1
|
Morii A, Matsuo I, Suita K, Ohnuki Y, Ishikawa M, Ito A, Miyamoto G, Abe M, Mitsubayashi T, Mototani Y, Nariyama M, Matsubara R, Hayakawa Y, Amitani Y, Gomi K, Nagano T, Okumura S. Allopurinol attenuates development of Porphyromonas gingivalis LPS-induced cardiomyopathy in mice. PLoS One 2025; 20:e0318008. [PMID: 40179080 PMCID: PMC11967946 DOI: 10.1371/journal.pone.0318008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/08/2025] [Indexed: 04/05/2025] Open
Abstract
Oxidative stress is involved in the progression of periodontitis, independently of confounding factors such as smoking, and numerous studies suggest that periodontitis is associated with increased risk of cardiovascular disease. In this study, therefore, we examined the effects of the xanthine oxidase inhibitor allopurinol on cardiac dysfunction in mice treated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS) at a dose (0.8 mg/kg/day) equivalent to the circulating level in patients with periodontal disease. Mice were divided into four groups: 1) control, 2) PG-LPS, 3) allopurinol, and 4) PG-LPS + allopurinol. After1 week, we evaluated cardiac function by echocardiography. The left ventricular ejection fraction was significantly decreased in PG-LPS-treated mice compared to the control (from 68 ± 1.3 to 60 ± 2.7%), while allopurinol ameliorated the dysfunction (67 ± 1.1%). The area of cardiac fibrosis was significantly increased (approximately 3.6-fold) and the number of apoptotic myocytes was significantly increased (approximately 7.7-fold) in the heart of the PG-LPS-treated group versus the control, and these changes were suppressed by allopurinol. The impairment of cardiac function in PG-LPS-treated mice was associated with increased production of reactive oxygen species by xanthine oxidase and NADPH oxidase 4, leading to calmodulin kinase II activation with increased ryanodine receptor 2 phosphorylation. These changes were also suppressed by allopurinol. Our results suggest that oxidative stress plays an important role in the PG-LPS-promoted development of cardiac diseases, and further indicate that allopurinol ameliorates Porphyromonas gingivalis LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ichiro Matsuo
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Oral and Maxillofacial Surgery, Ibaraki Medical Center Tokyo Medical University, Ibaraki, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Go Miyamoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Mariko Abe
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takao Mitsubayashi
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ren Matsubara
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshio Hayakawa
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasuharu Amitani
- Department of Mathematics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takatoshi Nagano
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
2
|
Heimerl M, Erschow S, Müller-Olling M, Manstein DJ, Decher N, Kauferstein S, Jenewein T, Pich A, Ricke-Hoch M, Hilfiker-Kleiner D. Cardiac dysfunction related to cardiac mRNA and protein traffic impairment due to reduced unconventional motor protein myosin-5b expression. Eur Heart J 2025:ehaf047. [PMID: 39969162 DOI: 10.1093/eurheartj/ehaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND AIMS The present study analysed the expression patterns of class-5 myosin motor proteins (MYO5a, b, and c) in the heart with a specific focus on the role of MYO5b. METHODS RNA-sequencing, quantitative real-time polymerase chain reaction, immunohistochemistry, Western blot, immunoprecipitation, and proteomics were performed in mice and human tissues. Functional analyses were performed in mice with a cardiac-specific knockout (KO) of MYO5b (αMHC-Cretg/-; MYO5bflox/flox), wild-type (WT) (MYO5bflox/flox), and αMHC-Cretg/- mice and in isolated adult cardiomyocytes. Next-generation sequencing screened for MYO5B gene variants in a cohort of sudden cardiac death in the young/sudden infant death syndrome patients. RESULTS The expression of MYO5b, but not MYO5a or c, increased during postnatal cardiomyocyte maturation. Myosin-5b was reduced in end-stage failing human hearts and infarcted murine hearts. Heterozygous rare and likely pathogenic missense MYO5B gene variants (n = 6) were identified in three patients of a cohort of young patients (n = 95) who died of sudden cardiac death in the young/sudden infant death syndrome. MYO5b-KO mice revealed impaired electric conductance and metabolism, developed sarcomeric disarrangement, heart failure and death with altered mRNA levels for genes involved in sarcomere organization, fatty acid and glucose metabolism, ion channel sub-units, and Ca2+-homeostasis prior to heart failure. In cardiomyocytes, myosin-5b is associated with mitochondrial and ribosomal proteins. Myosin-5b-associated ribonucleoprotein particles (RNPs) contained mRNAs of sarcomeric, metabolic, cytoskeletal, and ion channel proteins. CONCLUSIONS MYO5b is the major MYO5 gene expressed in postnatal cardiomyocytes where it transports vesicles, proteins, and multi-protein complexes. Among these are mRNA/RNP complexes affecting electric conductance, sarcomere homeostasis, cell metabolism, and cytoskeletal organization. Impairment in MYO5b expression and function promotes cardiac dysfunction, heart failure, and death.
Collapse
Affiliation(s)
- Maren Heimerl
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Sergej Erschow
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Mirco Müller-Olling
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research, Carl-Neuberg Str. 1, Hannover 30625, Germany
- Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Niels Decher
- Department of Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Medical Faculty, Philipps University Marburg, Deutschausstrasse 1-2, Marburg 35037, Germany
| | - Silke Kauferstein
- Institute of Legal Medicine, Goethe University Frankfurt, University Hospital, Kennedyallee 104, Frankfurt am Main 60598, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK, German Centre for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt am Main 60598, Germany
| | - Tina Jenewein
- Institute of Legal Medicine, Goethe University Frankfurt, University Hospital, Kennedyallee 104, Frankfurt am Main 60598, Germany
| | - Andreas Pich
- Core Facility Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
- Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Phillipps University Marburg, Baldingerstraße, Marburg 35032, Germany
| |
Collapse
|
3
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
4
|
Miotto MC, Reiken S, Wronska A, Yuan Q, Dridi H, Liu Y, Weninger G, Tchagou C, Marks AR. Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders. Nat Commun 2024; 15:8080. [PMID: 39278969 PMCID: PMC11402997 DOI: 10.1038/s41467-024-51791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Heart failure, the leading cause of mortality and morbidity in the developed world, is characterized by cardiac ryanodine receptor 2 channels that are hyperphosphorylated, oxidized, and depleted of the stabilizing subunit calstabin-2. This results in a diastolic sarcoplasmic reticulum Ca2+ leak that impairs cardiac contractility and triggers arrhythmias. Genetic mutations in ryanodine receptor 2 can also cause Ca2+ leak, leading to arrhythmias and sudden cardiac death. Here, we solved the cryogenic electron microscopy structures of ryanodine receptor 2 variants linked either to heart failure or inherited sudden cardiac death. All are in the primed state, part way between closed and open. Binding of Rycal drugs to ryanodine receptor 2 channels reverts the primed state back towards the closed state, decreasing Ca2+ leak, improving cardiac function, and preventing arrhythmias. We propose a structural-physiological mechanism whereby the ryanodine receptor 2 channel primed state underlies the arrhythmias in heart failure and arrhythmogenic disorders.
Collapse
Affiliation(s)
- Marco C Miotto
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Carl Tchagou
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Kaneko N, Loughrey CM, Smith G, Matsuda R, Hasunuma T, Mark PB, Toda M, Shinozaki M, Otani N, Kayley S, Da Silva Costa A, Martin TP, Dobi S, Saxena P, Shimamoto K, Ishikawa T, Kambayashi R, Riddell A, Elliott EB, McCarroll CS, Sakai T, Mitsuhisa Y, Hirano S, Kitai T, Kusano K, Inoue Y, Nakamura M, Kikuchi M, Toyoda S, Taguchi I, Fujiwara T, Sugiyama A, Kumagai Y, Iwata K. A novel ryanodine receptor 2 inhibitor, M201-A, enhances natriuresis, renal function and lusi-inotropic actions: Preclinical and phase I study. Br J Pharmacol 2024; 181:3401-3419. [PMID: 38773354 DOI: 10.1111/bph.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND AND PURPOSE The ryanodine receptor 2 (RyR2) is present in both the heart and kidneys, and plays a crucial role in maintaining intracellular Ca2+ homeostasis in cells in these organs. This study aimed to investigate the impact of M201-A on RyR2, as well as studying its effects on cardiac and renal functions in preclinical and clinical studies. EXPERIMENTAL APPROACH Following the administration of M201-A (1,4-benzothiazepine-1-oxide derivative), we monitored diastolic Ca2+ leak via RyR2 and intracellular Ca2+ concentration in isolated rat cardiomyocytes and in cardiac and renal function in animals. In a clinical study, M201-A was administered intravenously at doses of 0.2 and 0.4 mg·kg-1 once daily for 20 min for four consecutive days in healthy males, with the assessment of haemodynamic responses. KEY RESULTS In rat heart cells, M201-A effectively inhibited spontaneous diastolic Ca2+ leakage through RyR2 and exhibited positive lusi-inotropic effects on the rat heart. Additionally, it enhanced natriuresis and improved renal function in dogs. In human clinical studies, when administered intravenously, M201-A demonstrated an increase in natriuresis, glomerular filtration rate and creatinine clearance, while maintaining acceptable levels of drug safety and tolerability. CONCLUSIONS AND IMPLICATIONS The novel drug M201-A inhibited diastolic Ca2+ leak via RyR2, improved cardiac lusi-inotropic effects in rats, and enhanced natriuresis and renal function in humans. These findings suggest that this drug may offer a potential new treatment option for chronic kidney disease and heart failure.
