1
|
Geudens N, Martins JC. Cyclic Lipodepsipeptides From Pseudomonas spp. - Biological Swiss-Army Knives. Front Microbiol 2018; 9:1867. [PMID: 30158910 PMCID: PMC6104475 DOI: 10.3389/fmicb.2018.01867] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclic lipodepsipeptides produced by Pseudomonas spp. (Ps-CLPs) are biosurfactants that constitute a diverse class of versatile bioactive natural compounds with promising application potential. While chemically diverse, they obey a common structural blue-print, allowing the definition of 14 distinct groups with multiple structurally homologous members. In addition to antibacterial and antifungal properties the reported activity profile of Ps-CLPs includes their effect on bacterial motility, biofilm formation, induced defense responses in plants, their insecticidal activity and anti-proliferation effects on human cancer cell-lines. To further validate their status of potential bioactive substances, we assessed the results of 775 biological tests on 51 Ps-CLPs available from literature. From this, a fragmented view emerges. Taken as a group, Ps-CLPs present a broad activity profile. However, reports on individual Ps-CLPs are often much more limited in the scope of organisms that are challenged or activities that are explored. As a result, our analysis shows that the available data is currently too sparse to allow biological function to be correlated to a particular group of Ps-CLPs. Consequently, certain generalizations that appear in literature with respect to the biological activities of Ps-CLPs should be nuanced. This notwithstanding, the data for the two most extensively studied Ps-CLPs does indicate they can display activities against various biological targets. As the discovery of novel Ps-CLPs accelerates, current challenges to complete and maintain a useful overview of biological activity are discussed.
Collapse
Affiliation(s)
- Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Blaskó Á, Gazdag Z, Gróf P, Máté G, Sárosi S, Krisch J, Vágvölgyi C, Makszin L, Pesti M. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study. Apoptosis 2016; 22:175-187. [DOI: 10.1007/s10495-016-1321-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Türmer K, Orbán J, Gróf P, Nyitrai M. FASCIN and alpha-actinin can regulate the conformation of actin filaments. Biochim Biophys Acta Gen Subj 2015; 1850:1855-61. [PMID: 26025636 DOI: 10.1016/j.bbagen.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Actin filament bundling proteins mediate numerous processes in cells such as the formation of cell membrane protrusions or cell adhesions and stress fiber based locomotion. Among them alpha-actinin and fascin are the most abundant ones. This work characterizes differences in molecular motions in actin filaments due to the binding of these two actin bundling proteins. METHODS We investigated how alpha-actinin and fascin binding modify the conformation of actin filaments by using conventional and saturation transfer EPR methods. RESULTS The result characteristic for motions on the microsecond time scale showed that both actin bundling proteins made the bending and torsional twisting of the actin filaments slower. When nanosecond time scale molecular motions were described the two proteins were found to induce opposite changes in the actin filaments. The binding of one molecule of alpha-actinin or fascin modified the conformation of numerous actin protomers. CONCLUSION As fascin and alpha-actinin participates in different cellular processes their binding can serve the proper tuning of the structure of actin by establishing the right conformation for the interactions with other actin binding proteins. Our observations are in correlation with the model where actin filaments fulfill their biological functions under the regulation by actin-binding proteins. GENERAL SIGNIFICANCE Supporting the general model for the cellular regulation of the actin cytoskeleton we showed that two abundant actin bundling proteins, fascin and alpha-actinin, alter the conformation of actin filaments through long range allosteric interactions in two different ways providing the structural framework for the adaptation to specific biological functions.
Collapse
Affiliation(s)
- Katalin Türmer
- Department of Biophysics, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7624, Hungary; János Szentágothai Research Center, Pécs H-7624, Hungary
| | - József Orbán
- Department of Biophysics, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7624, Hungary; János Szentágothai Research Center, Pécs H-7624, Hungary; MTA-PTE High Intensity Terahertz Research Group, Hungary
| | - Pál Gróf
- Department of Biophysics and Radiation Biology, Semmelweis University of Medicine, IX. Tűzoltó u. 37-47, Budapest H-1095, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7624, Hungary; János Szentágothai Research Center, Pécs H-7624, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Hungary.
