1
|
Song H, Dong M, Xu W, Xie C, Zhang Y, Huang H, Zhang K, Han Y, Liu Y, Wei L, Wang X. Regulation of Biomineralization and Autophagy by the Stress-Sensing Transcription Factor CgRunx1 in Crassostrea gigas Under Daylight Ultraviolet B Radiation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1260-1270. [PMID: 39235651 DOI: 10.1007/s10126-024-10370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
As human activities increase and environmental changes persist, increased ultraviolet B (UVB) radiation in aquatic ecosystems poses significant threats to aquatic life. This study, through transcriptomic analysis of the mantle tissue of Crassostrea gigas following UVB radiation exposure, identified and validated two key transcription factors, CgRunx1 and CgCBFβ. The highest expression levels of CgRunx1 and CgCBFβ in the mantle suggest their pivotal roles in this tissue. Co-immunoprecipitation experiments revealed that CgRunx1 and CgCBFβ could form heterodimers and interact with each other. Furthermore, this study assessed the impact of UVB radiation on the levels of reactive oxygen species of the C. gigas, speculating that CgRunx1, as a potential redox-sensitive transcription factor, might be regulated by intracellular ROS. Through screening and binding site prediction analysis of target genes, coupled with dual-luciferase reporter assays, we verified that CgRunx1 might participate in regulating the biomineralization and autophagy processes in C. gigas by activating the transcriptional expression of target genes Transport and Golgi organization 1 and V-type proton ATPase catalytic subunit A. These findings provide new insights into the molecular response mechanisms of the C. gigas to UVB radiation and lay an important foundation for studying the adaptive evolution of bivalves to environmental stress.
Collapse
Affiliation(s)
- Hongce Song
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Meiyun Dong
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Wenwen Xu
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
- Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Chaoyi Xie
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Yuxuan Zhang
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Haifeng Huang
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Kai Zhang
- Binzhou Ocean Development Research Institute, Binzhou, 256600, China
| | - Yijing Han
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Lei Wei
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China.
| | - Xiaotong Wang
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China.
| |
Collapse
|
2
|
Ahmad MH, Hegde M, Wong WJ, Mohammadhosseini M, Garrett L, Carrascoso A, Issac N, Ebert B, Silva JC, Pihan G, Zhu LJ, Wolfe SA, Agarwal A, Liu PP, Castilla LH. Runx1-R188Q germ line mutation induces inflammation and predisposition to hematologic malignancies in mice. Blood Adv 2023; 7:7304-7318. [PMID: 37756546 PMCID: PMC10711191 DOI: 10.1182/bloodadvances.2023010398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Germ line mutations in the RUNX1 gene cause familial platelet disorder (FPD), an inherited disease associated with lifetime risk to hematopoietic malignancies (HM). Patients with FPD frequently show clonal expansion of premalignant cells preceding HM onset. Despite the extensive studies on the role of RUNX1 in hematopoiesis, its function in the premalignant bone marrow (BM) is not well-understood. Here, we characterized the hematopoietic progenitor compartments using a mouse strain carrying an FPD-associated mutation, Runx1R188Q. Immunophenotypic analysis showed an increase in the number of hematopoietic stem and progenitor cells (HSPCs) in the Runx1R188Q/+ mice. However, the comparison of Sca-1 and CD86 markers suggested that Sca-1 expression may result from systemic inflammation. Cytokine profiling confirmed the dysregulation of interferon-response cytokines in the BM. Furthermore, the expression of CD48, another inflammation-response protein, was also increased in Runx1R188Q/+ HSPCs. The DNA-damage response activity of Runx1R188Q/+ hematopoietic progenitor cells was defective in vitro, suggesting that Runx1R188Q may promote genomic instability. The differentiation of long-term repopulating HSCs was reduced in Runx1R188Q/+ recipient mice. Furthermore, we found that Runx1R188Q/+ HSPCs outcompete their wild-type counterparts in bidirectional repopulation assays, and that the genetic makeup of recipient mice did not significantly affect the clonal dynamics under this setting. Finally, we demonstrate that Runx1R188Q predisposes to HM in cooperation with somatic mutations found in FPDHM, using 3 mouse models. These studies establish a novel murine FPDHM model and demonstrate that germ line Runx1 mutations induce a premalignant phenotype marked by BM inflammation, selective expansion capacity, defective DNA-damage response, and predisposition to HM.
