1
|
Uwamahoro H, Collier WE, Nashar TO, Jaynes JM, Mortley DG, Davis CG, Kanyairita GG, Abdelazim EF, Igiramaboko JFR, Habineza C, Tumushimiyimana D, Rutayisire UN, Davis YA, Renard KL. Natural and Designed Cyclic Peptides as Potential Antiviral Drugs to Combat Future Coronavirus Outbreaks. Molecules 2025; 30:1651. [PMID: 40333520 PMCID: PMC12029270 DOI: 10.3390/molecules30081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
The COVID-19 pandemic has underscored the need for effective and affordable antiviral drugs. Anthropogenic activities have increased interactions among humans, animals, and wildlife, contributing to the emergence of new and re-emerging viral diseases. RNA viruses pose significant challenges due to their rapid mutation rates, high transmissibility, and ability to adapt to host immune responses and antiviral treatments. The World Health Organization has identified several diseases (COVID-19, Ebola, Marburg, Zika, and others), all caused by RNA viruses, designated as being of priority concern as potential causes of future pandemics. Despite advances in antiviral treatments, many viruses lack specific therapeutic options, and more importantly, there is a paucity of broad-spectrum antiviral drugs. Additionally, the high costs of current treatments such as Remdesivir and Paxlovid highlight the need for more affordable antiviral drugs. Cyclic peptides from natural sources or designed through molecular modeling have shown promise as antiviral drugs with stability, low toxicity, high target specificity, and low antiviral resistance properties. This review emphasizes the urgent need to develop specific and broad-spectrum antiviral drugs and highlights cyclic peptides as a sustainable solution to combat future pandemics. Further research into these compounds could provide a new weapon to combat RNA viruses and address the gaps in current antiviral drug development.
Collapse
Affiliation(s)
- Hilarie Uwamahoro
- Department of Chemistry, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.U.); (J.M.J.); (G.G.K.); (E.F.A.)
| | - Willard E. Collier
- Department of Chemistry, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.U.); (J.M.J.); (G.G.K.); (E.F.A.)
| | - Toufic O. Nashar
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Jesse M. Jaynes
- Department of Chemistry, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.U.); (J.M.J.); (G.G.K.); (E.F.A.)
- Department of Agricultural and Environmental Sciences, College of Agriculture, Environment & Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Desmond G. Mortley
- Department of Agricultural and Environmental Sciences, College of Agriculture, Environment & Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Cheryl G. Davis
- Department of Biology, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (C.G.D.); (Y.A.D.)
| | - Getrude G. Kanyairita
- Department of Chemistry, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.U.); (J.M.J.); (G.G.K.); (E.F.A.)
| | - Eslam F. Abdelazim
- Department of Chemistry, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.U.); (J.M.J.); (G.G.K.); (E.F.A.)
| | | | - Concorde Habineza
- Computational Data Science & Engineering, College of Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Devotha Tumushimiyimana
- Department of Human Ecology, College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Umuraza Noella Rutayisire
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Life and Natural Sciences, Normal, AL 35811, USA;
| | - Yasmin A. Davis
- Department of Biology, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (C.G.D.); (Y.A.D.)
| | - Kamora L. Renard
- Department of Health Science, School of Nursing & Allied Health, Tuskegee University, Tuskegee, AL 36088, USA;
| |
Collapse
|
2
|
Secondary metabolic profiling of Serratia marcescens NP10 reveals new stephensiolides and glucosamine derivatives with bacterial membrane activity. Sci Rep 2023; 13:2360. [PMID: 36759548 PMCID: PMC9911388 DOI: 10.1038/s41598-023-28502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Secondary metabolic profiling, using UPLC-MSE and molecular networking, revealed the secondary metabolites produced by Serratia marcescens NP10. The NP10 strain co-produced cyclic and open-ring stephensiolides (i.e., fatty acyl chain linked to Thr-Ser-Ser-Ile/Leu-Ile/Leu/Val) and glucosamine derivatives (i.e., fatty acyl chain linked to Val-glucose-butyric/oxo-hexanoic acid), with the structures of sixteen new stephensiolides (L-Y) and three new glucosamine derivatives (L-N) proposed. Genome mining identified sphA (stephensiolides) and gcd (glucosamine derivatives) gene clusters within Serratia genomes available on NBCI using antiSMASH, revealing specificity scores of the adenylation-domains within each module that corroborates MSE data. Of the nine RP-HPLC fractions, two stephensiolides and two glucosamine derivatives exhibited activity against Staphylococcus aureus (IC50 of 25-79 µg/mL). 1H NMR analysis confirmed the structure of the four active compounds as stephensiolide K, a novel analogue stephensiolide U, and glucosamine derivatives A and C. Stephensiolides K and U were found to cause membrane depolarisation and affect the membrane permeability of S. aureus, while glucosamine derivatives A and C primarily caused membrane depolarisation. New members of the stephensiolide and glucosamine derivative families were thus identified, and results obtained shed light on their antibacterial properties and mode of membrane activity.