| |
Collapse
|
4
|
Budai L, Kaszás N, Gróf P, Lenti K, Maghami K, Antal I, Klebovich I, Petrikovics I, Budai M. Liposomes for topical use: a physico-chemical comparison of vesicles prepared from egg or soy lecithin. Sci Pharm 2013; 81:1151-66. [PMID: 24482779 PMCID: PMC3867246 DOI: 10.3797/scipharm.1305-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/14/2013] [Indexed: 11/22/2022] Open
Abstract
Developments in nanotechnology and in the formulation of liposomal systems provide the opportunity for cosmetic dermatology to design novel delivery systems. Determination of their physico-chemical parameters has importance when developing a nano-delivery system. The present study highlights some technological aspects/characteristics of liposomes formulated from egg or soy lecithins for topical use. Alterations in the pH, viscosity, surface tension, and microscopic/macroscopic appearance of these vesicular systems were investigated. The chemical composition of the two types of lecithin was checked by mass spectrometry. Caffeine, as a model molecule, was encapsulated into multilamellar vesicles prepared from the two types of lecithin: then zeta potential, membrane fluidity, and encapsulation efficiency were compared. According to our observations, samples prepared from the two lecithins altered the pH in opposite directions: egg lecithin increased it while soy lecithin decreased it with increased lipid concentration. Our EPR spectroscopic results showed that the binding of caffeine did not change the membrane fluidity in the temperature range of possible topical use (measured between 2 and 50 °C). Combining our results on encapsulation efficiency for caffeine (about 30% for both lecithins) with those on membrane fluidity data, we concluded that the interaction of caffeine with the liposomal membrane does not change the rotational motion of the lipid molecules close to the head group region. In conclusion, topical use of egg lecithin for liposomal formulations can be preferred if there are no differences in the physico-chemical properties due to the encapsulated drugs, because the physiological effects of egg lecithin vesicles on skin are significantly better than that of soy lecithin liposomes.
Collapse
Affiliation(s)
- Lívia Budai
- Semmelweis University, Department of Pharmaceutics, Hőgyes E. u. 7., H-1092, Budapest, Hungary
| | - Nóra Kaszás
- Semmelweis University, Department of Pharmaceutics, Hőgyes E. u. 7., H-1092, Budapest, Hungary
| | - Pál Gróf
- Semmelweis University, Department of Biophysics and Radiation Biology, Tűzoltó u. 37-47., H-1094, Budapest, Hungary
| | - Katalin Lenti
- Semmelweis University, Faculty of Health Sciences, Department of Morphology and Physiology, Vas u. 17, H-1088, Budapest, Hungary
| | - Katayoon Maghami
- Semmelweis University, Department of Pharmaceutics, Hőgyes E. u. 7., H-1092, Budapest, Hungary
| | - István Antal
- Semmelweis University, Department of Pharmaceutics, Hőgyes E. u. 7., H-1092, Budapest, Hungary
| | - Imre Klebovich
- Semmelweis University, Department of Pharmaceutics, Hőgyes E. u. 7., H-1092, Budapest, Hungary
| | - Ilona Petrikovics
- Sam Houston State University, Department of Chemistry, TX-77340, Huntsville, USA
| | - Marianna Budai
- Semmelweis University, Department of Pharmaceutics, Hőgyes E. u. 7., H-1092, Budapest, Hungary
| |
Collapse
|
5
|
Singh SB, Ondeyka J, Harris G, Herath K, Zink D, Vicente F, Bills G, Collado J, Platas G, González del Val A, Martin J, Reyes F, Wang H, Kahn JN, Galuska S, Giacobbe R, Abruzzo G, Roemer T, Xu D. Isolation, structure, and biological activity of Phaeofungin, a cyclic lipodepsipeptide from a Phaeosphaeria sp. Using the Genome-Wide Candida albicans Fitness Test. JOURNAL OF NATURAL PRODUCTS 2013; 76:334-345. [PMID: 23259972 DOI: 10.1021/np300704s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phaeofungin (1), a new cyclic depsipeptide isolated from Phaeosphaeria sp., was discovered by application of reverse genetics technology, using the Candida albicans fitness test (CaFT). Phaeofungin is comprised of seven amino acids and a β,γ-dihydroxy-γ-methylhexadecanoic acid arranged in a 25-membered cyclic depsipeptide. Five of the amino acids were assigned with d-configurations. The structure was elucidated by 2D-NMR and HRMS-MS analysis of the natural product and its hydrolyzed linear peptide. The absolute configuration of the amino acids was determined by Marfey's method by complete and partial hydrolysis of 1. The CaFT profile of the phaeofungin-containing extract overlapped with that of phomafungin (3), another structurally different cyclic lipodepsipeptide isolated from a Phoma sp. using the same approach. Comparative biological characterization further demonstrated that these two fungal lipodepsipeptides are functionally distinct. While phomafungin was potentiated by cyclosporin A (an inhibitor of the calcineurin pathway), phaeofungin was synergized with aureobasidin A (2) (an inhibitor of the sphingolipid biosynthesis) and to some extent caspofungin (an inhibitor of glucan synthase). Furthermore, phaeofungin caused ATP release in wild-type C. albicans strains but phomafungin did not. It showed modest antifungal activity against C. albicans (MIC 16-32 μg/mL) and better activity against Aspergillus fumigatus (MIC 8-16 μg/mL) and Trichophyton mentagrophytes (MIC 4 μg/mL). The linear peptide was inactive, suggesting that the macrocyclic depsipeptide ring is essential for target engagement and antifungal activity.