Collapse
Affiliation(s)
- Noboru Kaneko
- Department of Medicine, Dokkyo Medical University, Tochigi, Japan
- AETAS Pharma Co., Ltd., Tokyo, Japan
| | | | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Ryuko Matsuda
- AETAS Pharma Co., Ltd., Tokyo, Japan
- Nojima Hospital, Tottori, Japan
| | | | - Patric B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | | | | | - Naoyuki Otani
- Dokkyo Medical University Nikko Medical Center, Tochigi, Japan
| | - Scott Kayley
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Ana Da Silva Costa
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Tamara P Martin
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Sara Dobi
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Priyanka Saxena
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Ken Shimamoto
- Division of Cardiovascular Medicine, Sendai Cardiovascular Center, Miyagi, Japan
| | - Tetsuya Ishikawa
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Saitama, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Alexandra Riddell
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Elspeth B Elliott
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | | | | | | | - Sayuri Hirano
- Process Research & Development Laboratories Technology Research & Development Division, Sumitomo Dainippon Pharma Co. Ltd., Osaka, Japan
| | - Takeshi Kitai
- Department of Heart Failure and Transplantation, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuko Inoue
- Department of Heart Failure and Transplantation, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Migaku Kikuchi
- Department of Cardiovascular Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Isao Taguchi
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Saitama, Japan
| | | | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| | | | | |
Collapse
|
7
|
Lees JG, Greening DW, Rudd DA, Cross J, Rosdah AA, Lai X, Lin TW, Phang RJ, Kong AM, Deng Y, Crawford S, Holien JK, Hausenloy DJ, Shen HH, Lim SY. Cardiac-targeted delivery of a novel Drp1 inhibitor for acute cardioprotection. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100085. [PMID: 39803589 PMCID: PMC11708310 DOI: 10.1016/j.jmccpl.2024.100085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 01/16/2025]
Abstract
Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.3 ± 0.1 %. In vivo, following acute myocardial ischaemia-reperfusion injury in mice, NanoDRP1i1 significantly reduced infarct size and serine-616 phosphorylation of Drp1, and restored cardiomyocyte mitochondrial size to that of sham group. Imaging by mass spectrometry revealed higher accumulation of DRP1i1 in the heart tissue when delivered as NanoDRP1i1. In human cardiac organoids subjected to simulated ischaemia-reperfusion injury, treatment with NanoDRP1i1 at reperfusion significantly reduced cardiac cell death, contractile dysfunction, and mitochondrial superoxide levels. Following NanoDRP1i1 treatment, cardiac organoid proteomics further confirmed reprogramming of contractile dysfunction markers and enrichment of the mitochondrial protein network, cytoskeletal and metabolic regulation networks when compared to the simulated injury group. These proteins included known cardioprotective regulators identified in human organoids and in vivo murine studies following ischaemia-reperfusion injury. DRP1i1 is a promising tool compound to study Drp1-mediated mitochondrial fission and exhibits promising therapeutic potential for acute cardioprotection, especially when delivered using the cardiac-targeted cubosome nanoparticles.
Collapse
Affiliation(s)
- Jarmon G. Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria 3086, Australia
- Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Baker department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - David A. Rudd
- Monash Institute of Pharmaceutical Sciences, Monash University Parkville, Victoria 3052, Australia
| | - Jonathon Cross
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Ayeshah A. Rosdah
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia
- Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Xiangfeng Lai
- Department of Materials Science and Engineering, Faulty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tsung Wu Lin
- Department of Materials Science and Engineering, Faulty of Engineering, Monash University, Clayton, Victoria 3800, Australia
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia
| | - Anne M. Kong
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia
| | - Yali Deng
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia
| | - Simon Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica K. Holien
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia
- School of Science, STEM College, Engineering and Health, RMIT University, Melbourne, Victoria, Australia
| | - Derek J. Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, WC1E 6HX London, UK
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faulty of Engineering, Monash University, Clayton, Victoria 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Shiang Y. Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Victoria, Australia
| |
Collapse
|
8
|
Hori A, Inaba H, Hato T, Tanaka K, Sato S, Okamoto M, Horiuchi Y, Paran FJ, Tabe Y, Mori S, Rosales C, Akamatsu W, Murayama T, Kurebayashi N, Sakurai T, Ai T, Miida T. Carvedilol suppresses ryanodine receptor-dependent Ca2+ bursts in human neurons bearing PSEN1 variants found in early onset Alzheimer's disease. PLoS One 2024; 19:e0291887. [PMID: 39173065 PMCID: PMC11341060 DOI: 10.1371/journal.pone.0291887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/02/2024] [Indexed: 08/24/2024] Open
Abstract
Seizures are increasingly being recognized as the hallmark of Alzheimer's disease (AD). Neuronal hyperactivity can be a consequence of neuronal damage caused by abnormal amyloid β (Aß) depositions. However, it can also be a cell-autonomous phenomenon causing AD by Aß-independent mechanisms. Various studies using animal models have shown that Ca2+ is released from the endoplasmic reticulum (ER) via type 1 inositol triphosphate receptors (InsP3R1s) and ryanodine receptors (RyRs). To investigate which is the main pathophysiological mechanism in human neurons, we measured Ca2+ signaling in neural cells derived from three early-onset AD patients harboring Presenilin-1 variants (PSEN1 p.A246E, p.L286V, and p.M146L). Of these, it has been reported that PSEN1 p.A246E and p.L286V did not produce a significant amount of abnormal Aß. We found all PSEN1-mutant neurons, but not wild-type, caused abnormal Ca2+-bursts in a manner dependent on the calcium channel, Ryanodine Receptor 2 (RyR2). Indeed, carvedilol, an RyR2 inhibitor, and VK-II-86, an analog of carvedilol without the β-blocking effects, sufficiently eliminated the abnormal Ca2+ bursts. In contrast, Dantrolene, an inhibitor of RyR1 and RyR3, and Xestospongin c, an IP3R inhibitor, did not attenuate the Ca2+-bursts. The Western blotting showed that RyR2 expression was not affected by PSEN1 p.A246E, suggesting that the variant may activate the RyR2. The RNA-Seq data revealed that ER-stress responsive genes were increased, and mitochondrial Ca2+-transporter genes were decreased in PSEN1A246E cells compared to the WT neurons. Thus, we propose that aberrant Ca2+ signaling is a key link between human pathogenic PSEN1 variants and cell-intrinsic hyperactivity prior to deposition of abnormal Aß, offering prospects for the development of targeted prevention strategies for at-risk individuals.
Collapse
Affiliation(s)
- Atsushi Hori
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Haruka Inaba
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kimie Tanaka
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shoichi Sato
- Department of Clinical Engineering, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Mizuho Okamoto
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuna Horiuchi
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Faith Jessica Paran
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shusuke Mori
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Corina Rosales
- Center for Bioenergetics and the Department of Medicine, Houston Methodist Research Institute, Texas, United States of America
- Weill Cornell Medicine, New York, New York, United States of America
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Li K, Li Y, Chen Y, Chen T, Yang Y, Li P. Ion Channels Remodeling in the Regulation of Vascular Hyporesponsiveness During Shock. Microcirculation 2024; 31:e12874. [PMID: 39011763 DOI: 10.1111/micc.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/07/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024]
Abstract
Shock is characterized with vascular hyporesponsiveness to vasoconstrictors, thereby to cause refractory hypotension, insufficient tissue perfusion, and multiple organ dysfunction. The vascular hyporeactivity persisted even though norepinephrine and fluid resuscitation were administrated, it is of critical importance to find new potential target. Ion channels are crucial in the regulation of cell membrane potential and affect vasoconstriction and vasodilation. It has been demonstrated that many types of ion channels including K+ channels, Ca2+ permeable channels, and Na+ channels exist in vascular smooth muscle cells and endothelial cells, contributing to the regulation of vascular homeostasis and vasomotor function. An increasing number of studies suggested that the structural and functional alterations of ion channels located in arteries contribute to vascular hyporesponsiveness during shock, but the underlying mechanisms remained to be fully clarified. Therefore, the expression and functional changes in ion channels in arteries associated with shock are reviewed, to pave the way for further exploring the potential of ion channel-targeted compounds in treating refractory hypotension in shock.
Collapse
Affiliation(s)
- Keqing Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yinghong Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Tangting Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Yang
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Pengyun Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Weninger G, Miotto MC, Tchagou C, Reiken S, Dridi H, Brandenburg S, Riedemann GC, Yuan Q, Liu Y, Chang A, Wronska A, Lehnart SE, Marks AR. Structural insights into the regulation of RyR1 by S100A1. Proc Natl Acad Sci U S A 2024; 121:e2400497121. [PMID: 38917010 PMCID: PMC11228480 DOI: 10.1073/pnas.2400497121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
S100A1, a small homodimeric EF-hand Ca2+-binding protein (~21 kDa), plays an important regulatory role in Ca2+ signaling pathways involved in various biological functions including Ca2+ cycling and contractile performance in skeletal and cardiac myocytes. One key target of the S100A1 interactome is the ryanodine receptor (RyR), a huge homotetrameric Ca2+ release channel (~2.3 MDa) of the sarcoplasmic reticulum. Here, we report cryoelectron microscopy structures of S100A1 bound to RyR1, the skeletal muscle isoform, in absence and presence of Ca2+. Ca2+-free apo-S100A1 binds beneath the bridging solenoid (BSol) and forms contacts with the junctional solenoid and the shell-core linker of RyR1. Upon Ca2+-binding, S100A1 undergoes a conformational change resulting in the exposure of the hydrophobic pocket known to serve as a major interaction site of S100A1. Through interactions of the hydrophobic pocket with RyR1, Ca2+-bound S100A1 intrudes deeper into the RyR1 structure beneath BSol than the apo-form and induces sideways motions of the C-terminal BSol region toward the adjacent RyR1 protomer resulting in tighter interprotomer contacts. Interestingly, the second hydrophobic pocket of the S100A1-dimer is largely exposed at the hydrophilic surface making it prone to interactions with the local environment, suggesting that S100A1 could be involved in forming larger heterocomplexes of RyRs with other protein partners. Since S100A1 interactions stabilizing BSol are implicated in the regulation of RyR-mediated Ca2+ release, the characterization of the S100A1 binding site conserved between RyR isoforms may provide the structural basis for the development of therapeutic strategies regarding treatments of RyR-related disorders.
Collapse
Affiliation(s)
- Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Carl Tchagou
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Sören Brandenburg
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, 37075Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37075Göttingen, Germany
| | - Gabriel C. Riedemann
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, 37075Göttingen, Germany
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Alexander Chang
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Stephan E. Lehnart
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, 37075Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37075Göttingen, Germany
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| |
Collapse
|
11
|
Márquez-Nogueras KM, Kuo IY. Cardiovascular perspectives of the TRP channel polycystin 2. J Physiol 2024; 602:1565-1577. [PMID: 37312633 PMCID: PMC10716366 DOI: 10.1113/jp283835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
Calcium release from the endoplasmic reticulum (ER) is predominantly driven by two key ion channel receptors, inositol 1, 4, 5-triphosphate receptor (InsP3R) in non-excitable cells and ryanodine receptor (RyR) in excitable and muscle-based cells. These calcium transients can be modified by other less-studied ion channels, including polycystin 2 (PC2), a member of the transient receptor potential (TRP) family. PC2 is found in various cell types and is evolutionarily conserved with paralogues ranging from single-cell organisms to yeasts and mammals. Interest in the mammalian form of PC2 stems from its disease relevance, as mutations in the PKD2 gene, which encodes PC2, result in autosomal dominant polycystic kidney disease (ADPKD). This disease is characterized by renal and liver cysts, and cardiovascular extrarenal manifestations. However, in contrast to the well-defined roles of many TRP channels, the role of PC2 remains unknown, as it has different subcellular locations, and the functional understanding of the channel in each location is still unclear. Recent structural and functional studies have shed light on this channel. Moreover, studies on cardiovascular tissues have demonstrated a diverse role of PC2 in these tissues compared to that in the kidney. We highlight recent advances in understanding the role of this channel in the cardiovascular system and discuss the functional relevance of PC2 in non-renal cells.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
12
|
Néré R, Kouba S, Carreras-Sureda A, Demaurex N. S-acylation of Ca2+ transport proteins: molecular basis and functional consequences. Biochem Soc Trans 2024; 52:407-421. [PMID: 38348884 PMCID: PMC10903462 DOI: 10.1042/bst20230818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Calcium (Ca2+) regulates a multitude of cellular processes during fertilization and throughout adult life by acting as an intracellular messenger to control effector functions in excitable and non-excitable cells. Changes in intracellular Ca2+ levels are driven by the co-ordinated action of Ca2+ channels, pumps, and exchangers, and the resulting signals are shaped and decoded by Ca2+-binding proteins to drive rapid and long-term cellular processes ranging from neurotransmission and cardiac contraction to gene transcription and cell death. S-acylation, a lipid post-translational modification, is emerging as a critical regulator of several important Ca2+-handling proteins. S-acylation is a reversible and dynamic process involving the attachment of long-chain fatty acids (most commonly palmitate) to cysteine residues of target proteins by a family of 23 proteins acyltransferases (zDHHC, or PATs). S-acylation modifies the conformation of proteins and their interactions with membrane lipids, thereby impacting intra- and intermolecular interactions, protein stability, and subcellular localization. Disruptions of S-acylation can alter Ca2+ signalling and have been implicated in the development of pathologies such as heart disease, neurodegenerative disorders, and cancer. Here, we review the recent literature on the S-acylation of Ca2+ transport proteins of organelles and of the plasma membrane and highlight the molecular basis and functional consequence of their S-acylation as well as the therapeutic potential of targeting this regulation for diseases caused by alterations in cellular Ca2+ fluxes.
