1
|
Nasrin MSTZ, Kikuchi S, Uchimura Y, Yoshioka M, Morita SY, Kobayashi T, Kinoshita Y, Furusho Y, Tamiaki H, Yanagisawa D, Udagawa J. Ethanolamine and Vinyl-Ether Moieties in Brain Phospholipids Modulate Behavior in Rats. NEUROSCI 2024; 5:509-522. [PMID: 39585105 PMCID: PMC11587438 DOI: 10.3390/neurosci5040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Plasmalogens are brain-enriched phospholipids with a vinyl-ether bond at the sn-1 position between the glycerol backbone and the alkyl chain. Previous studies have suggested that plasmalogens modulate locomotor activity, anxiety-like behavior, and cognitive functions in rodents; however, the specific moieties contributing to behavioral regulation are unknown. In this study, we examined the behavioral modulation induced by specific phospholipid moieties. To confirm the permeability of phospholipids in injected liposomes, we measured the fluorescence intensity following intravenous injection of liposomes containing ATTO 740-labeled dioleoylphosphatidylethanolamine. Then, we compared the behavioral effects following injection of liposomes composed of egg phosphatidylcholine (PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (PE 18:0/22:6), PC 18:0/22:6, 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (PE P-18:0/22:6), or PC P-18:0/22:6, into the tail vein of male rats. The time spent in the central region of the open field was significantly reduced after injection of PE 18:0/22:6, harboring an ester bond at sn-1 compared to controls. Furthermore, the discrimination ratio in the novel object recognition test was significantly higher in PC 18:0/22:6 compared to PE 18:0/22:6, suggesting that the substitution of ethanolamine with choline can enhance recognition memory. We demonstrate that the structures of the sn-1 bond and the hydrophilic moiety in the phospholipids can modulate exploratory behaviors and recognition memory in rodents.
Collapse
Affiliation(s)
- MST Zenika Nasrin
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Shuhei Kikuchi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Mina Yoshioka
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Shin-ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Tomoya Kobayashi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| |
Collapse
|
2
|
Kikuchi S, Iwasaki Y, Yoshioka M, Hino K, Morita SY, Tada R, Uchimura Y, Kubo Y, Kobayashi T, Kinoshita Y, Hayashi M, Furusho Y, Tamiaki H, Ishiyama H, Kuroda M, Udagawa J. Solitary and Synergistic Effects of Different Hydrophilic and Hydrophobic Phospholipid Moieties on Rat Behaviors. Pharmaceutics 2024; 16:762. [PMID: 38931883 PMCID: PMC11207216 DOI: 10.3390/pharmaceutics16060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Glycerophospholipids have hydrophobic and hydrophilic moieties. Previous studies suggest that phospholipids with different moieties have different effects on rodent behavior; however, the relationship between chemical structures and behavioral effects remains unclear. To clarify the functions of phospholipid moieties, we injected male rats with phospholipids with different moieties and conducted behavioral tests. Exploratory activity was reduced by phosphatidylethanolamine (PE)(18:0/22:6) but not PE(18:0/18:0) or PE(18:0/20:4). Conversely, exploratory activity was increased by plasmanyl PE(16:0/22:6), which harbors an alkyl-ether linkage, but not by phosphatidylcholine (PC)(16:0/22:6) or plasmanyl PC(16:0/22:6). Docosahexaenoic acid (DHA)(22:6) and an alkyl-ether linkage in PE were thus postulated to be involved in exploratory activity. Anxiety-like behavior was reduced by plasmenyl PC(18:0/20:4), which harbors a vinyl-ether linkage, but not by PC(18:0/20:4) or plasmanyl PC(18:0/20:4), suggesting the anxiolytic effects of vinyl-ether linkage. The activation of social interaction was suppressed by PE(18:0/18:0), PE(18:0/22:6), PC(16:0/22:6), plasmanyl PE(16:0/22:6), and plasmanyl PC(16:0/22:6) but not by PE(18:0/20:4), plasmenyl PE(18:0/20:4), or plasmanyl PC(18:0/22:6). DHA may suppress social interaction, whereas arachidonic acid(20:4) or a combination of alkyl-ether linkage and stearic acid(18:0) may restore social deficits. Our findings indicate the characteristic effects of different phospholipid moieties on rat behavior, and may help to elucidate patterns between chemical structures and their effects.
