1
|
Roshanara, Tandon R, Baig MS, Das S, Srivastava R, Puri N, Nakhasi HL, Selvapandiyan A. Identifying Rab2 Protein as a Key Interactor of Centrin1 Essential for Leishmania donovani Growth. ACS Infect Dis 2024; 10:3273-3288. [PMID: 39110117 DOI: 10.1021/acsinfecdis.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Previously, we have demonstrated that deletion of a growth-regulating gene (LdCen1) in the Leishmania donovani parasite (LdCen1-/-) attenuated the parasite's intracellular amastigote growth but not the growth of extracellular promastigotes. LdCen1-/- parasites were found to be safe and efficacious against homologous and heterologous Leishmania species as a vaccine candidate in animal models. The reason for the differential growth of LdCen1-/- between the two stages of the parasite needed investigation. Here, we report that LdCen1 interacts with a novel Ras-associated binding protein in L. donovani (LdRab2) to compensate for the growth of LdCen1-/- promastigotes. LdRab2 was isolated by protein pull-down from the parasite lysate, followed by nano-LC-MS/MS identification. The RAB domain sequence and the functional binding partners of the LdRab2 protein were predicted via Search Tool for the Retrieval of Interacting Proteins (STRING) analysis. The closeness of the LdRab2 protein to other reported centrin-binding proteins with different functions in other organisms was analyzed via phylogenetic analysis. Furthermore, in vitro and in silico analyses revealed that LdRab2 also interacts with other L. donovani centrins 3-5. Since centrin is a calcium-binding protein, we further investigated calcium-based interactions and found that the binding of LdRab2 to LdCen1 and LdCen4 is calcium-independent, whereas the interactions with LdCen3 and LdCen5 are calcium-dependent. The colocalization of LdCen1 and LdRab2 at the cellular basal-body region by immunofluorescence supports their possible functional association. The elevated expression of the LdRab2 protein in the mutant promastigotes suggested a probable role in compensating for the promastigote growth of this mutant strain, probably in association with other parasite centrins.
Collapse
Affiliation(s)
- Roshanara
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Sanchita Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Srivastava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, Maryland 20993, United States
| | | |
Collapse
|
2
|
Roshanara, Muthu SA, Gulafsha, Tandon R, Selvapandiyan A, Ahmad B. Biophysical Evidence for the Amyloid Formation of a Recombinant Rab2 Isoform of Leishmania donovani. Protein Pept Lett 2024; 31:312-322. [PMID: 38661034 DOI: 10.2174/0109298665299157240327084614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The most fatal form of Visceral leishmaniasis or kala-azar is caused by the intracellular protozoan parasite Leishmania donovani. The life cycle and the infection pathway of the parasite are regulated by the small GTPase family of Rab proteins. The involvement of Rab proteins in neurodegenerative amyloidosis is implicated in protein misfolding, secretion abnormalities and dysregulation. The inter and intra-cellular shuttlings of Rab proteins are proposed to be aggregation-prone. However, the biophysical unfolding and aggregation of protozoan Rab proteins is limited. Understanding the aggregation mechanisms of Rab protein will determine their physical impact on the disease pathogenesis and individual health. OBJECTIVE This work investigates the acidic pH-induced unfolding and aggregation of a recombinant Rab2 protein from L. donovani (rLdRab2) using multi-spectroscopic probes. METHODS The acidic unfolding of rLdRab2 is characterised by intrinsic fluorescence and ANS assay, while aggregation is determined by Thioflavin-T and 90⁰ light scattering assay. Circular dichroism determined the secondary structure of monomers and aggregates. The aggregate morphology was imaged by transmission electron microscopy. RESULTS rLdRab2 was modelled to be a Rab2 isoform with loose globular packing. The acidinduced unfolding of the protein is a plausible non-two-state process. At pH 2.0, a partially folded intermediate (PFI) state characterised by ~ 30% structural loss and exposed hydrophobic core was found to accumulate. The PFI state slowly converted into well-developed protofibrils at high protein concentrations demonstrating its amyloidogenic nature. The native state of the protein was also observed to be aggregation-prone at high protein concentrations. However, it formed amorphous aggregation instead of fibrils. CONCLUSION To our knowledge, this is the first study to report in vitro amyloid-like behaviour of Rab proteins in L donovani. This study provides a novel opportunity to understand the complete biophysical characteristics of Rab2 protein of the lower eukaryote, L. donovani.