Collapse
|
3
|
Nogrado K, Adisakwattana P, Reamtong O. Antimicrobial peptides: On future antiprotozoal and anthelminthic applications. Acta Trop 2022; 235:106665. [PMID: 36030045 DOI: 10.1016/j.actatropica.2022.106665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Control and elimination of parasitic diseases are nowadays further complicated by emergence of drug resistance. Drug resistance is a serious threat as there are not many effective antiparasitic drugs available. Aside from drug resistance, it is also favorable to look for alternative therapeutics that have lesser adverse effects. Antimicrobial peptides (AMPs) were found to address these issues. Some of its desirable traits are they are fast-acting, it has broad action that the pathogen will have difficulty developing resistance to, it has high specificity, and most importantly there are extensive sources such as bacteria; invertebrate and vertebrate animals as well as plants. Aside from this, AMPs are also found to modulate the immune response. This review would like to describe AMPs that have been studied for their antiparasitic activities especially on parasitic diseases that causes high mortality and exhibits drug resistance like malaria and leishmaniasis and to discuss the mechanism of action of these AMPS.
Collapse
Affiliation(s)
- Kathyleen Nogrado
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Leussa ANN, Rautenbach M. Antiplasmodial Cyclodecapeptides from Tyrothricin Share a Target with Chloroquine. Antibiotics (Basel) 2022; 11:antibiotics11060801. [PMID: 35740207 PMCID: PMC9219824 DOI: 10.3390/antibiotics11060801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
Previous research found that the six major cyclodecapeptides from the tyrothricin complex, produced by Brevibacillus parabrevis, showed potent activity against chloroquine sensitive (CQS) Plasmodium falciparum. The identity of the aromatic residues in the aromatic dipeptide unit in cyclo-(D-Phe1-Pro2-(Phe3/Trp3)-D-Phe4/D-Trp4)-Asn5-Gln6-(Tyr7/Phe7/Trp7)-Val8-(Orn9/Lys9)-Leu10 was proposed to have an important role in activity. CQS and resistant (CQR) P. falciparum strains were challenged with three representative cyclodecapeptides. Our results confirmed that cyclodecapeptides from tyrothricin had significantly higher antiplasmodial activity than the analogous gramicidin S, rivaling that of CQ. However, the previously hypothesized size and hydrophobicity dependent activity for these peptides did not hold true for P. falciparum strains, other than for the CQS 3D7 strain. The Tyr7 in tyrocidine A (TrcA) with Phe3-D-Phe4 seem to be related with loss in activity correlating with CQ antagonism and resistance, indicating a shared target and/or resistance mechanism in which the phenolic groups play a role. Phe7 in phenycidine A, the second peptide containing Phe3-D-Phe4, also showed CQ antagonism. Conversely, Trp7 in tryptocidine C (TpcC) with Trp3-D-Trp4 showed improved peptide selectivity and activity towards the more resistant strains, without overt antagonism towards CQ. However, TpcC lead to similar parasite stage inhibition and parasite morphology changes than previously observed for TrcA. The disorganization of chromatin packing and neutral lipid structures, combined with amorphous hemozoin crystals, could account for halted growth in late trophozoite/early schizont stage and the nanomolar non-lytic activity of these peptides. These targets related to CQ antagonism, changes in neural lipid distribution, leading to hemozoin malformation, indicate that the tyrothricin cyclodecapeptides and CQ share a target in the malaria parasite. The differing activities of these cyclic peptides towards CQS and CQR P. falciparum strains could be due to variable target interaction in multiple modes of activity. This indicated that the cyclodecapeptide activity and parasite resistance response depended on the aromatic residues in positions 3, 4 and 7. This new insight on these natural cyclic decapeptides could also benefit the design of unique small peptidomimetics in which activity and resistance can be modulated.
Collapse
|
5
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
6
|
Masoudi Y, van Rensburg W, Barnard-Jenkins B, Rautenbach M. The Influence of Cellulose-Type Formulants on Anti- Candida Activity of the Tyrocidines. Antibiotics (Basel) 2021; 10:antibiotics10050597. [PMID: 34069885 PMCID: PMC8157355 DOI: 10.3390/antibiotics10050597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Candida species are highly adaptable to environmental changes with their phenotypic flexibility allowing for the evasion of most host defence mechanisms. Moreover, increasing resistance of human pathogenic Candida strains has been reported against all four classes of available antifungal drugs, which highlights the need for combinational therapies. Tyrocidines are cyclic antimicrobial peptides that have shown synergistic activity with antifungal drugs such as caspofungin and amphotericin B. However, these cyclodecapeptides have haemolytic activity and cytotoxicity, but they have been used for decades in the clinic for topical applications. The tyrocidines tend to form higher-order structures in aqueous solutions and excessive aggregation can result in variable or diminished activity. Previous studies have shown that the tyrocidines prefer ordered association to celluloses. Therefore, a formulation with soluble cellulose was used to control the oligomer stability and size, thereby increasing the activity against Candida spp. Of the formulants tested, it was found that commercial hydroxy-propyl-methyl cellulose, E10M, yielded the best results with increased stability, increased anti-Candida activity, and improved selectivity. This formulation holds promise in topical applications against Candida spp. infections.