Collapse
Affiliation(s)
- Shuhei Kikuchi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yugo Iwasaki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan;
| | - Mina Yoshioka
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Kodai Hino
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Shin-ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Ryu Tada
- Molecular Engineering Institute, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yoshinori Kubo
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Tomoya Kobayashi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Miyazaki, Japan;
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Hiroaki Ishiyama
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Minoru Kuroda
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| |
Collapse
|
3
|
Ros-Rocher N, Kidner R, Gerdt C, Davidson W, Ruiz-Trillo I, Gerdt J. Chemical factors induce aggregative multicellularity in a close unicellular relative of animals. Proc Natl Acad Sci U S A 2023; 120:e2216668120. [PMID: 37094139 PMCID: PMC10161120 DOI: 10.1073/pnas.2216668120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/26/2023] Open
Abstract
Regulated cellular aggregation is an essential process for development and healing in many animal tissues. In some animals and a few distantly related unicellular species, cellular aggregation is regulated by diffusible chemical cues. However, it is unclear whether regulated cellular aggregation was part of the life cycles of the first multicellular animals and/or their unicellular ancestors. To fill this gap, we investigated the triggers of cellular aggregation in one of animals' closest unicellular living relatives-the filasterean Capsaspora owczarzaki. We discovered that Capsaspora aggregation is induced by chemical cues, as observed in some of the earliest branching animals and other unicellular species. Specifically, we found that calcium ions and lipids present in lipoproteins function together to induce aggregation of viable Capsaspora cells. We also found that this multicellular stage is reversible as depletion of the cues triggers disaggregation, which can be overcome upon reinduction. Our finding demonstrates that chemically regulated aggregation is important across diverse members of the holozoan clade. Therefore, this phenotype was plausibly integral to the life cycles of the unicellular ancestors of animals.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Department of Functional Genomics and Evolution, Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
- Department of Cell Biology and Infection and Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France
| | - Ria Q. Kidner
- Department of Chemistry, Indiana University, Bloomington, IN47405
| | - Catherine Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN47405
| | - W. Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH45221
| | - Iñaki Ruiz-Trillo
- Department of Functional Genomics and Evolution, Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010Barcelona, Spain
| | - Joseph P. Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN47405
| |
Collapse
|
4
|
Wong JK, Roselle AK, Shue TM, Shimshak SJE, Beaty JM, Celestin NM, Gao I, Griffin RP, Cudkowicz ME, Sadiq SA. Apolipoprotein B-100-mediated motor neuron degeneration in sporadic amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac207. [PMID: 36043141 PMCID: PMC9416068 DOI: 10.1093/braincomms/fcac207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by motor neuron degeneration. Approximately 90% of cases occur sporadically with no known cause while 10% are familial cases arising from known inherited genetic mutations. In vivo studies have predominantly utilized transgenic models harbouring amyotrophic lateral sclerosis-associated gene mutations, which have not hitherto elucidated mechanisms underlying motor neuron death or identified therapeutic targets specific to sporadic amyotrophic lateral sclerosis. Here we provide evidence demonstrating pathogenic differences in CSF from patients with sporadic amyotrophic lateral sclerosis and familial amyotrophic lateral sclerosis patients with mutations in SOD1, C9orf72 and TARDBP. Using a novel CSF-mediated