Collapse
Affiliation(s)
- Raphaël Néré
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sana Kouba
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Bansal V, Winkelmann BR, Dietrich JW, Boehm BO. Whole-exome sequencing in familial type 2 diabetes identifies an atypical missense variant in the RyR2 gene. Front Endocrinol (Lausanne) 2024; 15:1258982. [PMID: 38444585 PMCID: PMC10913019 DOI: 10.3389/fendo.2024.1258982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/10/2024] [Indexed: 03/07/2024] Open
Abstract
Genome-wide association studies have identified several hundred loci associated with type 2 diabetes mellitus (T2DM). Additionally, pathogenic variants in several genes are known to cause monogenic diabetes that overlaps clinically with T2DM. Whole-exome sequencing of related individuals with T2DM is a powerful approach to identify novel high-penetrance disease variants in coding regions of the genome. We performed whole-exome sequencing on four related individuals with T2DM - including one individual diagnosed at the age of 33 years. The individuals were negative for mutations in monogenic diabetes genes, had a strong family history of T2DM, and presented with several characteristics of metabolic syndrome. A missense variant (p.N2291D) in the type 2 ryanodine receptor (RyR2) gene was one of eight rare coding variants shared by all individuals. The variant was absent in large population databases and affects a highly conserved amino acid located in a mutational hotspot for pathogenic variants in Catecholaminergic polymorphic ventricular tachycardia (CPVT). Electrocardiogram data did not reveal any cardiac abnormalities except a lower-than-normal resting heart rate (< 60 bpm) in two individuals - a phenotype observed in CPVT individuals with RyR2 mutations. RyR2-mediated Ca2+ release contributes to glucose-mediated insulin secretion and pathogenic RyR2 mutations cause glucose intolerance in humans and mice. Analysis of glucose tolerance testing data revealed that missense mutations in a CPVT mutation hotspot region - overlapping the p.N2291D variant - are associated with complete penetrance for glucose intolerance. In conclusion, we have identified an atypical missense variant in the RyR2 gene that co-segregates with diabetes in the absence of overt CPVT.
Collapse
Affiliation(s)
- Vikas Bansal
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| | | | - Johannes W Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University Hospitals, Bochum, Germany
- Diabetes Center Bochum-Hattingen, St. Elisabeth-Hospital Blankenstein, Hattingen, Germany
- Center for Rare Endocrine Diseases, Ruhr Center for Rare Diseases (CeSER), Ruhr University Bochum and Witten/Herdecke University, Bochum, Germany
- Center for Diabetes Technology, Catholic Hospitals Bochum, Bochum, Germany
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Vera R, Hong N, Jiang B, Liang G, Eckenhoff MF, Kincaid HJ, Browne V, Chellaraj V, Gisewhite D, Greenberg M, Ranjan S, Zhu G, Wei H. Effects of Intranasal Dantrolene Nanoparticles on Brain Concentration and Behavior in PS19 Tau Transgenic Mice. J Alzheimers Dis 2024; 98:549-562. [PMID: 38393915 PMCID: PMC11178503 DOI: 10.3233/jad-231337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Repurposing dantrolene to treat Alzheimer's disease has been shown to be effective in amyloid transgenic mouse models but has not been examined in a model of tauopathy. Objective The effects of a nanoparticle intranasal formulation, the Eagle Research Formulation of Ryanodex (ERFR), in young adult and aged wild type and PS19 tau transgenic mice was investigated. Methods The bioavailability of intranasal ERFR was measured in 2 and 9-11-month-old C57BL/6J mice. Blood and brain samples were collected 20 minutes after a single ERFR dose, and the plasma and brain concentrations were analyzed. Baseline behavior was assessed in untreated PS19 tau transgenic mice at 6 and 9 months of age. PS19 mice were treated with intranasal ERFR, with or without acrolein (to potentiate cognitive dysfunction), for 3 months, beginning at 2 months of age. Animal behavior was examined, including cognition (cued and contextual fear conditioning, y-maze), motor function (rotarod), and olfaction (buried food test). Results The dantrolene concentration in the blood and brain decreased with age, with the decrease greater in the blood resulting in a higher brain to blood concentration ratio. The behavioral assays showed no significant changes in cognition, olfaction, or motor function in the PS19 mice compared to controls after chronic treatment with intranasal ERFR, even with acrolein. Conclusions Our studies suggest the intranasal administration of ERFR has higher concentrations in the brain than the blood in aged mice and has no serious systemic side effects with chronic use in PS19 mice.
Collapse
Affiliation(s)
- Robert Vera
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Hong
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bailin Jiang
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Ge Liang
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maryellen F Eckenhoff
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Halle J Kincaid
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veron Browne
- Eagle Pharmaceuticals, Inc., Woodcliff Lake, NJ, USA
| | | | | | | | - Sudhir Ranjan
- Eagle Pharmaceuticals, Inc., Woodcliff Lake, NJ, USA
| | - Gaozhong Zhu
- Eagle Pharmaceuticals, Inc., Woodcliff Lake, NJ, USA
| | - Huafeng Wei
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Shemarova I. The Dysfunction of Ca 2+ Channels in Hereditary and Chronic Human Heart Diseases and Experimental Animal Models. Int J Mol Sci 2023; 24:15682. [PMID: 37958665 PMCID: PMC10650855 DOI: 10.3390/ijms242115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.
Collapse
Affiliation(s)
- Irina Shemarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
16
|
Barber KR, Vizcarra VS, Zilch A, Majuta L, Diezel CC, Culver OP, Hughes BW, Taniguchi M, Streicher JM, Vanderah TW, Riegel AC. The Role of Ryanodine Receptor 2 in Drug-Associated Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560743. [PMID: 37873212 PMCID: PMC10592901 DOI: 10.1101/2023.10.03.560743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Type-2 ryanodine receptor (RyR2) ion channels facilitate the release of Ca 2+ from stores and serve an important function in neuroplasticity. The role for RyR2 in hippocampal-dependent learning and memory is well established and chronic hyperphosphorylation of RyR2 (RyR2P) is associated with pathological calcium leakage and cognitive disorders, including Alzheimer's disease. By comparison, little is known about the role of RyR2 in the ventral medial prefrontal cortex (vmPFC) circuitry important for working memory, decision making, and reward seeking. Here, we evaluated the basal expression and localization of RyR2 and RyR2P in the vmPFC. Next, we employed an operant model of sucrose, cocaine, or morphine self-administration (SA) followed by a (reward-free) recall test, to reengage vmPFC neurons and reactivate reward-seeking and re-evaluated the expression and localization of RyR2 and RyR2P in vmPFC. Under basal conditions, RyR2 was expressed in pyramidal cells but not regularly detected in PV/SST interneurons. On the contrary, RyR2P was rarely observed in PFC somata and was restricted to a different subcompartment of the same neuron - the apical dendrites of layer-5 pyramidal cells. Chronic SA of drug (cocaine or morphine) and nondrug (sucrose) rewards produced comparable increases in RyR2 protein expression. However, recalling either drug reward impaired the usual localization of RyR2P in dendrites and markedly increased its expression in somata immunoreactive for Fos, a marker of highly activated neurons. These effects could not be explained by chronic stress or drug withdrawal and instead appeared to require a recall experience associated with prior drug SA. In addition to showing the differential distribution of RyR2/RyR2P and affirming the general role of vmPFC in reward learning, this study provides information on the propensity of addictive drugs to redistribute RyR2P ion channels in a neuronal population engaged in drug-seeking. Hence, focusing on the early impact of addictive drugs on RyR2 function may serve as a promising approach to finding a treatment for substance use disorders.
Collapse
|
17
|
Famili DT, Mistry A, Gerasimenko O, Gerasimenko J, Tribe RM, Kyrana E, Dhawan A, Goldberg MF, Voermans N, Willis T, Jungbluth H. Pancreatitis in RYR1-related disorders. Neuromuscul Disord 2023; 33:769-775. [PMID: 37783627 DOI: 10.1016/j.nmd.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Mutations in RYR1 encoding the ryanodine receptor (RyR) skeletal muscle isoform (RyR1) are a common cause of inherited neuromuscular disorders. Despite its expression in a wide range of tissues, non-skeletal muscle manifestations associated with RYR1 mutations have only been rarely reported. Here, we report three patients with a diagnosis of Central Core Disease (CCD), King-Denborough Syndrome (KDS) and Malignant Hyperthermia Susceptibility (MHS), respectively, who in addition to their (putative) RYR1-related disorder also developed symptoms and signs of acute pancreatitis. In two patients, episodes were recurrent, with severe multisystem involvement and sequelae. RyR1-mediated calcium signalling plays an important role in normal pancreatic function but has also been critically implicated in the pathophysiology of acute pancreatitis, particularly in bile acid- and ethanol-induced forms. Findings from relevant animal models indicate that pancreatic damage in these conditions may be ameliorated through administration of the specific RyR1 antagonist dantrolene and other compounds modifying pancreatic metabolism including calcium signalling. These observations suggest that patients with RYR1 gain-of-function variants may be at increased risk of developing acute pancreatitis, a condition which should therefore be considered in the health surveillance of such individuals.
