1
|
Pashaie F, Benne N, Holzapfel PIP, Veenendaal T, Bikker FJ, Heesterbeek DAC, Broere F, Veldhuizen EJA. PMAP-37: A versatile cathelicidin for neutralizing bacteria and viruses. Microb Pathog 2025; 204:107568. [PMID: 40228754 DOI: 10.1016/j.micpath.2025.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/13/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Antimicrobial peptides (AMPs), such as cathelicidins, show dual functionality by directly combating pathogens and indirectly eliminating them through stimulation of the immune system, generating interest in their therapeutic potential. Pigs have a large set of 11 cathelicidins, of which PMAP-37 is relatively understudied compared to some of the better-known cathelicidins. This study describes the effectiveness of PMAP-37 against both bacteria and viruses. PMAP-37 exhibited potent in vitro antimicrobial activity against both Gram-positive (Bacillus globigii) and Gram-negative bacteria (Escherichia coli) with minimum bactericidal concentrations (MBCs) of 2.5 and 5 μM, respectively. PMAP-37 caused a rapid permeabilization of E. coli's outer and inner membranes within 5 min, indicating its efficacy in disrupting bacterial cell membranes. Furthermore, PMAP-37 neutralized nitric oxide production in a macrophage cell line stimulated with various forms of LPS, Lipid A, or LTA in a dose-dependent manner. Flow cytometric analysis confirmed PMAP-37's capacity to inhibit LPS binding to macrophages, while zeta potential analysis showed the peptide's capacity to neutralize the negative charge of both the E. coli membrane and LPS micellular surfaces. Interestingly, PMAP-37 also exhibited antiviral activity against an important porcine pathogen, the porcine epidemic diarrhea virus (PEDV). These findings underscore the multifunctional properties of PMAP-37, and provide potential leads for future therapeutic use within the pig industry.
Collapse
Affiliation(s)
- Fatemeh Pashaie
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Naomi Benne
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Philippa I P Holzapfel
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Tineke Veenendaal
- Cell Microscopy Core, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA, Amsterdam, the Netherlands
| | - Dani A C Heesterbeek
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Femke Broere
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Carneri F, Troiano C, Giaquinto G, Roversi D, Franzyk H, Stella L. Water-membrane partition and the mutant selection window of antimicrobial peptides: insights from liposome studies. J Colloid Interface Sci 2025; 683:1078-1086. [PMID: 39721079 DOI: 10.1016/j.jcis.2024.12.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
The mutant selection window (MSW) is a range of antimicrobial concentrations, where some bacteria are killed, while others survive. Within this interval resistance may develop. Antimicrobial peptides (AMPs) are a promising class of antimicrobials that generally act by perturbing the integrity of bacterial membranes. Their MSW is typically narrower than that of traditional antibiotics, but it still encompasses about one order of magnitude of peptide concentrations. Phenotypic or genetic differences between individual cells may cause this heterogeneous bacterial response to AMPs. Therefore, we minimized the system complexity by investigating pore formation in liposomes with homogeneous size and composition. Surprisingly, the AMPs novicidin, P9-4, and Sub3 formed pores only in a fraction of vesicles, over a wide range of total peptide concentrations. By characterizing the water/membrane partition equilibrium of these three AMPs, we were able to report the vesicle-perturbing activity as a function of the membrane-bound peptide concentration. In this case, the curves became essentially step functions with well-defined (bound) concentration thresholds at which pores were formed in all liposomes. Therefore, the apparent heterogeneous effects of AMPs on vesicles were actually determined by variations in the fraction of membrane-bound peptides under different conditions, due to water-membrane partition. Unexpectedly, the thresholds coincided for all peptides in terms of bound amino acids per lipid (∼0.4), suggesting that the mechanism of pore formation primarily depends on the surface coverage by the AMPs.
Collapse
Affiliation(s)
- Federico Carneri
- Department of Chemical Science and Technologies, Tor Vergata University of Rome, 00133 Rome, Italy; Photoinduced Processes and Technologies Doctoral School, Department of Chemistry, Biology and Biotechnology, Perugia University, 06123 Perugia, Italy
| | - Cassandra Troiano
- Department of Chemical Science and Technologies, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppe Giaquinto
- Department of Chemical Science and Technologies, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Daniela Roversi
- Department of Chemical Science and Technologies, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, Tor Vergata University of Rome, 00133 Rome, Italy.
| |
Collapse
|
3
|
Wu Z, Cai Y, Han Y, Su Y, Zhang T, Wang X, Yan A, Wang L, Wu S, Wang G, Zhang Z. Development of α-Helical Antimicrobial Peptides with Imperfect Amphipathicity for Superior Activity and Selectivity. J Med Chem 2024; 67:19561-19572. [PMID: 39484706 DOI: 10.1021/acs.jmedchem.4c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The advancement of antimicrobial peptides (AMPs) as therapeutic agents is hindered by their poor selectivity. Recent evidence indicates that controlled disruption of the amphipathicity of α-helical AMPs may increase the selectivity. This study investigated the role of imperfect amphipathicity in optimizing AMPs with varied sequences to enhance their activity and selectivity. Among these, the lead peptide RI-18, characterized by an imperfectly amphipathic α-helical structure, demonstrated potent and broad-spectrum antibacterial activity without inducing hemolytic or cytotoxic effects. RI-18 effectively eliminated planktonic and biofilm-associated bacteria as well as persister cells and exhibited high bacterial plasma membrane affinity, inducing rapid membrane permeabilization and rupture. Notably, RI-18 significantly reduced bacterial loads without promoting bacterial resistance, highlighting its therapeutic potential. Overall, this study identified RI-18 as a promising antimicrobial candidate. The rational strategy of tuning imperfect amphipathicity to enhance the AMP activity and selectivity may facilitate the design and development of AMPs.