Collapse
|
7
|
Saraiva RG, Dimopoulos G. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Nat Prod Rep 2021; 37:338-354. [PMID: 31544193 DOI: 10.1039/c9np00042a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Covering: up to 2019 Secondary metabolites of microbial origin have long been acknowledged as medically relevant, but their full potential remains largely unexploited. Of the countless natural compounds discovered thus far, only 5-10% have been isolated from microorganisms. At the same time, while whole-genome sequencing has demonstrated that bacteria and fungi often encode natural products, only a few genera have yet been mined for new compounds. This review explores the contributions of bacterial natural products to combatting infection by malaria parasites, filarial worms, and arboviruses such as dengue, Zika, Chikungunya, and West Nile. It highlights how molecules isolated from microorganisms ranging from marine cyanobacteria to mosquito endosymbionts can be exploited as antimicrobials and antivirals. Pursuit of this mostly untapped source of chemical entities will potentially result in new interventions against these tropical diseases, which are urgently needed to combat the increase in the incidence of resistance.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
Rautenbach M, Kumar V, Vosloo JA, Masoudi Y, van Wyk RJ, Stander MA. Oligomerisation of tryptocidine C, a Trp-rich cyclodecapeptide from the antimicrobial tyrothricin complex. Biochimie 2020; 181:123-133. [PMID: 33333170 DOI: 10.1016/j.biochi.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 01/07/2023]
Abstract
Tryptocidine C (TpcC, cyclo[D-Phe1-Pro2-Trp3-D-Trp4-Asn5-Gln6-Trp7-Val8-Orn9-Leu10]) is a broad-spectrum antimicrobial peptide in the tyrothricin complex produced by a soil bacterium, Brevibacillus parabrevis. Electrospray mass spectrometric studies reveal the oligomerisation of TpcC into dimers and higher oligomers, analogous to tyrocidine C (TrcC, Trp7 replaced by Tyr7). Ion mobility mass spectrometry (IMMS) further confirms the formation of stable peptide dimers and tetramers with diameters of 2.7 nm and 3.3 nm, respectively, calculated from collisional cross section (CCS). Molecular dynamic simulations and docking studies support the formation of amphipathic dimers, with a diameter of 2.5 ± 0.07 nm calculated from low energy model CCS. Circular dichroism and IMMS studies point towards dynamic hydrogen-bonded conformational changes up to 28-33 μM after which the structures become more static (or in equilibrium). Fluorescence studies indicate aromatic stacking of Trp residues with a CMC of 18 μM in aqueous solutions. The concentration and time dependent interaction of Trp in oligomers indicate cooperativity in the TpcC oligomerisation that leads to the formation of higher order microscopic structures. Scanning electron microscopy studies unequivocally shows that TpcC forms nanospheres with a mean diameter of 25 nm. Repeated smaller oligomeric units, possibly dimers and tetramers, self-assemble to form these nanospheres.
Collapse
Affiliation(s)
- Marina Rautenbach
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| | - Vikas Kumar
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| | - J Arnold Vosloo
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Yasamin Masoudi
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Rosalind J van Wyk
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Marietjie A Stander
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; LC-MS Unit of the Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
9
|
Jokonya S, Langlais M, Leshabane M, Reader PW, Vosloo JA, Pfukwa R, Coertzen D, Birkholtz LM, Rautenbach M, Klumperman B. Poly( N-vinylpyrrolidone) Antimalaria Conjugates of Membrane-Disruptive Peptides. Biomacromolecules 2020; 21:5053-5066. [PMID: 33156615 DOI: 10.1021/acs.biomac.0c01202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The concepts of polymer-peptide conjugation and self-assembly were applied to antimicrobial peptides (AMPs) in the development of a targeted antimalaria drug delivery construct. This study describes the synthesis of α-acetal, ω-xanthate heterotelechelic poly(N-vinylpyrrolidone) (PVP) via reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization, followed by postpolymerization deprotection to yield α-aldehyde, ω-thiol heterotelechelic PVP. A specific targeting peptide, GSRSKGT, for Plasmodium falciparum-infected erythrocytes was used to sparsely decorate the α-chain ends via reductive amination while cyclic decapeptides from the tyrocidine group were conjugated to the ω-chain end via thiol-ene Michael addition. The resultant constructs were self-assembled into micellar nanoaggregates whose sizes and morphologies were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro activity and selectivity of the conjugates were evaluated against intraerythrocytic P. falciparum parasites.