animal model, we show that intrathecal delivery of sporadic amyotrophic lateral sclerosis patient-derived CSF into the cervical subarachnoid space in adult wild-type mice induces permanent motor disability which is associated with hallmark pathological features of amyotrophic lateral sclerosis including motor neuron loss, cytoplasmic TDP-43 translocation, reactive astrogliosis and microglial activation. Motor impairments are not induced by SOD1, C9orf72 or TARDBP CSF, although a moderate degree of histopathological change occurs in C9orf72 and TARDBP CSF-injected mice. By conducting a series of CSF filtration studies and global proteomic analysis of CSF, we identified apolipoprotein B-100 in sporadic amyotrophic lateral sclerosis CSF as the putative agent responsible for inducing motor disability, motor neuron degeneration and pathological translocation of TDP-43. Apolipoprotein B-100 alone is sufficient to recapitulate clinical and pathological outcomes in vivo and induce death of human induced pluripotent stem cell-derived motor neurons in vitro. Targeted removal of apolipoprotein B-100 from sporadic amyotrophic lateral sclerosis CSF via filtration or immunodepletion successfully attenuated the neurotoxic capacity of sporadic amyotrophic lateral sclerosis CSF to induce motor disability, motor neuron death, and TDP-43 translocation. This study presents apolipoprotein B-100 as a novel therapeutic target specific for the predominant sporadic form of amyotrophic lateral sclerosis and establishes proof-of-concept to support CSF pheresis as a therapeutic strategy for mitigating neurotoxicity in sporadic amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jamie K Wong
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Anna K Roselle
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Taylor M Shue
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Serena J E Shimshak
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Joseph M Beaty
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Nadia M Celestin
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Ivy Gao
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Rose P Griffin
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| | - Merit E Cudkowicz
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Saud A Sadiq
- Larry G. Gluck Division of ALS Research, Tisch Multiple Sclerosis Research Center of New York , New York, NY 10019 , USA
| |
Collapse
|
5
|
Ikeda Y, Morita SY, Hatano R, Tsuji T, Terada T. Enhancing effect of taurohyodeoxycholate on ABCB4-mediated phospholipid efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1495-1502. [PMID: 31176036 DOI: 10.1016/j.bbalip.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 11/27/2022]
Abstract
Hydrophilic bile salts, ursodeoxycholate and hyodeoxycholate, have choleretic effects. ABCB4, a member of the ABC transporter family, is essential for the secretion of phospholipids from hepatocytes into bile. In this study, we assessed the effects of taurine- or glycine-conjugated cholate, ursodeoxycholate and hyodeoxycholate on the ABCB4-mediated phosphatidylcholine (PC) efflux using Abcb4 knockout mice and HEK293 cells stably expressing ABCB4. To evaluate the effects of bile salts on bile formation in Abcb4+/+ or Abcb4-/- mice, the bile was collected during intravenous infusion of saline or bile salts. The biliary PC secretion in Abcb4+/+ mice was significantly increased by the infusions of all tested bile salts, especially taurohyodeoxycholate. On the other hand, Abcb4-/- mice exhibited extremely low secretion of PC into bile, which was not altered by bile salt infusions. We also showed that the PC efflux from ABCB4-expressing HEK293 cells was stimulated by taurohyodeoxycholate much more strongly than the other tested bile salts. However, taurohyodeoxycholate did not restore the activities of ABCB4 mutants. Furthermore, light scattering measurements demonstrated a remarkable ability of taurohyodeoxycholate to form mixed micelles with PC. Therefore, the enhancing effect of taurohyodeoxycholate on the ABCB4-mediated PC efflux may be due to the strong mixed micelle formation ability.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan.
