, it appears that distinct cAT-induced DNA lesions elicit diverging signaling pathways, which separately control transcription vs. DDR activity in the endothelium.
Collapse
Affiliation(s)
- Verena Ziegler
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Marco Deußen
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Lena Schumacher
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
9
|
Abstract
AbstractAgaricus bisporus, Cantharellus cibarius, Imleria badia, and Lentinula edodes are among the most popular species of edible mushrooms in Poland. These edible mushrooms are an important source of biologically active substances exhibiting beneficial (e.g., antioxidant, antitumor, antimicrobial, anti-inflammatory) effects on the human body. The fruiting bodies of edible mushrooms are also a valuable source of lovastatin, which belongs to a group of compounds, called statins, commonly used as cholesterol-lowering drugs. Due to the presence of lovastatin, edible mushrooms can be useful in the prevention of hypercholesterolemia. Therefore, the aim of this study was to determine the content of lovastatin in the selected species of edible mushrooms and to evaluate its release into artificial digestive juices. This study was the first to determine the release of lovastatin into digestive juices after the extraction of materials obtained from edible mushrooms. The largest amount of lovastatin was found in the fruiting bodies of C. cibarius (67.89 mg/100 g d.w.), and the smallest in those of L. edodes (0.95 mg/100 g d.w.). The amount of lovastatin released from the extracts of the examined species into digestive juices was found to be relatively low. The highest content after incubation in artificial gastric juice was detected for the fruiting bodies of L. edodes (0.02 mg/100 g d.w.) and after incubation in the intestinal juice for the mycelium from the in vitro cultures of L. edodes (0.51 mg/100 g d.w.). Thus, the results of the present study showed that due to its ability to accumulate lovastatin from culture medium, L. edodes mycelium can be used to obtain a product with increased hypolipidemic activity.
Collapse
|
10
|
Medeiros ADC, Azevedo ÍM, Lima ML, Araújo Filho I, Moreira MD. Effects of simvastatin on 5-fluorouracil-induced gastrointestinal mucositis in rats. ACTA ACUST UNITED AC 2018; 45:e1968. [PMID: 30379218 DOI: 10.1590/0100-6991e-20181968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE simvastatin has pleiotropic anti-inflammatory and immunomodulatory effects potentially usefull to prevent chemotherapy-induced gastrointestinal mucositis. Studies on this are scarce. This study aimed to examine the effects of simvastatin on gastric and intestinal mucositis after 5-fluorouracil (5-FU) treatment in rats. METHODS rats weighing 270±18g were divided into two groups. The 5-FU+saline group (5-FU/SAL) rats were treated with 5-FU (50mg/kg) plus 0.9% saline orally (gavage) once daily for five days. The 5-FU+simvastatin (5-FU/SIMV) group was treated with 5-FU (50mg/kg), plus simvastatin (10mg/kg), in the same way. The rats were euthanased on the sixth day, then their stomach and intestine were photographed and removed for exams. Dosages of serum TNF-a, IL-1ß, IL-6 and histopathology were done for stomach and intestine. RESULTS body-weight was significantly lower in rats treated with 5-FU+saline than the weight loss of the 5-FU/SIMV group rats. TNF-a expression was lower in 5-FU/SIMV group (172.6±18pg/ml) than in 5-FU/SAL (347.5±63pg/ml). Serum IL-1b was lower in 5-FU/SAL group (134.5±23pg/ml) than in 5-FU/SIMV (48.3±9pg/ml). Serum IL-6 was 61.8±15pg/ml in 5-FU/SIMV and 129.4±17pg/ml in 5-FU/SAL groups. These differences were significant (p<0.05). Mucosal damage in stomach and jejunum were observed in rats receiving 5-FU alone. In the stomach and jejunum, simvastatin caused significant protective effects against 5-FU-induced mucosal injury. CONCLUSION simvastatin attenuated gastric and intestinal mucositis related to 5-FU therapeutics in animal model. These data encourage forthcoming clinical studies addressing the usefulness of statins in the prevention and treatment of gastrointestinal mucositis.
Collapse
Affiliation(s)
- Aldo da Cunha Medeiros
- Universidade Federal do Rio Grande do Norte, Departamento de Cirurgia, Natal, RN, Brasil
| | - Ítalo Medeiros Azevedo
- Universidade Federal do Rio Grande do Norte, Departamento de Cirurgia, Natal, RN, Brasil
| | - Marília Leite Lima
- Universidade Federal do Rio Grande do Norte, Departamento de Cirurgia, Natal, RN, Brasil
| | - Irami Araújo Filho
- Universidade Federal do Rio Grande do Norte, Departamento de Cirurgia, Natal, RN, Brasil
| | | |
Collapse
|
11
|
Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death Dis 2017; 8:e2978. [PMID: 28796249 PMCID: PMC5596560 DOI: 10.1038/cddis.2017.372] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022]
Abstract
Thoracic radiotherapy causes damage of normal lung tissue, which limits the cumulative radiation dose and, hence, confines the anticancer efficacy of radiotherapy and impacts the quality of life of tumor patients. Ras-homologous (Rho) small GTPases regulate multiple stress responses and cell death. Therefore, we investigated whether pharmacological targeting of Rho signaling by the HMG-CoA-reductase inhibitor lovastatin influences ionizing radiation (IR)-induced toxicity in primary human lung fibroblasts, lung epithelial and lung microvascular endothelial cells in vitro and subchronic mouse lung tissue damage following hypo-fractionated irradiation (4x4 Gy). The statin improved the repair of radiation-induced DNA double-strand breaks (DSBs) in all cell types and, moreover, protected lung endothelial cells from IR-induced caspase-dependent apoptosis, likely involving p53-regulated mechanisms. Under the in vivo situation, treatment with lovastatin or the Rac1-specific small molecule inhibitor EHT1864 attenuated the IR-induced increase in breathing frequency and reduced the percentage of γH2AX and 53BP1-positive cells. This indicates that inhibition of Rac1 signaling lowers IR-induced residual DNA damage by promoting DNA repair. Moreover, lovastatin and EHT1864 protected lung tissue from IR-triggered apoptosis and mitigated the IR-stimulated increase in regenerative proliferation. Our data document beneficial anti-apoptotic and genoprotective effects of pharmacological targeting of Rho signaling following hypo-fractionated irradiation of lung cells in vitro and in vivo. Rac1-targeting drugs might be particular useful for supportive care in radiation oncology and, moreover, applicable to improve the anticancer efficacy of radiotherapy by widening the therapeutic window of thoracic radiation exposure.
Collapse
|