1
|
Ge Y, Chen X. Interleukin-36β inhibits CD4 +CD25 + regulatory T cells by activating endoplasmic reticulum-phagy in septic mice. Int Immunopharmacol 2025; 151:114349. [PMID: 40015206 DOI: 10.1016/j.intimp.2025.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND CD4+CD25+ regulatory T cells (Tregs) contribute to the pathogenesis of sepsis-induced immunosuppression. We have identified interleukin (IL)-36β as a critical cytokine regulating CD4+CD25+ Treg activity. METHODS This study aimed to further investigate the underlying mechanism of IL-36β-triggered responses in murine CD4+CD25+ Tregs in presence of lipolysaccharide (LPS) and in a mouse model of sepsis induced by cecal and puncture (CLP). RESULTS Following LPS exposure, ER-phagy activity increased, peaked at 12 h, and then markedly declined. Furthermore, we observed that IL-36β could activate ER-phagy of CD4+CD25+ Tregs under LPS challenge. Mechanistic investigations revealed the critical involvement of the endoplasmic reticulum (ER) stress-related protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4) signaling axis in IL-36β-induced ER-phagy. Moreover, IL-36β knockout (IL-36β-/-) strongly dampened ER-phagy and PERK-ATF4 signaling under LPS stimulation compared to the wild-type group. IL-36β-elicited effects on CD4+CD25+ Tregs were significantly abrogated by FAM134B (the ER-phagy-specific receptor) knockout or salubrinal (a specific inhibitor of the PERK-ATF4 pathway). In addition, IL-36β was potent in diminishing serum levels of creatinine (Cr), aspartate transaminase (AST), and alanine transaminase (ALT) and attenuated histopathologic alterations in the liver, kidneys, and lungs of CLP mice. Importantly, the absence of IL-36β notably aggravated the survival rate of septic mice, indicating a beneficial role in septic prognosis. CONCLUSION IL-36β can down-regulate the immune activity of CD4+CD25+ Tregs via ER-phagy induction. Our study might provide novel targets for therapeutic strategies to prevent the development of sepsis.
Collapse
Affiliation(s)
- Yun Ge
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, PR China
| | - Xi Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Wang F, Xu Y, Wang Y, Liu Q, Li Y, Zhang W, Nong H, Zhang J, Zhao H, Yang H, Guo L, Li J, Li H, Yang Q. FAM134B-mediated endoplasmic reticulum autophagy protects against cisplatin-induced spiral ganglion neuron damage. Front Pharmacol 2025; 15:1462421. [PMID: 39949397 PMCID: PMC11821923 DOI: 10.3389/fphar.2024.1462421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction Cochlear spiral ganglion neurons (SGNs) could be damaged by ototoxic drug, cisplatin (Cis), during which process autophagy was involved. FAM134B, the first detected endoplasmic reticulum autophagy (ER-phagy) receptor, plays an important part in the dynamic remodelling of the ER, the mutation of which affects sensory and autonomic neurons. However whether FAM134B-mediated ER-phagy involved in Cis-induced SGN damage or not was unknown. The present study was designed to determine whether FAM134B is expressed in SGNs of C57BL/6 mice and, if so, to explore the potential function of FAM134B in Cis-induced SGN damage in vitro. Methods Middle turns of neonatal murine cochleae were cultured and treated with 30 μM Cis in vitro. The distribution of FAM134B, morphological changes of SGNs, and the colocalization of ER segments with lysosomes were measured by immunofluorescence (IF). Apoptosis was measured by TUNEL staining. The expression of FAM134B, proteins associated with ER stress, autophagy and apoptosis was measured by western blot. The reactive oxygen specie (ROS) levels were evaluated by MitoSOX Red and 2',7'-Dchlorodihydrofluorescein diacetate (DCFH-DA) probe. Anc80-Fam134b shRNA was used to knockdown the expression of FAM134B in SGNs. Results We first found the expression of FAM134B in the cytoplasm of SGNs, especially in the fourth postnatal day mice. Results showed decreases in the number of SGNs and FAM134B expression, as well as increases of ROS level, ER stress, ER-phagy, and apoptosis after Cis stimulus. Inhibiting autophagy increased the expression of FAM134B, and aggravated Cis-induced SGN damage, while the opposite changes were observed when autophagy was activated. Additionally, co-treatment with the N-Acetyl-L-Cysteine (NAC), ROS scavenger, alleviated Cis-induced ER stress, ER-phagy, and apoptosis. What's more, knockdown the expression of FAM134B in SGNs made SGNs more vulnerable to cisplatin-induced injury. Discussion The present study revealed the expression pattern of FAM134B in C57BL/6 murine SGNs for the first time. Moreover, our work further verified the protective function of FAM134B mediated by ER-phagy in Cis-induced SGN apoptosis, at least partially, correlated with the accumulation of ROS and induction of ER stress, though the detailed regulatory mechanism through which needs much more work to reveal.