Collapse
Affiliation(s)
- Sheo B Singh
- Department of Medicinal Chemistry, Merck Research Laboratories , PO Box 2000, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kaszás N, Bozó T, Budai M, Gróf P. Ciprofloxacin Encapsulation Into Giant Unilamellar Vesicles: Membrane Binding and Release. J Pharm Sci 2013; 102:694-705. [DOI: 10.1002/jps.23410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Bensaci MF, Gurnev PA, Bezrukov SM, Takemoto JY. Fungicidal Activities and Mechanisms of Action of Pseudomonas syringae pv. syringae Lipodepsipeptide Syringopeptins 22A and 25A. Front Microbiol 2011; 2:216. [PMID: 22046175 PMCID: PMC3201023 DOI: 10.3389/fmicb.2011.00216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/11/2011] [Indexed: 11/13/2022] Open
Abstract
The plant-associated bacterium Pseudomonas syringae pv. syringae simultaneously produces two classes of metabolites: the small cyclic lipodepsinonapeptides such as the syringomycins and the larger cyclic lipodepsipeptide syringopeptins SP22 or SP25. The syringomycins inhibit a broad spectrum of fungi (but particularly yeasts) by lipid-dependent membrane interaction. The syringopeptins are phytotoxic and inhibitory to Gram-positive bacteria. In this study, the fungicidal activities of two major syringopeptins, SP22A and SP25A, and their mechanisms of action were investigated and compared to those of syringomycin E. SP22A and SP25A were observed to inhibit the fungal yeasts Saccharomyces cerevisiae and Candida albicans although less effectively than syringomycin E. S. cerevisiae mutants defective in ergosterol and sphingolipid biosyntheses were less susceptible to SP22A and SP25A but the relative inhibitory capabilities of SRE vs. SP22A and SP25A were maintained. Similar differences were observed for capabilities to cause cellular K(+) and Ca(2+) fluxes in S. cerevisiae. Interestingly, in phospholipid bilayers the syringopeptins are found to induce larger macroscopic ionic conductances than syringomycin E but form single channels with similar properties. These findings suggest that the syringopeptins target the yeast plasma membrane, and, like syringomycin E, employ a lipid-dependent channel-forming mechanism of action. The differing degrees of growth inhibition by these lipodepsipeptides may be explained by differences in their hydrophobicities. The more hydrophobic SP22A and SP25A might interact more strongly with the yeast cell wall that would create a selective barrier for their incorporation into the plasma membrane.
