1
|
Gao J, Li Y, Zou X, Lei T, Xu T, Chen Y, Wang Z. HEY1-mediated cisplatin resistance in lung adenocarcinoma via epithelial-mesenchymal transition. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:18. [PMID: 36396748 DOI: 10.1007/s12032-022-01886-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Lung cancer is one of the most common malignancies and the leading cause of cancer-related death in the world. In patients with advanced lung adenocarcinoma who are negative for driver gene mutations, platinum-based chemotherapy represented by cisplatin remain the standard of care. Therefore, studying the mechanism behind inevitable cisplatin resistance in lung adenocarcinoma is still important. In this study, the potentially related differential expression gene for cisplatin resistance in lung adenocarcinoma was screened in the GEO database. The expression level of HEY1 in cell lines of lung adenocarcinoma was detected and HEY1 expression was up-regulated in cisplatin-resistant lung adenocarcinoma tissues and cell lines A549/DDP. Patients with high HEY1 expression have poor prognosis after cisplatin therapy. Gain and loss function assays uncovered that HEY1 could regulate the cisplatin sensitivity of NSCLC cells. In vivo experiments have confirmed that silence of HEY1 expression can induce cisplatin resistance, and epithelial-mesenchymal transition (EMT) changes occur during this process. Mechanically, HEY1 silencing significantly up-regulated E-cadherin expression and down-regulated Vimentin in A549/DDP cells. While up-regulation of HEY1 resulted in down-regulation of E-cadherin and up-regulation of Vimentin in A549 cells. Immunohistochemical experiments confirmed that E-cadherin was significantly decreased, and Vimentin expression was significantly up-regulated in cisplatin-resistant lung adenocarcinoma tissues. HEY1 can mediate the occurrence of cisplatin-acquired resistance in lung adenocarcinoma, and the possible mechanism is to regulate the EMT. The results of this study can provide a new direction and target for clinical research on the reversal of cisplatin resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jin Gao
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China.,Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing, Medical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yadong Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 30#, Nanjing, 210029, Jiangsu, People's Republic of China.,Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Xiaoteng Zou
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Tianyao Lei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 30#, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Wu Y, Ma Z, Zhang Y, Zhang M, Zhang W, Zhang M, Shi X, Li W, Liu W. Cyclophilin A regulates A549 cells apoptosis via stabilizing Twist1 protein. J Cell Sci 2021; 135:273668. [PMID: 34881782 DOI: 10.1242/jcs.259018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
Cyclophilin A (CypA) is an essential member of the immunophilin family. As an intracellular target of immunosuppressive drug cyclosporin A (CsA) or a peptidyl-prolyl cis/trans isomerase (PPIase), it catalyzes the cis-trans isomerization of proline amidic peptide bonds, through which, it regulates a variety of biological processes, such as intracellular signaling, transcription, and apoptosis. In this study, we found that intracellular CypA enhanced Twist1 phosphorylation at Ser68 and inhibited apoptosis in A549 cells. Mechanistically, CypA could mediate the phosphorylation of Twist1 at Ser68 via p38 MAPK, which inhibited its ubiquitination-mediated degradation. In addition, CypA increased Twist-p65 interaction and nuclear accumulation, which regulated Twist1-dependent expression of CDH1 and CDH2. Our findings collectively indicated the role of CypA in Twist1-mediated A549 cells apoptosis through stabilizing Twist1 protein.
Collapse
Affiliation(s)
- Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yanyan Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenwen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Menghao Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xixi Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Wei C, Zhao X, Wang L, Zhang H. TRIP suppresses cell proliferation and invasion in choroidal melanoma via promoting the proteasomal degradation of Twist1. FEBS Lett 2020; 594:3170-3181. [PMID: 32640040 DOI: 10.1002/1873-3468.13882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Choroidal melanoma (CM) remains the most prevalent form of intraocular malignancy, and the prognosis of affected patients is poor. While the E3 ubiquitin ligase TRAF-interacting protein (TRIP) is known to play key regulatory roles in multiple diseases, its relevance in CM remains uncertain. In the present study, we found that TRIP overexpression is sufficient to inhibit the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of CM cells in vitro, whereas the opposite phenotypes are observed following TRIP knockdown. We further determined that TRIP is able to promote the K48-polyubiquitination of EMT-associated transcription factor Twist-related protein 1, thereby suppressing EMT progression. Together, our results suggest that TRIP plays an important role in regulating the progression of CM and that it may therefore be an important therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Chao Wei
- Department of Ophthalmology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaofei Zhao
- Department of Ophthalmology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- Department of Ophthalmology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Han Zhang
- Department of Ophthalmology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Li F, Hu Q, He T, Xu J, Yi Y, Xie S, Ding L, Fu M, Guo R, Xiao ZXJ, Niu M. The Deubiquitinase USP4 Stabilizes Twist1 Protein to Promote Lung Cancer Cell Stemness. Cancers (Basel) 2020; 12:1582. [PMID: 32549341 PMCID: PMC7352958 DOI: 10.3390/cancers12061582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer stem cells (CSCs) play a pivotal role in tumor development, drug resistance, metastasis and recurrence of lung cancer. Thus, it is of great importance to study the mechanism by which CSCs are regulated. In this study, we demonstrate that the deubiquitinase USP4 is critically important in promoting lung cancer stemness. Silencing of USP4 leads to reduction of Oct4 and Sox2 expression, decreased CD133+ cell population and inhibition of tumorsphere formation. Conversely, ectopic expression of USP4 significantly enhances lung cancer cell stemness, which is effectively rescued by simultaneous silencing of Twist1. Mechanistically, we identified USP4 as a novel deubiquitinase of Twist1. USP4 binds to, deubiquitinates and stabilizes Twist1 protein. Furthermore, we show that USP4 expression is elevated in human lung cancer specimens and is positively correlated with Twist1 expression. High expression of USP4/Twist1 is associated with poor clinical outcomes of lung cancer patients. Together, this study highlights an important role for USP4 in lung cancer stemness and suggests USP4 as a potential target for lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.L.); (Q.H.); (T.H.); (J.X.); (Y.Y.); (S.X.); (L.D.); (M.F.); (R.G.)
| | - Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.L.); (Q.H.); (T.H.); (J.X.); (Y.Y.); (S.X.); (L.D.); (M.F.); (R.G.)
| |
Collapse
|
5
|
MAY, a novel tubulin inhibitor, induces cell apoptosis in A549 and A549/Taxol cells and inhibits epithelial-mesenchymal transition in A549/Taxol cells. Chem Biol Interact 2020; 323:109074. [DOI: 10.1016/j.cbi.2020.109074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
|