Collapse
Affiliation(s)
- Dennis T Famili
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom
| | - Arti Mistry
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, United Kingdom
| | - Oleg Gerasimenko
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Rachel M Tribe
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, United Kingdom
| | - Eirini Kyrana
- Department of Paediatric Hepatology, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Department of Paediatric Hepatology, King's College Hospital, London, United Kingdom
| | | | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tracey Willis
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, United Kingdom.
| |
Collapse
|
18
|
Maruo Y, Saito Y, Nishino I, Takeda A. Successful treatment of frequent premature ventricular contractions and non-sustained ventricular tachycardia with verapamil and flecainide in RYR1-related myopathy: a case report. Eur Heart J Case Rep 2023; 7:ytad509. [PMID: 37881357 PMCID: PMC10597318 DOI: 10.1093/ehjcr/ytad509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/23/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Background Ryanodine receptor 1 (RYR1)-related myopathies are a group of congenital muscle diseases caused by RYR1 mutations. These mutations may cause centronuclear myopathy, a congenital neuromuscular disorder characterized by clinical muscle weakness and pathological presence of centrally placed nuclei on muscle biopsy. Mutations in RYR2 cause ventricular arrhythmias that can be treated with flecainide; however, reports of ventricular arrhythmias in RYR1-related myopathies are rare. Herein we report a case of centronuclear myopathy with RYR1 mutations who exhibited frequent premature ventricular contractions (PVCs) and non-sustained ventricular tachycardia (NSVT), which was successfully treated with verapamil and flecainide. Case summary At 7 months, the patient presented neurological manifestations of hypotonia and delayed motor development. A skeletal muscle biopsy performed at age 4 years led to the diagnosis of centronuclear myopathy. At age 15 years, frequent PVCs and NSVT were identified on the electrocardiogram and 24 h Holter monitoring. Treatment with verapamil was initiated; however, it was not beneficial. Therefore, flecainide was added to the treatment, decreasing the frequency of PVCs and NSVT. Non-sustained ventricular tachycardia disappeared at the age of 21, and PVCs almost disappeared at the age of 22. Genetic testing revealed c.13216delG (p.E4406Rfs*35), c.14874G>C (p.K4958N), and c.9892G>A (p.A3298T) in RYR1, and the compound heterozygosity of variants was confirmed by analysis of the parents. Discussion This is the first report of ventricular arrhythmia associated with RYR1-related myopathy that was successfully treated with verapamil and flecainide. The combination of verapamil and flecainide may be a useful treatment option for ventricular arrhythmias in patients with RYR1-related myopathies.
Collapse
Affiliation(s)
- Yuji Maruo
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
- Department of Pediatrics, Japanese Red Cross Kitami Hospital, North 6 East 2, Kitami 090-8666, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8502, Japan
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8502, Japan
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
19
|
Liu Y, Reiken S, Dridi H, Yuan Q, Mohammad KS, Trivedi T, Miotto MC, Wedderburn-Pugh K, Sittenfeld L, Kerley Y, Meyer JA, Peters JS, Persohn SC, Bedwell AA, Figueiredo LL, Suresh S, She Y, Soni RK, Territo PR, Marks AR, Guise TA. Targeting ryanodine receptor type 2 to mitigate chemotherapy-induced neurocognitive impairments in mice. Sci Transl Med 2023; 15:eadf8977. [PMID: 37756377 DOI: 10.1126/scitranslmed.adf8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Chemotherapy-induced cognitive dysfunction (chemobrain) is an important adverse sequela of chemotherapy. Chemobrain has been identified by the National Cancer Institute as a poorly understood problem for which current management or treatment strategies are limited or ineffective. Here, we show that chemotherapy treatment with doxorubicin (DOX) in a breast cancer mouse model induced protein kinase A (PKA) phosphorylation of the neuronal ryanodine receptor/calcium (Ca2+) channel type 2 (RyR2), RyR2 oxidation, RyR2 nitrosylation, RyR2 calstabin2 depletion, and subsequent RyR2 Ca2+ leakiness. Chemotherapy was furthermore associated with abnormalities in brain glucose metabolism and neurocognitive dysfunction in breast cancer mice. RyR2 leakiness and cognitive dysfunction could be ameliorated by treatment with a small molecule Rycal drug (S107). Chemobrain was also found in noncancer mice treated with DOX or methotrexate and 5-fluorouracil and could be prevented by treatment with S107. Genetic ablation of the RyR2 PKA phosphorylation site (RyR2-S2808A) also prevented the development of chemobrain. Chemotherapy increased brain concentrations of the tumor necrosis factor-α and transforming growth factor-β signaling, suggesting that increased inflammatory signaling might contribute to oxidation-driven biochemical remodeling of RyR2. Proteomics and Gene Ontology analysis indicated that the signaling downstream of chemotherapy-induced leaky RyR2 was linked to the dysregulation of synaptic structure-associated proteins that are involved in neurotransmission. Together, our study points to neuronal Ca2+ dyshomeostasis via leaky RyR2 channels as a potential mechanism contributing to chemobrain, warranting further translational studies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Khalid S Mohammad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Present address: College of Medicine, Alfaisal University, Box 50927, Riyadh 1153, Kingdom of Saudi Arabia
| | - Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marco C Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kaylee Wedderburn-Pugh
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ynez Kerley
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jill A Meyer
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jonathan S Peters
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott C Persohn
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amanda A Bedwell
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lucas L Figueiredo
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sukanya Suresh
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun She
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Paul R Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
20
|
Rocha DG, Holanda TM, Braz HLB, de Moraes JAS, Marinho AD, Maia PHF, de Moraes MEA, Fechine-Jamacaru FV, de Moraes Filho MO. Vasorelaxant effect of Alpinia zerumbet's essential oil on rat resistance artery involves blocking of calcium mobilization. Fitoterapia 2023; 169:105623. [PMID: 37500018 DOI: 10.1016/j.fitote.2023.105623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Alpinia zerumbet is a plant from the Zingiberaceae family, popularly used for hypertension treatment. Several studies have demonstrated Alpinia zerumbet vasodilator effect on conductance vessels but not on resistance vessels. Thereby, the aim of this study was to verify the vasodilator effect of the essential oil of Alpinia zerumbet (EOAz) on isolated rat resistance arteries and characterize its mechanism of action. Therefore, the effect of EOAz (3 to 3000 μg/mL) was verified in second-order branches of the mesenteric artery (SOBMA) pre-contracted by KCl and U46619. To study the mechanism of action, the influence of several inhibitors (TEA, 4-AP, Glibenclamide, Atropine, L-NAME, ODQ and indomethacin) on the vasodilator effect of EOAz was evaluated. Some protocols were also performed aiming to study the effect of EOAz on Ca2+ influx and release from intracellular storage. Furthermore, the binding energy of the main constituents with calcium channels were evaluated by molecular docking. Results showed an endothelium-independent vasorelaxant effect of EOAz on SOBMA, and only ODQ and L-NAME produced significant alteration on its pEC50. Regarding the calcium assays, contraction reduction caused by incubation with EOAz was observed in all three protocols. Hence, our results suggest that EOAz has a vasodilator effect mediated by inhibition of Ca2+ influx and release from intracellular storage, as well as an activation of the NOS/sGC pathway.
Collapse
Affiliation(s)
- Danilo Galvão Rocha
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil.
| | - Thais Muratori Holanda
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Helyson Lucas Bezerra Braz
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - João Alison Silveira de Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Aline Diogo Marinho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Pedro Henrique Freitas Maia
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Maria Elisabete Amaral de Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Francisco Vagnaldo Fechine-Jamacaru
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| | - Manoel Odorico de Moraes Filho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, 1000 Coronel Nunes de Melo St., 60430-275 Fortaleza, Ceará, Brazil
| |
Collapse
|
21
|
Martuscello RT, Chen ML, Reiken S, Sittenfeld LR, Ruff DS, Ni CL, Lin CC, Pan MK, Louis ED, Marks AR, Kuo SH, Faust PL. Defective cerebellar ryanodine receptor type 1 and endoplasmic reticulum calcium 'leak' in tremor pathophysiology. Acta Neuropathol 2023; 146:301-318. [PMID: 37335342 PMCID: PMC10350926 DOI: 10.1007/s00401-023-02602-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Meng-Ling Chen
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Leah R Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - David S Ruff
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chun-Lun Ni
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Ming-Kai Pan
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Yang WS, Chuang GT, Che TPH, Chueh LY, Li WY, Hsu CN, Hsiung CN, Ku HC, Lin YC, Chen YS, Hee SW, Chang TJ, Chen SM, Hsieh ML, Lee HL, Liao KCW, Shen CY, Chang YC. Genome-Wide Association Studies for Albuminuria of Nondiabetic Taiwanese Population. Am J Nephrol 2023; 54:359-369. [PMID: 37437553 DOI: 10.1159/000531783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Chronic kidney disease, which is defined by a reduced estimated glomerular filtration rate and albuminuria, imposes a large health burden worldwide. Ethnicity-specific associations are frequently observed in genome-wide association studies (GWAS). This study conducts a GWAS of albuminuria in the nondiabetic population of Taiwan. METHODS Nondiabetic individuals aged 30-70 years without a history of cancer were enrolled from the Taiwan Biobank. A total of 6,768 subjects were subjected to a spot urine examination. After quality control using PLINK and imputation using SHAPEIT and IMPUTE2, a total of 3,638,350 single-nucleotide polymorphisms (SNPs) remained for testing. SNPs with a minor allele frequency of less than 0.1% were excluded. Linear regression was used to determine the relationship between SNPs and log urine albumin-to-creatinine ratio. RESULTS Six suggestive loci are identified in or near the FCRL3 (p = 2.56 × 10-6), TMEM161 (p = 4.43 × 10-6), EFCAB1 (p = 2.03 × 10-6), ELMOD1 (p = 2.97 × 10-6), RYR3 (p = 1.34 × 10-6), and PIEZO2 (p = 2.19 × 10-7). Genetic variants in the FCRL3 gene that encode a secretory IgA receptor are found to be associated with IgA nephropathy, which can manifest as proteinuria. The PIEZO2 gene encodes a sensor for mechanical forces in mesangial cells and renin-producing cells. Five SNPs with a p-value between 5 × 10-6 and 5 × 10-5 are also identified in five genes that may have a biological role in the development of albuminuria. CONCLUSION Five new loci and one known suggestive locus for albuminuria are identified in the nondiabetic Taiwanese population.