Collapse
Affiliation(s)
- Simbarashe Jokonya
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marvin Langlais
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Meta Leshabane
- Department of Biochemistry, Genetics and Microbiology, Institute of Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Paul W Reader
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Johan A Vosloo
- BioPep Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rueben Pfukwa
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute of Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute of Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Marina Rautenbach
- BioPep Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
10
|
Fortuin L, Leshabane M, Pfukwa R, Coertzen D, Birkholtz LM, Klumperman B. Facile Route to Targeted, Biodegradable Polymeric Prodrugs for the Delivery of Combination Therapy for Malaria. ACS Biomater Sci Eng 2020; 6:6217-6227. [DOI: 10.1021/acsbiomaterials.0c01234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lisa Fortuin
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag
X1, Matieland 7602, South Africa
| | - Meta Leshabane
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Rueben Pfukwa
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag
X1, Matieland 7602, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag
X1, Matieland 7602, South Africa
| |
Collapse
|
11
|
Secrieru A, Costa ICC, O’Neill PM, Cristiano MLS. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis-A Short Bridge between Two Distant Illnesses. Molecules 2020; 25:E1574. [PMID: 32235463 PMCID: PMC7181032 DOI: 10.3390/molecules25071574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Toxoplasmosis is an infectious disease with paramount impact worldwide, affecting many vulnerable populations and representing a significant matter of concern. Current therapies used against toxoplasmosis are based essentially on old chemotypes, which fail in providing a definitive cure for the disease, placing the most sensitive populations at risk for irreversible damage in vital organs, culminating in death in the most serious cases. Antimalarial drugs have been shown to possess key features for drug repurposing, finding application in the treatment of other parasite-borne illnesses, including toxoplasmosis. Antimalarials provide the most effective therapeutic solutions against toxoplasmosis and make up for the majority of currently available antitoxoplasmic drugs. Additionally, other antiplasmodial drugs have been scrutinized and many promising candidates have emanated in recent developments. Available data demonstrate that it is worthwhile to explore the activity of classical and most recent antimalarial chemotypes, such as quinolines, endoperoxides, pyrazolo[1,5-a]pyrimidines, and nature-derived peptide-based parasiticidal agents, in the context of toxoplasmosis chemotherapy, in the quest for encountering more effective and safer tools for toxoplasmosis control or eradication.
Collapse
Affiliation(s)
- Alina Secrieru
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Inês C. C. Costa
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Maria L. S. Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| |
Collapse
|
12
|
Vosloo J, Snoep J, Rautenbach M. Modelling the variable incorporation of aromatic amino acids in the tyrocidines and analogous cyclodecapeptides. J Appl Microbiol 2019; 127:1665-1676. [DOI: 10.1111/jam.14430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/02/2019] [Accepted: 08/18/2019] [Indexed: 11/28/2022]
Affiliation(s)
- J.A. Vosloo
- Department of Biochemistry Faculty of Science Stellenbosch University Stellenbosch South Africa
| | - J.L. Snoep
- Department of Biochemistry Faculty of Science Stellenbosch University Stellenbosch South Africa
- Molecular Cell Physiology Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- MIB University of Manchester Manchester UK
| | - M. Rautenbach
- Department of Biochemistry Faculty of Science Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
13
|
Rivas L, Rojas V. Cyanobacterial peptides as a tour de force in the chemical space of antiparasitic agents. Arch Biochem Biophys 2019; 664:24-39. [PMID: 30707942 DOI: 10.1016/j.abb.2019.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Parasites are scarcely addressed target for antimicrobial peptides despite their big impact in health and global economy. The notion of antimicrobial peptides is frequently associated to the innate immune defense of vertebrates and invertebrate vectors, as the ultimate recipients of the parasite infection. These antiparasite peptides are produced by ribosomal synthesis, with few post-translational modifications, and their diversity come mostly from their amino acid sequence. For many of them permeabilization of the cell membrane of the targeted pathogen is crucial for their microbicidal mechanism. In contrast, cyanobacterial peptides are produced either by ribosomal or non-ribosomal biosynthesis. Quite often, they undergo heavy modifications, such as the inclusion of non-proteinogenic amino acids, lipid acylation, cyclation, Nα-methylation, or heterocyclic rings. Furthermore, the few targets identified for cyanobacterial peptides in parasites are intracellular. Some cyanobacterial antiparasite peptides are active at picomolar concentrations, whereas those from higher eukaryotes usually work in the micromolar range. In all, cyanobacterial peptides are an appealing target to develop new antiparasite therapies and a challenge in the invention of new synthetic methods for peptides. This review aims to provide an updated appraisal of antiparasite cyanobacterial peptides and to establish a side-by -side comparison with those antiparasite peptides from higher eukaryotes.
Collapse
Affiliation(s)
- Luis Rivas
- Centro de Investigaciones Biológicas (C.S.I.C), c/ Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Campus Curauma, Curauma, Valparaíso, Chile.
| |
Collapse
|
14
|
The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S. mBio 2018; 9:mBio.00802-18. [PMID: 30301848 PMCID: PMC6178620 DOI: 10.1128/mbio.00802-18] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cyclic β-sheet decapeptides, such as tyrocidines and gramicidin S, were among the first antibiotics in clinical application. Although they have been used for such a long time, there is virtually no resistance to them, which has led to a renewed interest in this peptide class. Both tyrocidines and gramicidin S are thought to disrupt the bacterial membrane. However, this knowledge is mainly derived from in vitro studies, and there is surprisingly little knowledge about how these long-established antibiotics kill bacteria. Our results shed new light on the antibacterial mechanism of β-sheet peptide antibiotics and explain why they are still so effective and why there is so little resistance to them. Cyclic β-sheet decapeptides from the tyrocidine group and the homologous gramicidin S were the first commercially used antibiotics, yet it remains unclear exactly how they kill bacteria. We investigated their mode of action using a bacterial cytological profiling approach. Tyrocidines form defined ion-conducting pores, induce lipid phase separation, and strongly reduce membrane fluidity, resulting in delocalization of a broad range of peripheral and integral membrane proteins. Interestingly, they also cause DNA damage and interfere with DNA-binding proteins. Despite sharing 50% sequence identity with tyrocidines, gramicidin S causes only mild lipid demixing with minor effects on membrane fluidity and permeability. Gramicidin S delocalizes peripheral membrane proteins involved in cell division and cell envelope synthesis but does not affect integral membrane proteins or DNA. Our results shed a new light on the multifaceted antibacterial mechanisms of these antibiotics and explain why resistance to them is virtually nonexistent.