Collapse
|
8
|
Parthasarathi R, Tian J, Redondo A, Gnanakaran S. Quantum Chemical Study of Carbohydrate–Phospholipid Interactions. J Phys Chem A 2011; 115:12826-40. [DOI: 10.1021/jp204015j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- R. Parthasarathi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jianhui Tian
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Antonio Redondo
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S. Gnanakaran
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
9
|
Anselmi M, Eliseo T, Zanetti-Polzi L, Fullone MR, Fogliano V, Di Nola A, Paci M, Grgurina I. Structure of the lipodepsipeptide syringomycin E in phospholipids and sodium dodecylsulphate micelle studied by circular dichroism, NMR spectroscopy and molecular dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2102-10. [PMID: 21658366 DOI: 10.1016/j.bbamem.2011.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Syringomycin E (SRE) is a member of a family of lipodepsipeptides that characterize the secondary metabolism of the plant-associated bacteria Pseudomonas syringae pv. syringae. It displays phytotoxic, antifungal and haemolytic activities, due to the membrane interaction and ion channel formation. To gain an insight into the conformation of SRE in the membrane environment, we studied the conformation of SRE bound to SDS micelle, a suitable model for the membrane-bound SRE. In fact, highly similar circular dichroism (CD) spectra were obtained for SRE bound to sodium dodecylsulphate (SDS) and to a phospholipid bilayer, indicating the conformational equivalence of SRE in these two media, at difference with the CD spectrum of SRE in water solution. The structure of SDS-bound SRE was determined by NMR spectroscopy combined with molecular dynamics calculations in octane environment. The results of this study highlight the influence of the interaction with lipids in determining the three-dimensional structure of SRE and provide the basis for further investigations on structural determinants of syringomycin E-membrane interaction.
Collapse
|
10
|
Budai M, Chapela P, Gróf P, Zimmer A, Wales ME, Wild JR, Klebovich I, Petrikovics I, Szilasi M. Physicochemical characterization of stealth liposomes encapsulating an organophosphate hydrolyzing enzyme. J Liposome Res 2010; 19:163-8. [PMID: 19235545 DOI: 10.1080/17482940902724044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present studies were focused on the preparation and characterization of stericaly stabilized liposomes (SLs) encapsulating a recombinant organophosphorus hydrolyzing phosphotriesterase (OPH) enzyme for the antagonism of organophosphorus intoxication. Earlier results indicate that the liposomal carrier system provides an enhanced protective effect against the organophosphorus molecule paraoxon, presenting a more effective therapy with less toxicity than the most commonly used antidotes. Physicochemical characterization of the liposomal OPH delivery system is essential in order to get information on its in vitro stability and in vivo fate. Osmolarity, pH, viscosity, and encapsulation efficiency of the SL preparation and the surface potential of the vesicles were determined. The membrane rigidity and the impact of OPH enzyme on it was studied by electron-paramagnetic resonance spectroscopy, using spin probes. The in vitro stability of the liposomal preparations, the vesicle size distribution, and its alteration during a 3-week storage were followed by dynamic light-scattering measurements. Further, the stability of encapsulated and nonencapsulated OPH was compared in puffer and plasma.
Collapse
Affiliation(s)
- Marianna Budai
- Department of Pharmaceutics, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kupi T, Gróf P, Nyitrai M, Belágyi J. The uncoupling of the effects of formins on the local and global dynamics of actin filaments. Biophys J 2009; 96:2901-11. [PMID: 19348771 DOI: 10.1016/j.bpj.2008.11.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 11/30/2022] Open
Abstract
In this study, experiments were carried out in the conventional and saturation-transfer electron paramagnetic resonance (EPR) time domains to explore the effect of mDia1-FH2 formin fragments on the dynamic and conformational properties of actin filaments. Conventional EPR measurements showed that addition of formin to actin filaments produced local conformational changes in the vicinity of Cys-374 by increasing the flexibility of the protein matrix in the environment of the label. The results indicated that it was the binding of formin to the barbed end that resulted in these conformational changes. The conventional EPR results obtained with actin labeled on the Lys-61 site showed that the binding of formins could only slightly affect the structure of the subdomain 2 of actin, reflecting the heterogeneity of the formin-induced conformational changes. Saturation transfer EPR measurements revealed that the binding of formins decreased the torsional flexibility of the actin filaments in the microsecond time range. We concluded that changes in the local and the global conformational fluctuations of the actin filaments are associated with the binding of formins to actin. The results on the two EPR time domains showed that the effects of formins on the substantially different types of motions were uncoupled.