| | - Ryo Hatano
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tokuji Tsuji
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| |
Collapse
|
6
|
Change in Brain Plasmalogen Composition by Exposure to Prenatal Undernutrition Leads to Behavioral Impairment of Rats. J Neurosci 2019; 39:7689-7702. [PMID: 31391260 DOI: 10.1523/jneurosci.2721-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies suggest that poor nutrition during pregnancy influences offspring predisposition to experience developmental and psychiatric disorders. Animal studies have shown that maternal undernutrition leads to behavioral impairment, which is linked to alterations in monoaminergic systems and inflammation in the brain. In this study, we focused on the ethanolamine plasmalogen of the brain as a possible contributor to behavioral disturbances observed in offspring exposed to maternal undernutrition. Maternal food or protein restriction between gestational day (GD) 5.5 and GD 10.5 resulted in hyperactivity of rat male adult offspring. Genes related to the phospholipid biosynthesis were found to be activated in the PFC, but not in the NAcc or striatum, in the offspring exposed to prenatal undernutrition. Corresponding to these gene activations, increased ethanolamine plasmalogen (18:0p-22:6) was observed in the PFC using mass spectrometry imaging. A high number of crossings and the long time spent in the center area were observed in the offspring exposed to prenatal undernutrition and were mimicked in adult rats via the intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome. Additionally, plasmalogen (18:0p-22:6) increased only in the PFC, and not in the NAcc or striatum. These results suggest that brain plasmalogen is one of the key molecules to control behavior, and its injection using liposome is a potential therapeutic approach for cognitive impairment.SIGNIFICANCE STATEMENT Maternal undernutrition correlates to developmental and psychiatric disorders. Here, we found that maternal undernutrition in early pregnancy led to hyperactivity in rat male offspring and induced gene activation of phospholipid-synthesizing enzyme and elevation of ethanolamine plasmalogen (18:0p-22:6) level in the PFC. Intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome maintained crossing activity and the activity was circumscribed to the center area for a long time period, as in prenatally undernourished offspring with aberrant behavior. Furthermore, the amount of ethanolamine plasmalogen (18:0p-22:6) increased in the PFC of the rat after injection. Our result suggests that brain plasmalogen is one of the key molecules to control behavior and that its injection using liposome is a potential therapeutic approach for cognitive impairment.
Collapse
|
7
|
Ikeda Y, Morita SY, Terada T. Cholesterol attenuates cytoprotective effects of phosphatidylcholine against bile salts. Sci Rep 2017; 7:306. [PMID: 28331225 PMCID: PMC5428433 DOI: 10.1038/s41598-017-00476-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/27/2017] [Indexed: 01/03/2023] Open
Abstract
Bile salts have potent detergent properties and damaging effects on cell membranes, leading to liver injury. However, the molecular mechanisms for the protection of hepatocytes against bile salts are not fully understood. In this study, we demonstrated that the cytotoxicity of nine human major bile salts to HepG2 cells and primary human hepatocytes was prevented by phosphatidylcholine (PC). In contrast, cholesterol had no direct cytotoxic effects but suppressed the cytoprotective effects of PC. PC reduced the cell-association of bile salt, which was reversed by cholesterol. Light scattering measurements and gel filtration chromatography revealed that cholesterol within bile salt/PC dispersions decreased mixed micelles but increased vesicles, bile salt simple micelles and monomers. These results suggest that cholesterol attenuates the cytoprotective effects of PC against bile salts by facilitating the formation of bile salt simple micelles and monomers. Therefore, biliary PC and cholesterol may play different roles in the pathogenesis of bile salt-induced liver injury.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan.
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| |
Collapse
|
8
|
van Bergenhenegouwen J, Kraneveld AD, Rutten L, Garssen J, Vos AP, Hartog A. Lipoproteins attenuate TLR2 and TLR4 activation by bacteria and bacterial ligands with differences in affinity and kinetics. BMC Immunol 2016; 17:42. [PMID: 27793087 PMCID: PMC5086051 DOI: 10.1186/s12865-016-0180-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/19/2016] [Indexed: 12/28/2022] Open
Abstract