Collapse
|
15
|
Douglas RG, Reinig M, Neale M, Frischknecht F. Screening for potential prophylactics targeting sporozoite motility through the skin. Malar J 2018; 17:319. [PMID: 30170589 PMCID: PMC6119338 DOI: 10.1186/s12936-018-2469-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Anti-malarial compounds have not yet been identified that target the first obligatory step of infection in humans: the migration of Plasmodium sporozoites in the host dermis. This movement is essential to find and invade a blood vessel in order to be passively transported to the liver. Here, an imaging screening pipeline was established to screen for compounds capable of inhibiting extracellular sporozoites. METHODS Sporozoites expressing the green fluorescent protein were isolated from infected Anopheles mosquitoes, incubated with compounds from two libraries (MMV Malaria Box and a FDA-approved library) and imaged. Effects on in vitro motility or morphology were scored. In vivo efficacy of a candidate drug was investigated by treating mice ears with a gel prior to infectious mosquito bites. Motility was analysed by in vivo imaging and the progress of infection was monitored by daily blood smears. RESULTS Several compounds had a pronounced effect on in vitro sporozoite gliding or morphology. Notably, monensin sodium potently affected sporozoite movement while gramicidin S resulted in rounding up of sporozoites. However, pre-treatment of mice with a topical gel containing gramicidin did not reduce sporozoite motility and infection. CONCLUSIONS This approach shows that it is possible to screen libraries for inhibitors of sporozoite motility and highlighted the paucity of compounds in currently available libraries that inhibit this initial step of a malaria infection. Screening of diverse libraries is suggested to identify more compounds that could serve as leads in developing 'skin-based' malaria prophylactics. Further, strategies need to be developed that will allow compounds to effectively penetrate the dermis and thereby prevent exit of sporozoites from the skin.
Collapse
Affiliation(s)
- Ross G Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Miriam Reinig
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Matthew Neale
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Ghosh C, Chaubey S, Tatu U, Haldar J. Aryl-alkyl-lysines: small molecular membrane-active antiplasmodial agents. MEDCHEMCOMM 2016; 8:434-439. [PMID: 30108761 DOI: 10.1039/c6md00589f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/06/2016] [Indexed: 11/21/2022]
Abstract
Due to emerging resistance there is a steady need for new antimalarial drugs. Here, we report a new class of water soluble, non-toxic compounds, aryl-alkyl-lysines, with promising activity against the ring stage of Plasmodium falciparum. The optimal compound perturbed the plasma membrane potential and the digestive vacuole of parasites. In the murine model of malaria (Plasmodium berghei ANKA) the compound was able to increase the survival of mice by at least 5 days by an intra-peritoneal route. Further, the compounds showed no apparent toxicity to mice at the concentration tested.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Chemical biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 560064 , Karnataka , India .
| | - Shweta Chaubey
- Department of Biochemistry , Indian Institute of Science , Bengaluru , India
| | - Utpal Tatu
- Department of Biochemistry , Indian Institute of Science , Bengaluru , India
| | - Jayanta Haldar
- Chemical biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 560064 , Karnataka , India .
| |
Collapse
|
17
|
Rautenbach M, Troskie AM, Vosloo JA, Dathe ME. Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi. Biochimie 2016; 130:122-131. [DOI: 10.1016/j.biochi.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
|
18
|
Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie 2016; 130:132-145. [PMID: 27234616 DOI: 10.1016/j.biochi.2016.05.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Most antifungal peptides (AFPs), if not all, have membrane activity, while some also have alternative targets. Fungal membranes share many characteristics with mammalian membranes with only a few differences, such as differences in sphingolipids, phosphatidylinositol (PI) content and the main sterol is ergosterol. Fungal membranes are also more negative and a better target for cationic AFPs. Targeting just the fungal membrane lipids such as phosphatidylinositol and/or ergosterol by AFPs often translates into mammalian cell toxicity. Conversely, a specific AFP target in the fungal pathogen, such as glucosylceramide, mannosyldiinositol phosphorylceramide or a fungal protein target translates into high pathogen selectivity. However, a lower target concentration, absence or change in the specific fungal target can naturally lead to resistance, although such resistance in turn could result in reduced pathogen virulence. The question is then to be or not to be membrane active - what is the best choice for a successful AFP? In this review we deliberate on this question by focusing on the recent advances in our knowledge on how natural AFPs target fungi.