Collapse
Affiliation(s)
- Wei-Shun Yang
- Department of Internal Medicine, Division of Nephrology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan,
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan,
| | - Gwo-Tsann Chuang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Tony Pan-Hou Che
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Li-Yun Chueh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Wen-Yi Li
- Department of Internal Medicine, Division of Nephrology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chih-Neng Hsu
- Cardiovascular Center, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan
| | - Chia-Ni Hsiung
- Data Science Statistical Cooperation Center, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Chia Ku
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Ching Lin
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Shun Chen
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Lun Hsieh
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Dhureja M, Arthur R, Soni D, Upadhayay S, Temgire P, Kumar P. Calcium channelopathies in neurodegenerative disorder: an untold story of RyR and SERCA. Expert Opin Ther Targets 2023; 27:1159-1172. [PMID: 37971192 DOI: 10.1080/14728222.2023.2277863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Recent neuroscience breakthroughs have shed light on the sophisticated relationship between calcium channelopathies and movement disorders, exposing a previously undiscovered tale focusing on the Ryanodine Receptor (RyR) and the Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA). Calcium signaling mainly orchestrates neural communication, which regulates synaptic transmission and total network activity. It has been determined that RyR play a significant role in managing neuronal functions, most notably in releasing intracellular calcium from the endoplasmic reticulum. AREAS COVERED It highlights the involvement of calcium channels such as RyR and SERCA in physiological and pathophysiological conditions. EXPERT OPINION Links between RyR and SERCA activity dysregulation, aberrant calcium levels, motor and cognitive dysfunction have brought attention to the importance of RyR and SERCA modulation in neurodegenerative disorders. Understanding the obscure function of these proteins will open up new therapeutic possibilities to address the underlying causes of neurodegenerative diseases. The unreported RyR and SERCA narrative broadens the understanding of calcium channelopathies in movement disorders and calls for more research into cutting-edge therapeutic approaches.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
24
|
Wang Z, Zhao X, Zhou H, Che D, Du X, Ye D, Zeng W, Geng S. Activation of ryanodine-sensitive calcium store drives pseudo-allergic dermatitis via Mas-related G protein-coupled receptor X2 in mast cells. Front Immunol 2023; 14:1207249. [PMID: 37404822 PMCID: PMC10315577 DOI: 10.3389/fimmu.2023.1207249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Mast cell (MC) activation is implicated in the pathogenesis of multiple immunodysregulatory skin disorders. Activation of an IgE-independent pseudo-allergic route has been recently found to be mainly mediated via Mas-Related G protein-coupled receptor X2 (MRGPRX2). Ryanodine receptor (RYR) regulates intracellular calcium liberation. Calcium mobilization is critical in the regulation of MC functional programs. However, the role of RYR in MRGPRX2-mediated pseudo-allergic skin reaction has not been fully addressed. To study the role of RYR in vivo, we established a murine skin pseudo-allergic reaction model. RYR inhibitor attenuated MRGPRX2 ligand substance P (SP)-induced vascular permeability and neutrophil recruitment. Then, we confirmed the role of RYR in an MC line (LAD2 cells) and primary human skin-derived MCs. In LAD2 cells, RYR inhibitor pretreatment dampened MC degranulation (detected by β-hexosaminidase retlease), calcium mobilization, IL-13, TNF-α, CCL-1, CCL-2 mRNA, and protein expression activated by MRGPRX2 ligands, namely, compound 48/80 (c48/80) and SP. Moreover, the inhibition effect of c48/80 by RYR inhibitor was verified in skin MCs. After the confirmation of RYR2 and RYR3 expression, the isoforms were silenced by siRNA-mediated knockdown. MRGPRX2-induced LAD2 cell exocytosis and cytokine generation were substantially inhibited by RYR3 knockdown, while RYR2 had less contribution. Collectively, our finding suggests that RYR activation contributes to MRGPRX2-triggered pseudo-allergic dermatitis, and provides a potential approach for MRGPRX2-mediated disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihui Zeng
- *Correspondence: Songmei Geng, ; Weihui Zeng,
| | | |
Collapse
|
25
|
Steinberg C, Roston TM, van der Werf C, Sanatani S, Chen SRW, Wilde AAM, Krahn AD. RYR2-ryanodinopathies: from calcium overload to calcium deficiency. Europace 2023; 25:euad156. [PMID: 37387319 PMCID: PMC10311407 DOI: 10.1093/europace/euad156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
The sarcoplasmatic reticulum (SR) cardiac ryanodine receptor/calcium release channel RyR2 is an essential regulator of cardiac excitation-contraction coupling and intracellular calcium homeostasis. Mutations of the RYR2 are the cause of rare, potentially lethal inherited arrhythmia disorders. Catecholaminergic polymorphic ventricular tachycardia (CPVT) was first described more than 20 years ago and is the most common and most extensively studied cardiac ryanodinopathy. Over time, other distinct inherited arrhythmia syndromes have been related to abnormal RyR2 function. In addition to CPVT, there are at least two other distinct RYR2-ryanodinopathies that differ mechanistically and phenotypically from CPVT: RYR2 exon-3 deletion syndrome and the recently identified calcium release deficiency syndrome (CRDS). The pathophysiology of the different cardiac ryanodinopathies is characterized by complex mechanisms resulting in excessive spontaneous SR calcium release or SR calcium release deficiency. While the vast majority of CPVT cases are related to gain-of-function variants of the RyR2 protein, the recently identified CRDS is linked to RyR2 loss-of-function variants. The increasing number of these cardiac 'ryanodinopathies' reflects the complexity of RYR2-related cardiogenetic disorders and represents an ongoing challenge for clinicians. This state-of-the-art review summarizes our contemporary understanding of RYR2-related inherited arrhythmia disorders and provides a systematic and comprehensive description of the distinct cardiac ryanodinopathies discussing clinical aspects and molecular insights. Accurate identification of the underlying type of cardiac ryanodinopathy is essential for the clinical management of affected patients and their families.
Collapse
Affiliation(s)
- Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec, Laval University, 2725, Chemin Ste-Foy, Quebec G1V 4G5, Canada
| | - Thomas M Roston
- Centre for Cardiovascular Innovation, Division of Cardiology, St. Paul’s Hospital, University of British Columbia, 211-1033 Davie Street, Vancouver, BC, V6E 1M7, Canada
| | - Christian van der Werf
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, University of Amsterdam, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Shubhayan Sanatani
- Division of Cardiology, Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Arthur A M Wilde
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, University of Amsterdam, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Andrew D Krahn
- Centre for Cardiovascular Innovation, Division of Cardiology, St. Paul’s Hospital, University of British Columbia, 211-1033 Davie Street, Vancouver, BC, V6E 1M7, Canada
| |
Collapse
|
26
|
Stirling DP. Potential physiological and pathological roles for axonal ryanodine receptors. Neural Regen Res 2023; 18:756-759. [PMID: 36204832 PMCID: PMC9700104 DOI: 10.4103/1673-5374.354512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022] Open
Abstract
Clinical disability following trauma or disease to the spinal cord often involves the loss of vital white matter elements including axons and glia. Although excessive Ca2+ is an established driver of axonal degeneration, therapeutically targeting externally sourced Ca2+ to date has had limited success in both basic and clinical studies. Contributing factors that may underlie this limited success include the complexity of the many potential sources of Ca2+ entry and the discovery that axons also contain substantial amounts of stored Ca2+ that if inappropriately released could contribute to axonal demise. Axonal Ca2+ storage is largely accomplished by the axoplasmic reticulum that is part of a continuous network of the endoplasmic reticulum that provides a major sink and source of intracellular Ca2+ from the tips of dendrites to axonal terminals. This "neuron-within-a-neuron" is positioned to rapidly respond to diverse external and internal stimuli by amplifying cytosolic Ca2+ levels and generating short and long distance regenerative Ca2+ waves through Ca2+ induced Ca2+ release. This review provides a glimpse into the molecular machinery that has been implicated in regulating ryanodine receptor mediated Ca2+ release in axons and how dysregulation and/or overstimulation of these internodal axonal signaling nanocomplexes may directly contribute to Ca2+-dependent axonal demise. Neuronal ryanodine receptors expressed in dendrites, soma, and axonal terminals have been implicated in synaptic transmission and synaptic plasticity, but a physiological role for internodal localized ryanodine receptors remains largely obscure. Plausible physiological roles for internodal ryanodine receptors and such an elaborate internodal binary membrane signaling network in axons will also be discussed.
Collapse
Affiliation(s)
- David P. Stirling
- Kentucky Spinal Cord Injury Research Center and Departments of Neurological Surgery, Anatomical Sciences and Neurobiology, Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
27
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
28
|
Saksis R, Rogoza O, Niedra H, Megnis K, Mandrika I, Balcere I, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Konrade I, Peculis R, Rovite V. Transcriptome of GH-producing pituitary neuroendocrine tumours and models are significantly affected by somatostatin analogues. Cancer Cell Int 2023; 23:25. [PMID: 36774501 PMCID: PMC9922463 DOI: 10.1186/s12935-023-02863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Pituitary neuroendocrine tumours (PitNETs) are neoplasms of the pituitary that overproduce hormones or cause unspecific symptoms due to mass effect. Growth hormone overproducing GH-producing PitNETs cause acromegaly leading to connective tissue, metabolic or oncologic disorders. The medical treatment of acromegaly is somatostatin analogues (SSA) in specific cases combined with dopamine agonists (DA), but almost half of patients display partial or full SSA resistance and potential causes of this are unknown. In this study we investigated transcriptomic landscape of GH-producing PitNETs on several levels and functional models-tumour tissue of patients with and without SSA preoperative treatment, tumour derived pituispheres and GH3 cell line incubated with SSA to study effect of medication on gene expression. MGI sequencing platform was used to sequence total RNA from PitNET tissue, pituispheres, mesenchymal stromal stem-like cells (MSC), and GH3 cell cultures, and data were analysed with Salmon-DeSeq2 pipeline. We observed that the GH-producing PitNETs have distinct changes in growth hormone related pathways related to its functional status alongside inner cell signalling, ion transport, cell adhesion and extracellular matrix characteristic patterns. In pituispheres model, treatment regimens (octreotide and cabergoline) affect specific cell proliferation (MKI67) and core functionality pathways (RYR2, COL8A2, HLA-G, ARFGAP1, TGFBR2). In GH3 cells we observed that medication did not have transcriptomic effects similar to preoperative treatment in PitNET tissue or pituisphere model. This study highlights the importance of correct model system selection for cell transcriptomic profiling and data interpretation that could be achieved in future by incorporating NGS methods and detailed cell omics profiling in PitNET model research.