Collapse
Affiliation(s)
- Tünde Kupi
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | | | | | |
Collapse
|
12
|
Herath K, Harris G, Jayasuriya H, Zink D, Smith S, Vicente F, Bills G, Collado J, González A, Jiang B, Kahn JN, Galuska S, Giacobbe R, Abruzzo G, Hickey E, Liberator P, Xu D, Roemer T, Singh SB. Isolation, structure and biological activity of phomafungin, a cyclic lipodepsipeptide from a widespread tropical Phoma sp. Bioorg Med Chem 2008; 17:1361-9. [PMID: 19112025 DOI: 10.1016/j.bmc.2008.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/04/2008] [Accepted: 12/07/2008] [Indexed: 11/30/2022]
Abstract
We isolated a cyclic lipodepsipeptide, phomafungin, from a Phoma sp. The distinct antifungal activity of phomafungin in the crude extract was initially discovered by mechanistic profiling in the Candida albicans fitness test. The purified compound contains a 28 member ring consisting of eight amino acids and a beta-hydroxy-gamma-methyl-hexadecanoic acid, and displays a broad spectrum of antifungal activity against Candida spp., Aspergillus fumigatus and Trichophyton mentagrophytes with MIC of 2-8 microg/ml, and toxicity to mice at 25 mg/kg. The linear peptide derived from opening of the lactone ring was devoid of antifungal activity as well as toxicity. Phomafungin has been identified in a number of Phoma spp. collected from Africa and the Indian and Pacific Ocean islands.
Collapse
Affiliation(s)
- Kithsiri Herath
- Natural Products Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jia Y, Joly H, Omri A. Liposomes as a carrier for gentamicin delivery: Development and evaluation of the physicochemical properties. Int J Pharm 2008; 359:254-63. [DOI: 10.1016/j.ijpharm.2008.03.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
14
|
Coraiola M, Paletti R, Fiore A, Fogliano V, Serra MD. Fuscopeptins, antimicrobial lipodepsipeptides from Pseudomonas fuscovaginae,
are channel forming peptides active on biological and model membranes. J Pept Sci 2007; 14:496-502. [DOI: 10.1002/psc.970] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
A comparative study of the actions of alkylpyridinium salts from a marine sponge and related synthetic compounds in rat cultured hippocampal neurones. BMC Pharmacol 2007; 7:1. [PMID: 17274812 PMCID: PMC1797161 DOI: 10.1186/1471-2210-7-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 02/02/2007] [Indexed: 11/16/2022] Open
Abstract
Background Polymeric alkylpyridinium salts (poly-APS), are chemical defences produced by marine sponges including Reniera sarai. Poly-APS have previously been shown to effectively deliver macromolecules into cells. The efficiency of this closely follows the ability of poly-APS to form transient pores in membranes, providing strong support for a pore-based delivery mechanism. Recently, water soluble compounds have been synthesised that are structurally related to the natural polymers but bear a different number of pyridinium units. These compounds may share a number of bio-activities with poly-APS. Using electrophysiology, calcium imaging and 1,6-diphenyl-1,3,5-hexatriene imaging, the pore forming properties of poly-APS and four related synthetic oligomers have been tested on primary cultured rat hippocampal neurones. Results Acute application of poly-APS (0.5 μg/ml), reduced membrane potential, input resistance and suppressed action potential firing. Poly-APS evoked inward cation currents with linear current-voltage relationships similar to actions of pore formers on other cell types. Poly-APS (0.005–5 μg/ml) also produced Ca2+ transients in ~41% of neurones. The dose-dependence of poly-APS actions were complex, such that at 0.05 μg/ml and 5 μg/ml poly-APS produced varying magnitudes of membrane permeability depending on the order of application. Data from surface plasmon resonance analysis suggested accumulation of poly-APS in membranes and subsequent enhanced poly-APS binding. Even at 10–100 fold higher concentrations, none of the synthetic compounds produced changes in electrophysiological characteristics of the same magnitude as poly-APS. Of the synthetic oligomers tested compounds 1 (monomeric) and tetrameric 4 (5–50 μg/ml) induced small transient currents and 3 (trimeric) and 4 (tetrameric) produced significant Ca2+ transients in hippocampal neurones. Conclusion Poly-APS induced pore formation in hippocampal neurones and such pores were transient, with neurones recovering from exposure to these polymers. Synthetic structurally related oligomers were not potent pore formers when compared to poly-APS and affected a smaller percentage of the hippocampal neurone population. Poly-APS may have potential as agents for macromolecular delivery into CNS neurones however; the smaller synthetic oligomers tested in this study show little potential for such use. This comparative analysis indicated that the level of polymerisation giving rise to the supermolecular structure in the natural compounds, is likely to be responsible for the activity here reported.