Collapse
Affiliation(s)
- Roshanara
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Shivani A Muthu
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Gulafsha
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Angamuthu Selvapandiyan
- Molecular Parasitology Laboratory, Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
3
|
Vats K, Tandon R, Roshanara, Beg MA, Corrales RM, Yagoubat A, Reyaz E, Wani TH, Baig MS, Chaudhury A, Krishnan A, Puri N, Salotra P, Sterkers Y, Selvapandiyan A. Interaction of novel proteins, centrin4 and protein of centriole in Leishmania parasite and their effects on the parasite growth. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119416. [PMID: 36623775 DOI: 10.1016/j.bbamcr.2022.119416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/08/2023]
Abstract
Centrins are cytoskeletal proteins associated with the centrosomes or basal bodies in the eukaryotes. We previously reported the involvement of Centrin 1-3 proteins in cell division in the protozoan parasites Leishmania donovani and Trypanosoma brucei. Centrin4 and 5, unique to such parasites, had never been characterized in Leishmania parasite. In the current study, we addressed the function of centrin4 (LdCen4) in Leishmania. By dominant-negative study, the episomal expression of C-terminal truncated LdCen4 in the parasite reduced the parasite growth. LdCen4 double allele gene deletion by either homologous recombination or CRISPR-Cas9 was not successful in L. donovani. However, CRISPR-Cas9-based deletion of the homologous gene was possible in L. mexicana, which attenuated the parasite growth in vitro, but not ex vivo in the macrophages. LdCen4 also interacts with endogenous and overexpressed LdPOC protein, a homolog of centrin reacting human POC (protein of centriole) in a calcium sensitive manner. LdCen4 and LdPOC binding has also been confirmed through in silico analysis by protein structural docking and validated by co-immunoprecipitation. By immunofluorescence studies, we found that both the proteins share a common localization at the basal bodies. Thus, for the first time, this article describes novel centrin4 and its binding protein in the protozoan parasites.
Collapse
Affiliation(s)
- Kavita Vats
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India; Department of Bio & Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; MiVEGEC, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier 34295, France
| | - Rati Tandon
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Roshanara
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Mirza A Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rosa M Corrales
- MiVEGEC, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier 34295, France
| | - Akila Yagoubat
- MiVEGEC, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier 34295, France
| | - Enam Reyaz
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Tasaduq H Wani
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Mirza S Baig
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Ashok Chaudhury
- Department of Bio & Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| | - Yvon Sterkers
- MiVEGEC, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier 34295, France
| | | |
Collapse
|
4
|
Gupta A, Sinha KM, Abdin MZ, Puri N, Selvapandiyan A. NDK/NME proteins: a host-pathogen interface perspective towards therapeutics. Curr Genet 2021; 68:15-25. [PMID: 34480234 DOI: 10.1007/s00294-021-01198-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
No effective vaccine is available for any parasitic disease. The treatment to those is solely dependent on chemotherapy, which is always threatened due to development of drug resistance in bugs. This warrants identification of new drug targets. Here, we discuss Nucleoside diphosphate kinases (NDKs) of pathogens that alter host's intra and extracellular environment, as novel drug targets to simultaneously tackle multiple pathogens. NDKs having diverse functions, are highly conserved among prokaryotes and eukaryotes (the mammal NDKs are called NMEs [non-metastatic enzymes]). However, NDKs and NMEs have been separately analysed in the past for their structure and functions. The role of NDKs of pathogen in modulation of inflammation, phagocytosis, apoptosis, and ROS generation in host is known. Conversely, its combined contribution in host-pathogen interaction has not been studied yet. Through the sequence and domain analysis, we found that NDKs can be classified in two groups. One group comprised NMEs 1-4 and few NDKs of select essential protozoan parasites and the bacterium Mycobacterium tuberculosis. The other group included NME7 and the other NDKs of those parasites, posing challenges in the development of drugs specifically targeting pathogen NDKs, without affecting NME7. However, common drugs targeting group 2 NDKs of pathogens can be designed, as NME7 of group 2 is expressed only in ciliated host cells. This review thus analyses comparatively for the first time the structures and functions of human NMEs and pathogen NDKs and predicts the possibilities of NDKs as drug targets. In addition, pathogen NDKs have been now provided a nomenclature in alignment with the NMEs of humans.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, 122413, India
| | - Malik Z Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Angamuthu Selvapandiyan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
5
|
Yagoubat A, Corrales RM, Bastien P, Lévêque MF, Sterkers Y. Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends Parasitol 2020; 36:745-760. [DOI: 10.1016/j.pt.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
|