Background The small intestine is a specialized compartment were close interactions take place between host, microbes, food antigens and dietary fatty acids. Dietary fats get absorbed by epithelial cells and processed into a range of lipoprotein particles after which they are basolaterally secreted and collected in the lymphatics. In contrast to the colon, the small intestine is covered only by a thin mucus coat that allows for intimate interactions between host-cells and microbes. Lipoproteins have long been recognized as protective factors in infectious diseases via the neutralization of bacterial toxins like lipopolysaccharides. Much less attention has been given to the potential role of lipoproteins as factors contributing to the maintenance of small intestinal immune homeostasis via modulating bacteria-induced immune responses. Results Lipoproteins VLDL, LDL and HDL were found to neutralize TLR responses towards specific TLR-ligands or a selection of gram-negative and gram-positive bacteria. Attenuation of TLR2 activity was acute and only slightly improved by longer pre-incubation times of ligands and lipoproteins with no differences between bacterial-lipopeptides or bacteria. In contrast, attenuation of TLR4 responses was only observed after extensive preincubation of lipoproteins and LPS. Preincubation of bacteria and lipoproteins led only to a modest attenuation of TLR4 activity. Moreover, compared to TLR2, TLR4 activity could only be attenuated by lipoproteins over a small ligand dose range. Conclusions These results demonstrate the ability of lipoproteins VLDL, LDL and HDL to inhibit TLR responses towards bacterial-ligands and bacteria. Presence of lipoproteins was found to modulate the MAMP-induced cytokine release by primary human monocytes measured as changes in the release of IL-6, TNFα, GM-CSF and IFNγ. Using TLR2 and TLR4-reporter cells, lipoproteins were found to inhibit TLR responses with differences in affinity and kinetics. These data establish a role for lipoproteins as immunoregulatory molecules, attenuating TLR-responses and thereby positively contributing to mucosal homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0180-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeroen van Bergenhenegouwen
- Nutricia Research, Utrecht, The Netherlands. .,Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Aletta D Kraneveld
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Johan Garssen
- Nutricia Research, Utrecht, The Netherlands.,Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Anita Hartog
- Nutricia Research, Utrecht, The Netherlands.,Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Morita SY. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biol Pharm Bull 2016; 39:1-24. [DOI: 10.1248/bpb.b15-00716] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
10
|
Lipid Paradox in Acute Myocardial Infarction—The Association With 30-Day In-Hospital Mortality. Crit Care Med 2015; 43:1255-64. [DOI: 10.1097/ccm.0000000000000946] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Wakita K, Morita SY, Okamoto N, Takata E, Handa T, Nakano M. Chylomicron remnant model emulsions induce intracellular cholesterol accumulation and cell death due to lysosomal destabilization. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:598-604. [DOI: 10.1016/j.bbalip.2015.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/15/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
|
12
|
Morita SY, Ikeda N, Horikami M, Soda K, Ishihara K, Teraoka R, Terada T, Kitagawa S. Effects of phosphatidylethanolamine N-methyltransferase on phospholipid composition, microvillus formation and bile salt resistance in LLC-PK1 cells. FEBS J 2011; 278:4768-81. [PMID: 21958070 DOI: 10.1111/j.1742-4658.2011.08377.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bile salts are potent detergents and can disrupt cellular membranes, which causes cholestasis and hepatocellular injury. However, the mechanism for the resistance of the canalicular membrane against bile salts is not clear. Phosphatidylethanolamine (PE) is converted to phosphatidylcholine (PC) in the liver by phosphatidylethanolamine N-methyltransferase (PEMT). In this study, to investigate the effect of PEMT expression on the resistance to bile salts, we established an LLC-PK1 cell line stably expressing PEMT. By using enzymatic assays, we showed that the expression of PEMT increased the cellular PC content, lowered the PE content, but had no effect on the sphingomyelin content. Consequently, PEMT expression led to reductions in PE/PC and sphingomyelin/PC ratios. Mass spectrometry demonstrated that PEMT expression increased the levels of PC species containing longer acyl chains and almost all ether-linked PC species. PEMT expression enhanced the resistance to duramycin and lysenin, suggesting decreased ratios of PE and sphingomyelin in the apical membrane, respectively. In addition, SEM revealed that PEMT expression increased the diameter of microvilli. The expression of PEMT resulted in reduced resistance to unconjugated bile salts, but surprisingly in increased resistance to conjugated bile salts, which might be attributable to modifications of the phospholipid composition and/or structure in the apical membrane. Because most bile salts exist as conjugated forms in the bile canaliculi, PEMT may be important in the protection of hepatocytes from bile salts and in cholestatic liver injury.
Collapse
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Presence of Apolipoprotein C-III Attenuates Apolipoprotein E-Mediated Cellular Uptake of Cholesterol-Containing Lipid Particles by HepG2 Cells. Lipids 2010; 46:323-32. [DOI: 10.1007/s11745-010-3498-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/26/2010] [Indexed: 11/28/2022]
|