Collapse
Affiliation(s)
- Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, South Africa.
| | - Anscha M Troskie
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, South Africa
| | - J Arnold Vosloo
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, South Africa
| |
Collapse
|
19
|
Sinha S, Singh A, Medhi B, Sehgal R. Systematic Review: Insight into Antimalarial Peptide. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9512-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Okombo J, Chibale K. Antiplasmodial drug targets: a patent review (2000 – 2013). Expert Opin Ther Pat 2015; 26:107-30. [DOI: 10.1517/13543776.2016.1113258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Sumi CD, Yang BW, Yeo IC, Hahm YT. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 2014; 61:93-103. [PMID: 25629960 DOI: 10.1139/cjm-2014-0613] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rapid onset of resistance reduces the efficacy of most conventional antimicrobial drugs and is a general cause of concern for human well-being. Thus, there is great demand for a continuous supply of novel antibiotics to combat this problem. Bacteria-derived antimicrobial peptides (AMPs) have long been used as food preservatives; moreover, prior to the development of conventional antibiotics, these AMPs served as an efficient source of antibiotics. Recently, peptides produced by members of the genus Bacillus were shown to have a broad spectrum of antimicrobial activity against pathogenic microbes. Bacillus-derived AMPs can be synthesized both ribosomally and nonribosomally and can be classified according to peptide biosynthesis, structure, and molecular weight. The precise mechanism of action of these AMPs is not yet clear; however, one proposed mechanism is that these AMPs kill bacteria by forming channels in and (or) disrupting the bacterial cell wall. Bacillus-derived AMPs have potential in the pharmaceutical industry, as well as the food and agricultural sectors. Here, we focus on Bacillus-derived AMPs as a novel alternative approach to antibacterial drug development. We also provide an overview of the biosynthesis, mechanisms of action, applications, and effectiveness of different AMPs produced by members of the Bacillus genus, including several recently identified novel AMPs.
Collapse
Affiliation(s)
- Chandra Datta Sumi
- a Department of Systems Biotechnology, Chung-Ang University, 72-1 Nae-Ri, Daeduk-Myun, Anseong-Si, Gyeonggi-Do 456-756, South Korea
| | | | | | | |
Collapse
|
22
|
Sinha S, Medhi B, Sehgal R. Challenges of drug-resistant malaria. ACTA ACUST UNITED AC 2014; 21:61. [PMID: 25402734 PMCID: PMC4234044 DOI: 10.1051/parasite/2014059] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/23/2014] [Indexed: 01/09/2023]
Abstract
Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
23
|
Troskie AM, de Beer A, Vosloo JA, Jacobs K, Rautenbach M. Inhibition of agronomically relevant fungal phytopathogens by tyrocidines, cyclic antimicrobial peptides isolated from Bacillus aneurinolyticus. Microbiology (Reading) 2014; 160:2089-2101. [DOI: 10.1099/mic.0.078840-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tyrocidines, a complex of analogous cyclic decapeptides produced by Bacillus aneurinolyticus, exhibited noteworthy activity against a range of phytopathogenic fungi, including Fusarium verticillioides, Fusarium solani and Botrytis cinerea. The activity of the tyrocidine peptide complex (Trc mixture) and purified tyrocidines exhibited minimum inhibition concentrations below 13 µg ml−1 (~10 µM) and was significantly more potent than that of the commercial imidazole fungicide, bifonazole. Although the tyrocidines’ activity was negatively influenced by the presence of Ca2+, it remained unaffected by the presence of Mg2+, Na+ and K+. Microscopic analysis revealed significant impact on the morphology of F. solani and Bot. cinerea including retarded germination and hyperbranching of hyphae. Studies with membrane-impermeable dyes, SYTOX green and propidium iodide suggested that the main mode of action of tyrocidines involves the disruption of fungal membrane integrity. Because of the tyrocidines’ broad spectrum and potent antifungal activity, possible multiple targets reducing the risk of overt resistance and general salt tolerance, they are promising candidates that warrant further investigation as bio-fungicides.
Collapse
Affiliation(s)
- Anscha M. Troskie
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Abré de Beer
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Johan A. Vosloo
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Karin Jacobs
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| |
Collapse
|
24
|
Leussa ANN, Rautenbach M. Detailed SAR and PCA of the Tyrocidines and Analogues Towards Leucocin A-Sensitive and Leucocin A-ResistantListeria monocytogenes. Chem Biol Drug Des 2014; 84:543-57. [DOI: 10.1111/cbdd.12344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/22/2014] [Accepted: 04/15/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Adrienne Nyango-Nkeh Leussa
- BIOPEP Peptide Group; Department of Biochemistry; University of Stellenbosch; Private Bag X1 Matieland, 7602 Stellenbosch South Africa
| | - Marina Rautenbach
- BIOPEP Peptide Group; Department of Biochemistry; University of Stellenbosch; Private Bag X1 Matieland, 7602 Stellenbosch South Africa
| |
Collapse
|
25
|
Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 2014; 58:3697-707. [PMID: 24752256 DOI: 10.1128/aac.02381-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tyrocidines are cationic cyclodecapeptides from Bacillus aneurinolyticus that are characterized by potent antibacterial and antimalarial activities. In this study, we show that various tyrocidines have significant activity against planktonic Candida albicans in the low-micromolar range. These tyrocidines also prevented C. albicans biofilm formation in vitro. Studies with the membrane-impermeable dye propidium iodide showed that the tyrocidines disrupt the membrane integrity of mature C. albicans biofilm cells. This membrane activity correlated with the permeabilization and rapid lysis of model fungal membranes containing phosphatidylcholine and ergosterol (70:30 ratio) induced by the tyrocidines. The tyrocidines exhibited pronounced synergistic biofilm-eradicating activity in combination with two key antifungal drugs, amphotericin B and caspofungin. Using a Caenorhabditis elegans infection model, we found that tyrocidine A potentiated the activity of caspofungin. Therefore, tyrocidines are promising candidates for further research as antifungal drugs and as agents for combinatorial treatment.