Collapse
Affiliation(s)
- Rihards Saksis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Olesja Rogoza
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Helvijs Niedra
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Kaspars Megnis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Ilona Mandrika
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Inga Balcere
- grid.488518.80000 0004 0375 2558Riga East Clinical University Hospital, Hipokrata Str 2, Riga, 1038 Latvia ,grid.17330.360000 0001 2173 9398Riga Stradins University, Dzirciema Str. 16, Riga, 1007 Latvia
| | - Liva Steina
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia ,grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Janis Stukens
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Austra Breiksa
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Jurijs Nazarovs
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Jelizaveta Sokolovska
- grid.9845.00000 0001 0775 3222Faculty of Medicine, University of Latvia, Raina Blvd 19, Riga, 1586 Latvia
| | - Ilze Konrade
- grid.488518.80000 0004 0375 2558Riga East Clinical University Hospital, Hipokrata Str 2, Riga, 1038 Latvia ,grid.17330.360000 0001 2173 9398Riga Stradins University, Dzirciema Str. 16, Riga, 1007 Latvia
| | - Raitis Peculis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067, Latvia.
| |
Collapse
|
29
|
Abstract
This Review provides an update on ryanodine receptors (RyRs) and their role in human diseases of heart, muscle, and brain. Calcium (Ca2+) is a requisite second messenger in all living organisms. From C. elegans to mammals, Ca2+ is necessary for locomotion, bodily functions, and neural activity. However, too much of a good thing can be bad. Intracellular Ca2+ overload can result in loss of function and death. Intracellular Ca2+ release channels evolved to safely provide large, rapid Ca2+ signals without exposure to toxic extracellular Ca2+. RyRs are intracellular Ca2+ release channels present throughout the zoosphere. Over the past 35 years, our knowledge of RyRs has advanced to the level of atomic-resolution structures revealing their role in the mechanisms underlying the pathogenesis of human disorders of heart, muscle, and brain. Stress-induced RyR-mediated intracellular Ca2+ leak in the heart can promote heart failure and cardiac arrhythmias. In skeletal muscle, RyR1 leak contributes to muscle weakness in inherited myopathies, to age-related loss of muscle function and cancer-associated muscle weakness, and to impaired muscle function in muscular dystrophies, including Duchenne. In the brain, leaky RyR channels contribute to cognitive dysfunction in Alzheimer's disease, posttraumatic stress disorder, and Huntington's disease. Novel therapeutics targeting dysfunctional RyRs are showing promise.
Collapse
|
30
|
Alomar FA, Tian C, Bidasee SR, Venn ZL, Schroder E, Palermo NY, AlShabeeb M, Edagwa BJ, Payne JJ, Bidasee KR. HIV-Tat Exacerbates the Actions of Atazanavir, Efavirenz, and Ritonavir on Cardiac Ryanodine Receptor (RyR2). Int J Mol Sci 2022; 24:ijms24010274. [PMID: 36613717 PMCID: PMC9820108 DOI: 10.3390/ijms24010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
The incidence of sudden cardiac death (SCD) in people living with HIV infection (PLWH), especially those with inadequate viral suppression, is high and the reasons for this remain incompletely characterized. The timely opening and closing of type 2 ryanodine receptor (RyR2) is critical for ensuring rhythmic cardiac contraction-relaxation cycles, and the disruption of these processes can elicit Ca2+ waves, ventricular arrhythmias, and SCD. Herein, we show that the HIV protein Tat (HIV-Tat: 0-52 ng/mL) and therapeutic levels of the antiretroviral drugs atazanavir (ATV: 0-25,344 ng/mL), efavirenz (EFV: 0-11,376 ng/mL), and ritonavir (RTV: 0-25,956 ng/mL) bind to and modulate the opening and closing of RyR2. Abacavir (0-14,315 ng/mL), bictegravir (0-22,469 ng/mL), Rilpivirine (0-14,360 ng/mL), and tenofovir disoproxil fumarate (0-18,321 ng/mL) did not alter [3H]ryanodine binding to RyR2. Pretreating RyR2 with low HIV-Tat (14 ng/mL) potentiated the abilities of ATV and RTV to bind to open RyR2 and enhanced their ability to bind to EFV to close RyR2. In silico molecular docking using a Schrodinger Prime protein-protein docking algorithm identified three thermodynamically favored interacting sites for HIV-Tat on RyR2. The most favored site resides between amino acids (AA) 1702-1963; the second favored site resides between AA 467-1465, and the third site resides between AA 201-1816. Collectively, these new data show that HIV-Tat, ATV, EFV, and RTV can bind to and modulate the activity of RyR2 and that HIV-Tat can exacerbate the actions of ATV, EFV, and RTV on RyR2. Whether the modulation of RyR2 by these agents increases the risk of arrhythmias and SCD remains to be explored.
Collapse
Affiliation(s)
- Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chengju Tian
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sean R. Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zachary L. Venn
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Evan Schroder
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicholas Y. Palermo
- Vice Chancellor for Research Cores, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohammad AlShabeeb
- Population Health Research Section, King Abdullah International Medical Research Center, King Saudi bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Benson J. Edagwa
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jason J. Payne
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Keshore R. Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Redox Biology Center, Lincoln, NE 68588, USA
- Correspondence: ; Tel.: +402-559-9018; Fax: +402-559-7495
| |
Collapse
|
31
|
Hidisoglu E, Chiantia G, Franchino C, Tomagra G, Giustetto M, Carbone E, Carabelli V, Marcantoni A. The ryanodine receptor-calstabin interaction stabilizer S107 protects hippocampal neurons from GABAergic synaptic alterations induced by Abeta42 oligomers. J Physiol 2022; 600:5295-5309. [PMID: 36284365 DOI: 10.1113/jp283537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/12/2022] [Indexed: 01/05/2023] Open
Abstract
The oligomeric form of the peptide amyloid beta 42 (Abeta42) contributes to the development of synaptic abnormalities and cognitive impairments associated with Alzheimer's disease (AD). To date, there is a gap in knowledge regarding how Abeta42 alters the elementary parameters of GABAergic synaptic function. Here we found that Abeta42 increased the frequency and amplitude of miniature GABAergic currents as well as the amplitude of evoked inhibitory postsynaptic currents. When we focused on paired pulse depression (PPD) to establish whether GABA release probability was affected by Abeta42, we did not observe any significant change. On the other hand, a more detailed investigation of the presynaptic effects induced by Abeta42 by means of multiple probability fluctuation analysis and cumulative amplitude analysis showed an increase in both the size of the readily releasable pool responsible for synchronous release and the number of release sites. We further explored whether ryanodine receptors (RyRs) contributed to exacerbating these changes by stabilizing the interaction between RyRs and the accessory protein calstabin. We observed that the RyR-calstabin interaction stabilizer S107 restored the synaptic parameters to values comparable to those measured in control conditions. In conclusion, our results clarify the mechanisms of potentiation of GABAergic synapses induced by Abeta42. We further suggest that RyRs are involved in the control of synaptic activity during the early stage of AD onset and that their stabilization could represent a new therapeutical approach for AD treatment. KEY POINTS: Accumulation of the peptide amyloid beta 42 (Abeta42) is a key characteristic of Alzheimer's disease (AD) and causes synaptic dysfunctions. To date, the effects of Abeta42 accumulation on GABAergic synapses are poorly understood. The findings reported here suggest that, similarly to what is observed on glutamatergic synapses, Abeta42 modifies GABAergic synapses by targeting ryanodine receptors and causing calcium dysregulation. The GABAergic impairments can be restored by the ryanodine receptor-calstabin interaction stabilizer S107. Based on this research, RyRs stabilization may represent a novel pharmaceutical strategy for preventing or delaying AD.
Collapse
Affiliation(s)
- Enis Hidisoglu
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | | | - Claudio Franchino
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | - Giulia Tomagra
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | | | - Emilio Carbone
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Janssens L, De Puydt J, Milazzo M, Symoens S, De Bleecker JL, Herdewyn S. Risk of malignant hyperthermia in patients carrying a variant in the skeletal muscle ryanodine receptor 1 gene. Neuromuscul Disord 2022; 32:864-869. [PMID: 36283893 DOI: 10.1016/j.nmd.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Malignant hyperthermia is a life-threatening disorder, which can be prevented by avoiding certain anesthetic agents. Pathogenic variants in the skeletal muscle ryanodine receptor 1-gene are linked to malignant hyperthermia. We retrospectively studied 15 patients who presented to our clinic with symptoms of muscle dysfunction (weakness, myalgia or cramps) and were later found to have a variant in the skeletal muscle ryanodine receptor 1-gene. Symptoms, creatine kinase levels, electromyography, muscle biopsy and in vitro contracture test results were reviewed. Six out of the eleven patients, with a variant of unknown significance in the skeletal muscle ryanodine receptor 1-gene, had a positive in vitro contracture test, indicating malignant hyperthermia susceptibility. In one patient, with two variants of unknown significance, both variants were required to express the malignant hyperthermia-susceptibility trait. Neurologists should consider screening the skeletal muscle ryanodine receptor 1-gene in patients with myalgia or cramps, even when few to no abnormalities on ancillary testing.
Collapse
Affiliation(s)
- Lise Janssens
- Faculty of medical and health sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Joris De Puydt
- University Hospital of Antwerp, Drie Eikenstraat 655, Edegem 2650, Belgium; Faculty of medical and health sciences, Antwerp University, Prinsstraat 13, Antwerp 2000, Belgium
| | - Mauro Milazzo
- Center for Medical Genetics Ghent, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Sofie Symoens
- Faculty of medical and health sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Jan L De Bleecker
- Faculty of medical and health sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Sarah Herdewyn
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium.
| |
Collapse
|
33
|
Lukyanenko V, Muriel J, Garman D, Breydo L, Bloch RJ. Elevated Ca 2+ at the triad junction underlies dysregulation of Ca 2+ signaling in dysferlin-null skeletal muscle. Front Physiol 2022; 13:1032447. [PMID: 36406982 PMCID: PMC9669649 DOI: 10.3389/fphys.2022.1032447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Dysferlin-null A/J myofibers generate abnormal Ca2+ transients that are slightly reduced in amplitude compared to controls. These are further reduced in amplitude by hypoosmotic shock and often appear as Ca2+ waves (Lukyanenko et al., J. Physiol., 2017). Ca2+ waves are typically associated with Ca2+-induced Ca2+ release, or CICR, which can be myopathic. We tested the ability of a permeable Ca2+ chelator, BAPTA-AM, to inhibit CICR in injured dysferlin-null fibers and found that 10-50 nM BAPTA-AM suppressed all Ca2+ waves. The same concentrations of BAPTA-AM increased the amplitude of the Ca2+ transient in A/J fibers to wild type levels and protected transients against the loss of amplitude after hypoosmotic shock, as also seen in wild type fibers. Incubation with 10 nM BAPTA-AM led to intracellular BAPTA concentrations of ∼60 nM, as estimated with its fluorescent analog, Fluo-4AM. This should be sufficient to restore intracellular Ca2+ to levels seen in wild type muscle. Fluo-4AM was ∼10-fold less effective than BAPTA-AM, however, consistent with its lower affinity for Ca2+. EGTA, which has an affinity for Ca2+ similar to BAPTA, but with much slower kinetics of binding, was even less potent when introduced as the -AM derivative. By contrast, a dysferlin variant with GCaMP6fu in place of its C2A domain accumulated at triad junctions, like wild type dysferlin, and suppressed all abnormal Ca2+ signaling. GCaMP6fu introduced as a Venus chimera did not accumulate at junctions and failed to suppress abnormal Ca2+ signaling. Our results suggest that leak of Ca2+ into the triad junctional cleft underlies dysregulation of Ca2+ signaling in dysferlin-null myofibers, and that dysferlin's C2A domain suppresses abnormal Ca2+ signaling and protects muscle against injury by binding Ca2+ in the cleft.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, United States
| | - Leonid Breydo
- Formulation Development, Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Nawata T, Sakai H, Honda T, Otsuka M, Fujita H, Uchinoumi H, Kobayashi S, Yamamoto T, Asagiri M, Yano M. Dantrolene, a stabilizer of the ryanodine receptor, prevents collagen-induced arthritis. Biochem Biophys Res Commun 2022; 624:141-145. [PMID: 35940127 DOI: 10.1016/j.bbrc.2022.07.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Dantrolene inhibits Ca2+ leakage from destabilized ryanodine receptors and therefore may serve as a therapeutic agent against endoplasmic reticulum stress-associated diseases. However, its effectiveness in treating autoimmune diseases remains unclear. Here, we investigated the effect of dantrolene on collagen-induced arthritis (CIA) in mice. Oral administration of dantrolene resulted in significantly lower arthritic scores in both male and female CIA mice than in the control mice. Micro-computed tomographic and histological analyses showed that dantrolene suppressed bone and chondral destruction. The serum levels of anti-type II collagen (CII) IgG were positively correlated with the arthritic scores (r = 0.704, p < 0.01). In addition, the serum levels of anti-CII IgG were significantly lower in the dantrolene group than in the control group (p < 0.05). These results demonstrate that oral administration of dantrolene to CIA mice inhibits the production of serum anti-CII IgG and consequently prevents arthritis. Therefore, dantrolene may be a potential anti-rheumatic drug.