Collapse
|
16
|
Béni S, Budai M, Noszál B, Gróf P. Molecular interactions in imatinib–DPPC liposomes. Eur J Pharm Sci 2006; 27:205-11. [PMID: 16289747 DOI: 10.1016/j.ejps.2005.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/05/2005] [Accepted: 09/27/2005] [Indexed: 11/19/2022]
Abstract
Imatinib (Gleevec) is a novel chemotherapeutic agent against Bcr-Abl protein tyrozine kinase, playing a crucial role in the therapy of chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST). Our study aimed at designing a liposomal imatinib formulation and investigating molecular interactions between lipid and imatinib, within the liposomal membrane. Multilamellar (MLV) and small unilamellar (SUV) vesicles were prepared from alpha-L-dipalmitoyl-phosphatidylcholine (DPPC). The effect of imatinib on the DPPC membrane was studied by electron paramagnetic resonance (EPR) spectroscopy and differential scanning calorimetry (DSC), at pH 5.2 and 9.0, where imatinib is in monocationic and neutral form, respectively. Our results indicate that imatinib interacts mainly with the DPPC head groups, leading to a slight increase in the mobility of the polar headgroups in case of MLVs. Contrary to that, imatinib causes a significant decrease in the fluidity of SUVs, which can be the result of a pH-dependent fusion/fission effect. The size distribution and morphology of liposomes were checked by dynamic light scattering and freeze-fracture electron microscopy. Our results direct attention to investigate the interactions of imatinib with artificial/biological membranes.
Collapse
Affiliation(s)
- Szabolcs Béni
- Semmelweis University, Department of Pharmaceutical Chemistry, Research Group for Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, H-1092 Budapest, Hogyes E. u. 9, Hungary
| | | | | | | |
Collapse
|
17
|
Morandi S, Ristori S, Berti D, Panza L, Becciolini A, Martini G. Association of sugar-based carboranes with cationic liposomes: an electron spin resonance and light scattering study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:53-63. [PMID: 15238258 DOI: 10.1016/j.bbamem.2004.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 04/07/2004] [Accepted: 04/08/2004] [Indexed: 11/23/2022]
Abstract
The possibility of cationic (di-oleoyltrimethylammonium propane, DOTAP)/(L-alpha-dioleoylphosphatidyl-ethanolamine, DOPE) liposomes to act as carriers of boronated compounds such as 1,2-dicarba-closo-dodecaboran(12)-1-ylmethyl](beta-D-galactopyranosyl)-(1-->4)-beta-D-glucopyranoside and 1,2-di-(beta-D-gluco-pyranosyl-ox)methyl-1,2-dicarba-closo-dodeca-borane(12) has been investigated by Electron Spin Resonance (ESR) of n-doxyl stearic acids (n-DSA) and Quasi-Elastic Light Scattering (QELS). Both these carboranes have potential use in Boron Neutron Capture Therapy (BNCT), which is a targeted therapy for the treatment of radiation resistant tumors. They were shown to give aggregation both in plain water and in saline solution. Carborane aggregates were, however, disrupted when DOTAP/DOPE liposome solutions were used as dispersing agents. The computer analysis of the ESR spectra from carborane-loaded liposomes allowed to establish an increase of the order degree in the liposome bilayer with increasing carborane concentration, together with a decreased mobility. The same discontinuities of both correlation time and order parameter with respect to temperature variations were observed in carborane-containing and carborane-free liposomes. This suggested that a homogeneous dispersion of nitroxides and carboranes occurred in the liposome bilayer. The ESR line shape analysis proved that no dramatic changes were induced in the liposome environment by carborane insertion. QELS data showed that the overall liposome structure was preserved, with a slight decrease in the mean hydrodynamic radius and increase in polydispersity caused by the guest molecules.
Collapse
Affiliation(s)
- Sara Morandi
- Dipartimento di Chimica, Laboratorio di Chimica Fisica delle Interfasi, Università di Firenze, 50019, Sesto Fiorentino no, Florence, Italy
| | | | | | | | | | | |
Collapse
|