Collapse
|
26
|
Munyuki G, Jackson GE, Venter GA, Kövér KE, Szilágyi L, Rautenbach M, Spathelf BM, Bhattacharya B, van der Spoel D. β-Sheet Structures and Dimer Models of the Two Major Tyrocidines, Antimicrobial Peptides from Bacillus aneurinolyticus. Biochemistry 2013; 52:7798-806. [DOI: 10.1021/bi401363m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gadzikano Munyuki
- Department
of Chemistry, University of Cape Town, P Bag X3, Rondebosch, Cape Town, South Africa 7701
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-751 24 Uppsala, Sweden
| | - Graham E. Jackson
- Department
of Chemistry, University of Cape Town, P Bag X3, Rondebosch, Cape Town, South Africa 7701
| | - Gerhard A. Venter
- Department
of Chemistry, University of Cape Town, P Bag X3, Rondebosch, Cape Town, South Africa 7701
| | - Katalin E. Kövér
- Department
of Chemistry, University of Debrecen, H-4010 Debrecen, Egyetem tér 1, Pf. 20, Hungary
| | - László Szilágyi
- Department
of Chemistry, University of Debrecen, H-4010 Debrecen, Egyetem tér 1, Pf. 20, Hungary
| | - Marina Rautenbach
- BIOPEP
Peptide group, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa 7600
| | - Barbara M. Spathelf
- BIOPEP
Peptide group, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa 7600
| | - Bhaswati Bhattacharya
- BIOPEP
Peptide group, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa 7600
| | - David van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
27
|
Vosloo JA, Stander MA, Leussa ANN, Spathelf BM, Rautenbach M. Manipulation of the tyrothricin production profile of Bacillus aneurinolyticus. Microbiology (Reading) 2013; 159:2200-2211. [DOI: 10.1099/mic.0.068734-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Johan Arnold Vosloo
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marietjie A. Stander
- Department of Biochemistry and LCMS-Central Analytical Facility, Science Faculty, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Adrienne N.-N. Leussa
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | - Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
28
|
Fritzler JM, Zhu G. Novel anti-Cryptosporidium activity of known drugs identified by high-throughput screening against parasite fatty acyl-CoA binding protein (ACBP). J Antimicrob Chemother 2011; 67:609-17. [PMID: 22167242 DOI: 10.1093/jac/dkr516] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cryptosporidium parvum causes an opportunistic infection in AIDS patients, and no effective treatments are yet available. This parasite possesses a single fatty acyl-CoA binding protein (CpACBP1) that is localized to the unique parasitophorous vacuole membrane (PVM). The major goal of this study was to identify inhibitors from known drugs against CpACBP1 as potential new anti-Cryptosporidium agents. METHODS A fluorescence assay was developed to detect CpACBP1 activity and to identify inhibitors by screening known drugs. Efficacies of top CpACBP1 inhibitors against Cryptosporidium growth in vitro were evaluated using a quantitative RT-PCR assay. RESULTS Nitrobenzoxadiazole-labelled palmitoyl-CoA significantly increased the fluorescent emission upon binding to CpACBP1 (excitation/emission 460/538 nm), which was quantified to determine the CpACBP1 activity and binding kinetics. The fluorescence assay was used to screen a collection of 1040 compounds containing mostly known drugs, and identified the 28 most active compounds that could inhibit CpACBP1 activity with sub-micromolar IC(50) values. Among them, four compounds displayed efficacies against parasite growth in vitro with low micromolar IC(50) values. The effective compounds were broxyquinoline (IC(50) 64.9 μM), cloxyquin (IC(50) 25.1 μM), cloxacillin sodium (IC(50) 36.2 μM) and sodium dehydrocholate (IC(50) 53.2 μM). CONCLUSIONS The fluorescence ACBP assay can be effectively used to screen known drugs or other compound libraries. Novel anti-Cryptosporidium activity was observed in four top CpACBP1 inhibitors, which may be further investigated for their potential to be repurposed to treat cryptosporidiosis and to serve as leads for drug development.