Collapse
Affiliation(s)
- Takashi Nawata
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan.
| | - Hiroki Sakai
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Marina Otsuka
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Hina Fujita
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Takeshi Yamamoto
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| |
Collapse
|
35
|
Zhang L, Chen R, Li X, Xu X, Xu Z, Cheng J, Wang Y, Li Y, Shao X, Li Z. Synthesis, Insecticidal Activities, and 3D-QASR of N-Pyridylpyrazole Amide Derivatives Containing a Phthalimide as Potential Ryanodine Receptor Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12651-12662. [PMID: 36134897 DOI: 10.1021/acs.jafc.2c03971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To develop potent and environment-friendly insecticides, novel N-pyridylpyrazole amide derivatives containing a phthalimide were designed and synthesized. The preliminary bioassay results showed that most of the target compounds exhibited good insecticidal activities. For oriental armyworm (Mythimna separata), compounds E5, E29, E30, and E33 displayed higher than 90% lethal rates at 25 mg L-1. In particular, compound E33 displayed 60% mortality at a lower concentration of 6.25 mg L-1. Besides, compound E33 also showed a 30% lethal rate at 5 mg L-1 against diamondback moth (DBM) (Plutella xylostella). Molecular docking between the most active compound E33 and DBM ryanodine receptor (RyR), comparative molecular field analysis (CoMFA), and density functional theory (DFT) calculations were conducted and discussed. Furthermore, according to vitro studies using a calcium imaging technique, compound E33 was a potent novel lead targeting insect RyR.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ruijia Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyang Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanli Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - XuSheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
36
|
Chai-Hu-San-Shen Capsule Ameliorates Ventricular Arrhythmia Through Inhibition of the CaMKII/FKBP12.6/RyR2/Ca 2+ Signaling Pathway in Rats with Myocardial Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2670473. [PMID: 36225189 PMCID: PMC9550443 DOI: 10.1155/2022/2670473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
Ventricular arrhythmia is one of the main causes of sudden cardiac death, especially after myocardial ischemia. Previous studies have shown that Chai-Hu-San-Shen capsule (CHSSC) can reduce the incidence of ventricular arrhythmias following myocardial ischemia, however, the mechanisms of it are unclear. In present study, we explored the mechanism of CHSSC ameliorates ventricular arrhythmia following myocardial ischemia via inhibiting the CaMKII/FKBP12.6/RyR2/Ca2+ signaling pathway. In vivo, a myocardial ischemia rat model was established and treated with CHSSC to evaluate the therapeutic effect of CHSSC. In vitro, we established an ischemia model in H9C2 cells and treated with CHSSC, KN-93, or H-89. Then, intracellular Ca2+ content, the expression of RyR2, and the interaction between FKBP12.6 and RyR2 were detected. The results showed that CHSSC could delay the occurrence of ventricular arrhythmias and shorten the duration of ventricular arrhythmias. After myocardial ischemia, the intracellular Ca2+ content was increased, and CHSSC treatment mitigated this increase, down-regulated the levels of p-CaMKII, CaMKII, p-RyR2, and RyR2, and up-regulated the levels of p-RyR2 (Ser2808) and p-RyR2 (Ser2814). Co-immunoprecipitation showed an interaction between FKBP12.6 and RyR2, and CHSSC up-regulated the content of the FKBP12.6-RyR2 complex in ischemic cells. In conclusion, our study showed that CaMKII activation led to hyperphosphorylation of RyR2 (Ser2814) and RyR2 (Ser2808) during cardiomyocyte ischemia, which resulted in dissociation of the FKBP12.6-RyR2 complex, and increased intracellular Ca2+ content, which may contribute to the development of ventricular arrhythmias. CHSSC may reduce the incidence of ventricular arrhythmias following myocardial ischemia through inhibition of the CaMKII/RyR2/FKBP12.6/Ca2+ signaling pathway.
Collapse
|
37
|
Beignon F, Gueguen N, Tricoire-Leignel H, Mattei C, Lenaers G. The multiple facets of mitochondrial regulations controlling cellular thermogenesis. Cell Mol Life Sci 2022; 79:525. [PMID: 36125552 PMCID: PMC11802959 DOI: 10.1007/s00018-022-04523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.
Collapse
Affiliation(s)
- Florian Beignon
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
| | - Naig Gueguen
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
- Service de Biochimie et Biologie Moléculaire, CHU d'Angers, Angers, France
| | | | - César Mattei
- Univ Angers, CarMe, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Guy Lenaers
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
- Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
38
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
39
|
Wan JF, Wang G, Qin FY, Huang DL, Wang Y, Su AL, Zhang HP, Liu Y, Zeng SY, Wei CL, Cheng YX, Liu J. Z16b, a natural compound from Ganoderma cochlear is a novel RyR2 stabilizer preventing catecholaminergic polymorphic ventricular tachycardia. Acta Pharmacol Sin 2022; 43:2340-2350. [PMID: 35190699 PMCID: PMC9433431 DOI: 10.1038/s41401-022-00870-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 01/18/2023]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited, lethal ventricular arrhythmia triggered by catecholamines. Mutations in genes that encode cardiac ryanodine receptor (RyR2) and proteins that regulate RyR2 activity cause enhanced diastolic Ca2+ release (leak) through the RyR2 channels, resulting in CPVT. Current therapies for CPVT are limited. We found that Z16b, a meroterpenoid isolated from Ganoderma cochlear, inhibited Ca2+ spark frequency (CaSF) in R2474S/ + cardiomyocytes in a dose-dependent manner, with an IC50 of 3.2 μM. Z16b also dose-dependently suppressed abnormal post-pacing Ca2+ release events. Intraperitoneal injection (i.p.) of epinephrine and caffeine stimulated sustained ventricular tachycardia in all R2474S/+ mice, while pretreatment with Z16b (0.5 mg/kg, i.p.) prevented ventricular arrhythmia in 9 of 10 mice, and Z16b administration immediately after the onset of VT abolished sVT in 9 of 12 mice. Of translational significance, Z16b significantly inhibited CaSF and abnormal Ca2+ release events in human CPVT iPS-CMs. Mechanistically, Z16b interacts with RyR2, enhancing the "zipping" state of the N-terminal and central domains of RyR2. A molecular docking simulation and point mutation and pulldown assays identified Z16b forms hydrogen bonds with Arg626, His1670, and Gln2126 in RyR2 as a triangle shape that anchors the NTD and CD interaction and thus stabilizes RyR2 in a tight "zipping" conformation. Our findings support that Z16b is a novel RyR2 stabilizer that can prevent CPVT. It may also serve as a lead compound with a new scaffold for the design of safer and more efficient drugs for treating CPVT.
Collapse
Affiliation(s)
- Jiang-Fan Wan
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gang Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China
| | - Fu-Ying Qin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Dan-Ling Huang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Ai-Ling Su
- Center for Translation Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Hai-Ping Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Shao-Yin Zeng
- Guangdong Provincial key laboratory of South China Structure Heart Disease, Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Chao-Liang Wei
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518000, China.
| | - Jie Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
40
|
Peculis R, Rovite V, Megnis K, Balcere I, Breiksa A, Nazarovs J, Stukens J, Konrade I, Sokolovska J, Pirags V, Klovins J. Whole exome sequencing reveals novel risk genes of pituitary neuroendocrine tumors. PLoS One 2022; 17:e0265306. [PMID: 36026497 PMCID: PMC9417189 DOI: 10.1371/journal.pone.0265306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Somatic genetic alterations in pituitary neuroendocrine tumors (PitNET) tissues have been identified in several studies, but detection of overlapping somatic PitNET candidate genes is rare. We sequenced and by employing multiple data analysis methods studied the exomes of 15 PitNET patients to improve discovery of novel factors involved in PitNET development. PitNET patients were recruited to the study before PitNET removal surgery. For each patient, two samples for DNA extraction were acquired: venous blood and PitNET tissue. Exome sequencing was performed using Illumina NexSeq 500 sequencer and data analyzed using two separate workflows and variant calling algorithms: GATK and Strelka2. A combination of two data analysis pipelines discovered 144 PitNET specific somatic variants (mean = 9.6, range 0–19 per PitNET) of which all were SNVs. Also, we detected previously known GNAS PitNET mutation and identified somatic variants in 11 genes, which have contained somatic variants in previous WES and WGS studies of PitNETs. Noteworthy, this is the third study detecting somatic variants in gene RYR1 in the exomes of PitNETs. In conclusion, we have identified two novel PitNET candidate genes (AC002519.6 and AHNAK) with recurrent somatic variants in our PitNET cohort and found 13 genes overlapping from previous PitNET studies that contain somatic variants. Our study demonstrated that the use of multiple sequencing data analysis pipelines can provide more accurate identification of somatic variants in PitNETs.