Collapse
Affiliation(s)
- Mohd Hafiz Ahmad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Mahesh Hegde
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Waihay J. Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mona Mohammadhosseini
- School of Medicine Cell and Developmental Biology Graduate Program, Oregon Health Science University, Portland, OR
| | - Lisa Garrett
- Transgenic Mouse Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Anneliese Carrascoso
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Neethu Issac
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Benjamin Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - German Pihan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Lihua J. Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Anupriya Agarwal
- School of Medicine Cell and Developmental Biology Graduate Program, Oregon Health Science University, Portland, OR
| | - P. Paul Liu
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lucio H. Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
3
|
He F, Matsumoto Y, Asano Y, Yamamura Y, Katsuyama T, La Rose J, Tomonobu N, Komalasari NLGY, Sakaguchi M, Rottapel R, Wada J. RUNX2 Phosphorylation by Tyrosine Kinase ABL Promotes Breast Cancer Invasion. Front Oncol 2021; 11:665273. [PMID: 34136397 PMCID: PMC8201617 DOI: 10.3389/fonc.2021.665273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
Activity of transcription factors is normally regulated through interaction with other transcription factors, chromatin remodeling proteins and transcriptional co-activators. In distinction to these well-established transcriptional controls of gene expression, we have uncovered a unique activation model of transcription factors between tyrosine kinase ABL and RUNX2, an osteoblastic master transcription factor, for cancer invasion. We show that ABL directly binds to, phosphorylates, and activates RUNX2 through its SH2 domain in a kinase activity-dependent manner and that the complex formation of these proteins is required for expression of its target gene MMP13. Additionally, we show that the RUNX2 transcriptional activity is dependent on the number of its tyrosine residues that are phosphorylated by ABL. In addition to regulation of RUNX2 activity, we show that ABL transcriptionally enhances RUNX2 expression through activation of the bone morphogenetic protein (BMP)-SMAD pathway. Lastly, we show that ABL expression in highly metastatic breast cancer MDA-MB231 cells is associated with their invasive capacity and that ABL-mediated invasion is abolished by depletion of endogenous RUNX2 or MMP13. Our genetic and biochemical evidence obtained in this study contributes to a mechanistic insight linking ABL-mediated phosphorylation and activation of RUNX2 to induction of MMP13, which underlies a fundamental invasive capacity in cancer and is different from the previously described model of transcriptional activation.
Collapse
Affiliation(s)
- Fang He
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuriko Yamamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jose La Rose
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Wang GF, Niu X, Liu H, Dong Q, Yao Y, Wang D, Liu X, Cao C. c-Abl kinase regulates cell proliferation and ionizing radiation-induced G2/M arrest via phosphorylation of FHL2. FEBS Open Bio 2021; 11:1731-1738. [PMID: 33932144 PMCID: PMC8167852 DOI: 10.1002/2211-5463.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Nonreceptor tyrosine kinase c‐Abl participates in several cellular processes by phosphorylating transcription factors or cofactors. c‐Abl binds and phosphorylates four‐and‐a‐half‐LIM‐only protein 2 (FHL2), but the identity of the phosphorylation sites and their contribution to cell cycle regulation is unclear. In this study, we demonstrate that c‐Abl highly phosphorylates FHL2 at Y97, Y176, Y217, and Y236 through mass spectrometry and tyrosine‐to‐phenylalanine (Y → F) mutant analysis. Proliferation was inhibited in cells expressing wild‐type (WT) FHL2 but not cells expressing the phosphorylation‐defective mutant FHL2(4YF). Moreover, FHL2 contributed to cell cycle arrest at G2/M induced by ionizing radiation (IR). FHL2 WT but not FHL2(4YF) rescued FHL2 function in FHL2‐depleted cells by causing IR‐induced G2/M arrest. These results demonstrate that c‐Abl regulates cell cycle progression by phosphorylating FHL2.
Collapse
Affiliation(s)
| | | | - Hainan Liu
- Beijing Institute of Biotechnology, China
| | | | - Yebao Yao
- Beijing Institute of Biotechnology, China
| | - Di Wang
- Anhui University, Hefei, China
| | - Xuan Liu
- Beijing Institute of Biotechnology, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, China
| |
Collapse
|
5
|
Tang L, Gao Y, Song Y, Li Y, Li Y, Zhang H, Li D, Li J, Liu C, Li F. PAK4 phosphorylating RUNX1 promotes ERα-positive breast cancer-induced osteolytic bone destruction. Int J Biol Sci 2020; 16:2235-2247. [PMID: 32549768 PMCID: PMC7294946 DOI: 10.7150/ijbs.47225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
The biological function of nuclear PAK4 in ERα-positive breast cancer osteolytic bone destruction remains unclear. Here, we find that the nuclear PAK4 promotes osteoclastogenesis and tumor-induced osteolysis via phosphorylating RUNX1. We show that nuclear PAK4 interacts with and phosphorylates RUNX1 at Thr-207, which induces its localization from the nucleus to the cytoplasm and influences direct interaction with SIN3A/HDAC1 and PRMT1. Furthermore, we reveal that RUNX1 phosphorylation by PAK4 at Thr-207 promotes osteolytic bone destruction via targeting downstream genes related to osteoclast differentiation and maturation. Importantly, we verify changes in RUNX1 subcellular localization when nuclear PAK4 is positive in breast cancer bone metastasis tissues. Functionally, we demonstrate that RUNX1 phosphorylation promotes osteolytic bone maturation and ERα-positive breast cancer-induced osteolytic bone damage in the mouse model of orthotopic breast cancer bone metastasis. Our results suggest PAK4 can be a therapeutic target for ERα-positive breast cancer osteolytic bone destruction.
Collapse
Affiliation(s)
- Lina Tang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yunling Gao
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yongqi Song
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| |
Collapse
|