Collapse
Affiliation(s)
- Jason M Fritzler
- Department of Biology, College of Sciences and Mathematics, Stephen F. Austin State University, Nacogdoches, TX 75962, USA
| | | |
Collapse
|
29
|
Antiplasmodial properties of acyl-lysyl oligomers in culture and animal models of malaria. Antimicrob Agents Chemother 2011; 55:3803-11. [PMID: 21646484 DOI: 10.1128/aac.00129-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous analysis of antiplasmodial properties exhibited by dodecanoyl-based oligo-acyl-lysyls (OAKs) has outlined basic attributes implicated in potent inhibition of parasite growth and underlined the critical role of excess hydrophobicity in hemotoxicity. To dissociate hemolysis from antiplasmodial effect, we screened >50 OAKs for in vitro growth inhibition of Plasmodium falciparum strains, thus revealing the minimal requirements for antiplasmodial potency in terms of sequence and composition, as confirmed by efficacy studies in vivo. The most active sequence, dodecanoyllysyl-bis(aminooctanoyllysyl)-amide (C(12)K-2α(8)), inhibited parasite growth at submicromolar concentrations (50% inhibitory concentration [IC(50)], 0.3 ± 0.1 μM) and was devoid of hemolytic activity (<0.4% hemolysis at 150 μM). Unlike the case of dodecanoyl-based analogs, which equally affect ring and trophozoite stages of the parasite developmental cycle, the ability of various octanoyl-based OAKs to distinctively affect these stages (rings were 4- to 5-fold more sensitive) suggests a distinct antiplasmodial mechanism, nonmembranolytic to host red blood cells (RBCs). Upon intraperitoneal administration to mice, C(12)K-2α(8) demonstrated sustainable high concentrations in blood (e.g., 0.1 mM at 25 mg/kg of body weight). In Plasmodium vinckei-infected mice, C(12)K-2α(8) significantly affected parasite growth (50% effective dose [ED(50)], 22 mg/kg) but also caused mortality in 2/3 mice at high doses (50 mg/kg/day × 4).
Collapse
|
30
|
Mogi T, Kita K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 2009; 66:3821-6. [PMID: 19701717 PMCID: PMC11115702 DOI: 10.1007/s00018-009-0129-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 01/02/2023]
Abstract
Gramicidin S and polymyxins are small cationic cyclic peptides and act as potent antibiotics against Gram-negative and Gram-positive bacteria by perturbing integrity of the bacterial membranes. Screening of a natural antibiotics library with bacterial membrane vesicles identified gramicidin S as an inhibitor of cytochrome bd quinol oxidase and an alternative NADH dehydrogenase (NDH-2) and polymyxin B as an inhibitor of NDH-2 and malate: quinone oxidoreductase. Our studies showed that cationic cyclic peptide antibiotics have novel molecular targets in the membrane and interfere ligand binding on the hydrophobic surface of enzymes. Improvement of the toxicity and optimization of the structures and clinical uses are urgently needed for their effective application in combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
31
|
Abstract
Whereas significant knowledge is accumulating on the antibacterial and antifungal properties of host defense peptides (HDPs) and their synthetic mimics, much less is known of their activities against parasites. A variety of in vitro and in vivo antiparasitic assays suggest that these notorious antimicrobial compounds could represent a powerful tool for the development of novel drugs to fight parasites in the vertebrate host or to complement current therapeutic strategies, albeit the fact that HDPs essentially act by nonspecific mechanisms casts serious doubt on their ability to exert sufficient selectivity to be considered ideal candidates for drug development. This minireview summarizes recent efforts to assess the antiparasitic properties of HDPs and their synthetic derivatives, focusing on two of the most used models - Plasmodium and Leishmania species - for antiparasitic assays against the different development stages.
Collapse
Affiliation(s)
- Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
32
|
Spathelf BM, Rautenbach M. Anti-listerial activity and structure–activity relationships of the six major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus. Bioorg Med Chem 2009; 17:5541-8. [DOI: 10.1016/j.bmc.2009.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/08/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
|
33
|
The maintenance of the list of QPS microorganisms intentionally added to food or feed - Scientific Opinion of the Panel on Biological Hazards. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.923] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
34
|
Smirnov S, Belashov A, Demin O. Optimization of antimicrobial drug gramicidin S dosing regime using biosimulations. Eur J Pharm Sci 2008; 36:105-9. [PMID: 19027851 DOI: 10.1016/j.ejps.2008.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper we have developed a model of antimicrobial effect of gramicidin S. This model has allowed us to predict the dependence of antimicrobial effect of the drug applied as oral melting tablets on dosage, time of resorption and minimal inhibitory concentration (MIC) of the drug characterizing its ability to kill different bacteria. The model has been employed to optimize dosing regime of gramicidin S containing drug Grammidin. Efficacy of the drug has been studied for the diverse gram-positive and gram-negative bacteria with different MIC. The number of bacteria located in the oral cavity and killed by one-pass administration of the drug (resolution of one tablet) has been calculated under condition of various dosing regimes. Based on the simulation results it has been found that (1) twofold prolongation of prescribed resorption time (from 30 to 60min) of the tablet comprising standard dosage of 3mg of gramicidin S results in 1.5-fold increase in efficacy, (2) 1.5-fold decrease in gramicidin S dosage (from 3 to 2mg per administration) under condition of holding prescribed resorption time (30min) does not lead to any considerable decrease in the efficacy of the drug.
Collapse
Affiliation(s)
- S Smirnov
- Institute for Systems Biology SPb, Moscow, Russia
| | | | | |
Collapse
|
35
|
Gramicidin S identified as a potent inhibitor for cytochrome bd
-type quinol oxidase. FEBS Lett 2008; 582:2299-302. [DOI: 10.1016/j.febslet.2008.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 05/21/2008] [Indexed: 01/14/2023]
|