Collapse
Affiliation(s)
- Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yue Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yajie Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanan Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Huiming Nong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junhong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People’s Hospital, Peking University, Beijing, China
| | - Huaqian Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Hong Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Guo H, Huang RR, Qu SS, Yao Y, Chen SH, Ding SL, Li YL. FAM134B deletion exacerbates apoptosis and epithelial-to-mesenchymal transition in rat lungs exposed to hyperoxia. iScience 2024; 27:110385. [PMID: 39092177 PMCID: PMC11292547 DOI: 10.1016/j.isci.2024.110385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Oxygen therapy is widely used in clinical practice; however, prolonged hyperoxia exposure may result in hyperoxic acute lung injury (HALI). In this study, we investigated the role of FAM134B in hyperoxia-induced apoptosis, cell proliferation, and epithelial-to-mesenchymal transition (EMT) using RLE-6TN cells and rat lungs. We also studied the effect of CeO2-NPs on RLE-6TN cells and lungs following hyperoxia exposure. FAM134B was inhibited in RLE-6TN cells and rat lungs following hyperoxia exposure. Overexpressing FAM134B promoted cell proliferation, and reduced EMT and apoptosis following hyperoxia exposure. FAM134B activation increased ER-phagy, decreased apoptosis, improved lung structure damage, and decreased collagen fiber deposition to limit lung injury. These effects could be reversed by PI3K/AKT pathway inhibitor LY294002. Additionally, CeO2-NPs protected RLE-6TN cells and lung damage following hyperoxia exposure by ameliorating impaired ER-phagy. Therefore, FAM134B restoration is a potential therapeutic target for the HALI. Moreover, CeO2-NPs can be used for the treatment of HALI.
Collapse
Affiliation(s)
- Hong Guo
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Anesthesiology, Inner Mongolia Hospital of Peking University Cancer Hospital, Affiliated People's Hospital , Inner Mongolia Medical University, Hohhot 10020, China
| | - Rong-Rong Huang
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Shan-Shan Qu
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ying Yao
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Su-Heng Chen
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Shao-Li Ding
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yu-Lan Li
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
5
|
Kanamori A, Hinaga S, Hirata Y, Amaya F, Oh-Hashi K. Molecular characterization of wild-type and HSAN2B-linked FAM134B. Mol Biol Rep 2023:10.1007/s11033-023-08517-y. [PMID: 37273064 DOI: 10.1007/s11033-023-08517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Family with sequence similarity 134, member B (FAM134B), also known as Reticulophagy regulator 1 (RETREG1), is an ER-phagy receptor involved in ER homeostasis. Congenital mutations in the FAM134B gene have been reported to be associated with hereditary sensory and autonomic neuropathy type 2B (HSAN2B); however, the molecular differences between wild-type and HSAN2B-linked FAM134B are not fully understood. METHODS AND RESULTS We prepared several human FAM134B constructs, such as the HSAN2B-linked mutant, and compared their features with those of wild-type FAM134B by transfecting these constructs into FAM134B-deficient Neuro2a cells. Although intrinsic FAM134B protein expression in wild-type Neuro2a cells was affected by the supply of amino acids in the culture medium, the expression of each HSAN2B-linked mutant FAM134B protein was hardly affected by serum and amino acid deprivation. On the other hand, the intracellular localization of GFP-tagged HSAN2B-linked mutants, except for P7Gfs133X, overlapped well with ER-localized SP-RFPKDEL and did not differ from that of GFP-tagged wild-type FAM134B. However, analysis of protein‒protein interactions using the NanoBiT reporter assay revealed the difference between wild-type and C-terminal truncated mutant FAM134B. Furthermore, this NanoBiT assay demonstrated that both wild-type and G216R FAM134B interacted with LC3/GABARAPL1 to the same extent, but the FAM134B construct with mutations near the LC3-interacting region (LIR) did not. Similar to the NanoBiT assay, the C-terminal-truncated FAM134B showed lower ER-phagy activities, as assessed by the cotransfection of GFP-tagged reporters. CONCLUSIONS We showed that wild-type and HSAN2B-linked FAM134B have different molecular characteristics by transfecting cells with various types of constructs. Thus, this study provides new insights into the molecular mechanisms underlying HSAN2B as well as the regulation of ER-phagy.
Collapse
Affiliation(s)
- Akane Kanamori
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shohei Hinaga
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoko Hirata
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Fumimasa Amaya
- Department of Pain Management and Palliative Care Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-Ku, Kyoto, 602-0841, Japan
| | - Kentaro Oh-Hashi
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|