Collapse
Affiliation(s)
- Raitis Peculis
- Human Genetics and Molecular Medicine, Latvian Biomedical Research and Study Centre, Riga, Latvia
- * E-mail:
| | - Vita Rovite
- Human Genetics and Molecular Medicine, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Human Genetics and Molecular Medicine, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Inga Balcere
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | - Austra Breiksa
- Institute of Pathology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Jurijs Nazarovs
- Institute of Pathology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Stukens
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Ilze Konrade
- Human Genetics and Molecular Medicine, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | | | - Valdis Pirags
- Human Genetics and Molecular Medicine, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Department of Endocrinology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Klovins
- Human Genetics and Molecular Medicine, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
41
|
Zhang L, Au-Yeung CL, Huang C, Yeung TL, Ferri-Borgogno S, Lawson BC, Kwan SY, Yin Z, Wong ST, Thomas V, Lu KH, Yip KP, Sham JSK, Mok SC. Ryanodine receptor 1-mediated Ca2+ signaling and mitochondrial reprogramming modulate uterine serous cancer malignant phenotypes. J Exp Clin Cancer Res 2022; 41:242. [PMID: 35953818 PMCID: PMC9373370 DOI: 10.1186/s13046-022-02419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Uterine serous cancer (USC) is the most common non-endometrioid subtype of uterine cancer, and is also the most aggressive. Most patients will die of progressively chemotherapy-resistant disease, and the development of new therapies that can target USC remains a major unmet clinical need. This study sought to determine the molecular mechanism by which a novel unfavorable prognostic biomarker ryanodine receptor 1 (RYR1) identified in advanced USC confers their malignant phenotypes, and demonstrated the efficacy of targeting RYR1 by repositioned FDA-approved compounds in USC treatment. Methods TCGA USC dataset was analyzed to identify top genes that are associated with patient survival or disease stage, and can be targeted by FDA-approved compounds. The top gene RYR1 was selected and the functional role of RYR1 in USC progression was determined by silencing and over-expressing RYR1 in USC cells in vitro and in vivo. The molecular mechanism and signaling networks associated with the functional role of RYR1 in USC progression were determined by reverse phase protein arrays (RPPA), Western blot, and transcriptomic profiling analyses. The efficacy of the repositioned compound dantrolene on USC progression was determined using both in vitro and in vivo models. Results High expression level of RYR1 in the tumors is associated with advanced stage of the disease. Inhibition of RYR1 suppressed proliferation, migration and enhanced apoptosis through Ca2+-dependent activation of AKT/CREB/PGC-1α and AKT/HK1/2 signaling pathways, which modulate mitochondrial bioenergetics properties, including oxidative phosphorylation, ATP production, mitochondrial membrane potential, ROS production and TCA metabolites, and glycolytic activities in USC cells. Repositioned compound dantrolene suppressed USC progression and survival in mouse models. Conclusions These findings provided insight into the mechanism by which RYR1 modulates the malignant phenotypes of USC and could aid in the development of dantrolene as a repurposed therapeutic agent for the treatment of USC to improve patient survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02419-w.
Collapse
|
42
|
It takes two to tango: Rycals and ATP snuggle up to bind ryanodine receptors. Structure 2022; 30:919-921. [PMID: 35803239 DOI: 10.1016/j.str.2022.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this issue of Structure, Melville and colleagues used cryo-EM to study the binding of ryanodine receptors to Rycals, compounds with the potential to treat skeletal and cardiac muscle disorders. Unexpectedly, they found that Rycal packs against an ATP in a peripheral pocket, which stabilizes the closed channel state.
Collapse
|
43
|
Cui X, Zhang Y, Lu Y, Xiang M. ROS and Endoplasmic Reticulum Stress in Pulmonary Disease. Front Pharmacol 2022; 13:879204. [PMID: 35559240 PMCID: PMC9086276 DOI: 10.3389/fphar.2022.879204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Pulmonary diseases are main causes of morbidity and mortality worldwide. Current studies show that though specific pulmonary diseases and correlative lung-metabolic deviance own unique pathophysiology and clinical manifestations, they always tend to exhibit common characteristics including reactive oxygen species (ROS) signaling and disruptions of proteostasis bringing about accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER is generated by the unfolded protein response. When the adaptive unfolded protein response (UPR) fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis, which is called ER stress. The ER stress mainly includes the accumulation of misfolded and unfolded proteins in lumen and the disorder of Ca2+ balance. ROS mediates several critical aspects of the ER stress response. We summarize the latest advances in of the UPR and ER stress in the pathogenesis of pulmonary disease and discuss potential therapeutic strategies aimed at restoring ER proteostasis in pulmonary disease.
Collapse
Affiliation(s)
- Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingdong Lu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
45
|
The reduced contraction capacity of palatopharyngeal muscle in OSAHS is related to the decreased intra-cellular [Ca2+] mediated by low RyR1 and DHPRα1s expression. Sleep Breath 2022; 26:1791-1799. [DOI: 10.1007/s11325-022-02562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
|
46
|
Melville Z, Kim K, Clarke OB, Marks AR. High-resolution structure of the membrane-embedded skeletal muscle ryanodine receptor. Structure 2022; 30:172-180.e3. [PMID: 34469755 PMCID: PMC8741649 DOI: 10.1016/j.str.2021.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/23/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The type 1 ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for skeletal muscle excitation-contraction coupling and is the largest known ion channel, composed of four 565-kDa protomers. Cryogenic electron microscopy (cryo-EM) studies of the RyR have primarily used detergent to solubilize the channel; in the present study, we have used cryo-EM to solve high-resolution structures of the channel in liposomes using a gel-filtration approach with on-column detergent removal to form liposomes and incorporate the channel simultaneously. This allowed us to resolve the structure of the channel in the primed and open states at 3.4 and 4.0 Å, respectively, with a single dataset. This method offers validation for detergent-based structures of the RyR and offers a starting point for utilizing a chemical gradient mimicking the SR, where Ca2+ concentrations are millimolar in the lumen and nanomolar in the cytosol.
Collapse
Affiliation(s)
- Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Kookjoo Kim
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA; Department of Anesthesiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA; Clyde & Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| |
Collapse
|
47
|
Yamaguchi N, Zhang XH, Morad M. CRISPR/Cas9 Gene Editing of RYR2 in Human iPSC-Derived Cardiomyocytes to Probe Ca 2+ Signaling Aberrancies of CPVT Arrhythmogenesis. Methods Mol Biol 2022; 2573:41-52. [PMID: 36040585 DOI: 10.1007/978-1-0716-2707-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) provide a powerful platform to study biophysical and molecular mechanisms underlying the pathophysiology of genetic mutations associated with cardiac arrhythmia. Human iPSCs can be generated by reprograming of dermal fibroblasts of normal or diseased individuals and be differentiated into cardiac myocytes. Obtaining biopsies from patients afflicted with point mutations causing arrhythmia is often a cumbersome process even when patients are available. Recent development of CRISPR/Cas9 gene editing system makes it, however, possible to introduce arrhythmia-associated point mutations at the desired loci of the wild-type hiPSCs in relatively short times. This platform was used by us to compare the Ca2+ signaling phenotypes of cardiomyocytes harboring point mutations in cardiac Ca2+ release channel, type-2 ryanodine receptor (RyR2), since over 200 missense mutations in RYR2 gene appear to be associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1). We have created cardiac myocytes harboring mutations in different domains of RyR2, to study not only their Ca2+ signaling consequences but also their drug and domain specificity as related to CPVT1 pathology. In this chapter, we describe our procedures to establish CRISPR/Cas9 gene-edited hiPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Naohiro Yamaguchi
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, SC, USA.
- Department of Cell Biology and Anatomy, University of South Carolina, Charleston, SC, USA.
| | - Xiao-Hua Zhang
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, SC, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Charleston, SC, USA
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, SC, USA.
- Department of Cell Biology and Anatomy, University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
48
|
Lee H, Sung EJ, Seo S, Min EK, Lee JY, Shim I, Kim P, Kim TY, Lee S, Kim KT. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. ENVIRONMENT INTERNATIONAL 2021; 157:106802. [PMID: 34358914 DOI: 10.1016/j.envint.2021.106802] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Limited studies on multi-omics have been conducted to comprehensively investigate the molecular mechanism underlying the developmental neurotoxicity of perfluorooctanesulfonic acid (PFOS). In this study, the locomotor behavior of zebrafish larvae was assessed under the exposure to 0.1-20 μM PFOS based on its reported neurobehavioral effect. After the number of zebrafish larvae was optimized for proteomics and metabolomics studies, three kinds of omics (i.e., transcriptomics, proteomics, and metabolomics) were carried out with zebrafish larvae exposed to 0.1, 1, 5, and 10 μM PFOS. More importantly, a data-driven integration of multi-omics was performed to elucidate the toxicity mechanism involved in developmental neurotoxicity. In a concentration-dependent manner, exposure to PFOS provoked hyperactivity and hypoactivity under light and dark conditions, respectively. Individual omics revealed that PFOS exposure caused perturbations in the pathways of neurological function, oxidative stress, and energy metabolism. Integrated omics implied that there were decisive pathways for axonal deformation, neuroinflammatory stimulation, and dysregulation of calcium ion signaling, which are more clearly specified for neurotoxicity. Overall, our findings broaden the molecular understanding of the developmental neurotoxicity of PFOS, for which multi-omics and integrated omics analyses are efficient for discovering the significant molecular pathways related to developmental neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eun Ji Sung
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
49
|
Cardiac ryanodine receptor N-terminal region biosensors identify novel inhibitors via FRET-based high-throughput screening. J Biol Chem 2021; 298:101412. [PMID: 34793835 PMCID: PMC8689225 DOI: 10.1016/j.jbc.2021.101412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation–contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose–response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation–contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation–contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.
Collapse
|
50
|
Gleitze S, Paula-Lima A, Núñez MT, Hidalgo C. The calcium-iron connection in ferroptosis-mediated neuronal death. Free Radic Biol Med 2021; 175:28-41. [PMID: 34461261 DOI: 10.1016/j.freeradbiomed.2021.08.231] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
Iron, through its participation in oxidation/reduction processes, is essential for the physiological function of biological systems. In the brain, iron is involved in the development of normal cognitive functions, and its lack during development causes irreversible cognitive damage. Yet, deregulation of iron homeostasis provokes neuronal damage and death. Ferroptosis, a newly described iron-dependent cell death pathway, differs at the morphological, biochemical, and genetic levels from other cell death types. Ferroptosis is characterized by iron-mediated lipid peroxidation, depletion of the endogenous antioxidant glutathione and altered mitochondrial morphology. Although iron promotes the emergence of Ca2+ signals via activation of redox-sensitive Ca2+ channels, the role of Ca2+ signaling in ferroptosis has not been established. The early dysregulation of the cellular redox state observed in ferroptosis is likely to disturb Ca2+ homeostasis and signaling, facilitating ferroptotic neuronal death. This review presents an overview of the role of iron and ferroptosis in neuronal function, emphasizing the possible involvement of Ca2+ signaling in these processes. We propose, accordingly, that the iron-ferroptosis-Ca2+ association orchestrates the progression of cognitive dysfunctions and memory loss that occurs in neurodegenerative diseases. Therefore, to prevent iron dyshomeostasis and ferroptosis, we suggest the use of drugs that target the abnormal Ca2+ signaling caused by excessive iron levels as therapy for neurological disorders.
Collapse
Affiliation(s)
- Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|