Collapse
Affiliation(s)
- Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Yajun Han
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunhan Su
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Gan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| |
Collapse
|
4
|
Pavela O, Juhász T, Tóth L, Czajlik A, Batta G, Galgóczy L, Beke-Somfai T. Mapping of the Lipid-Binding Regions of the Antifungal Protein NFAP2 by Exploiting Model Membranes. J Chem Inf Model 2024; 64:6557-6569. [PMID: 39150323 PMCID: PMC11351017 DOI: 10.1021/acs.jcim.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Fungal infections with high mortality rates represent an increasing health risk. The Neosartorya (Aspergillus) fischeri antifungal protein 2 (NFAP2) is a small, cysteine-rich, cationic protein exhibiting potent anti-Candida activity. As the underlying mechanism, pore formation has been demonstrated; however, molecular level details on its membrane disruption action are lacking. Herein, we addressed the lipid binding of NFAP2 using a combined computational and experimental approach to simple lipid compositions with various surface charge properties. Simulation results revealed binding preferences for negatively charged model membranes, where selectivity is mediated by anionic lipid components enriched at the protein binding site but also assisted by zwitterionic lipid species. Several potential binding routes initiated by various anchoring contacts were observed, which resulted in one main binding mode and a few variants, with NFAP2 residing on the membrane surface. Region 10NCPNNCKHKKG20 of the flexible N-terminal part of the protein showed potency to insert into the lipid bilayer, where the disulfide bond-stabilized short motif 11CPNNC15 could play a key role. In addition, several areas, including the beginning of the N-terminal (residues 1-8), played roles in facilitating initial membrane contacts. Besides, individual roles of residues such as Lys24, Lys32, Lys34, and Trp42 were also revealed by the simulations. Combined data demonstrated that the solution conformation was not perturbed markedly upon membrane interaction, and the folded part of the protein also contributed to stabilizing the bound state. Data also highlighted that the binding of NFAP2 to lipid vesicles is sensitively affected by environmental factors such as ionic strength. Electrostatic interactions driven by anionic lipids were found pivotal, explaining the reduced membrane activity observed under high salt conditions. Experimental data supported the lipid-selective binding mechanisms and pointed to salt-dependent effects, particularly to protein-assisted vesicle aggregation at low ionic strength. Our findings can contribute to the development of NFAP2-based anti-Candida agents and studies aiming at future medical use of peptide-based natural antifungal compounds.
Collapse
Affiliation(s)
- Olivér Pavela
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös Loránd
University, Budapest,
Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Tünde Juhász
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| | - Liliána Tóth
- Department
of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary
| | - András Czajlik
- Department
of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1 Debrecen H-4032, Hungary
- Department
of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - Gyula Batta
- Department
of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1 Debrecen H-4032, Hungary
| | - László Galgóczy
- Department
of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary
- Institute
of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Tamás Beke-Somfai
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| |
Collapse
|
5
|
De Luca A, Faienza F, Fulci C, Nicolai E, Calligari P, Palumbo C, Caccuri AM. Molecular and cellular evidence of a direct interaction between the TRAF2 C-terminal domain and ganglioside GM1. Int J Biochem Cell Biol 2024; 167:106508. [PMID: 38142771 DOI: 10.1016/j.biocel.2023.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
TNF receptor-associated factor 2 (TRAF2) is involved in different cellular processes including signal transduction and transcription regulation. We here provide evidence of a direct interaction between the TRAF domain of TRAF2 and the monosialotetrahexosylganglioside (GM1). Previously, we showed that the TRAF domain occurs mainly in a trimeric form in solution, but it can also exist as a stable monomer when in the nanomolar concentration range. Here, we report that the quaternary structure of the TRAF domain is also affected by pH changes, since a weakly acidic pH (5.5) favors the dissociation of the trimeric TRAF domain into stable monomers, as previously observed at neutral pH (7.6) with the diluted protein. The TRAF domain-GM1 binding was similar at pH 5.5 and 7.6, suggesting that GM1 interacts with both the trimeric and monomeric forms of the protein. However, only the monomeric protein appeared to cause membrane deformation and inward vesiculation in GM1-containing giant unilamellar vesicles (GUVs). The formation of complexes between GM1 and TRAF2, or its TRAF domain, was also observed in cultured human leukemic HAP1 cells expressing either the truncated TRAF domain or the endogenous full length TRAF2. The GM1-protein complexes were observed after treatment with tunicamycin and were more concentrated in cells undergoing apoptosis, a condition which is known to cause cytoplasm acidification. These findings open the avenue for future studies aimed at deciphering the physiopathological relevance of the TRAF domain-GM1 interaction.
Collapse
Affiliation(s)
| | - Fiorella Faienza
- Department of Chemical Sciences and Technologies, University of Tor Vergata, Rome, Italy
| | - Chiara Fulci
- Department of Chemical Sciences and Technologies, University of Tor Vergata, Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Tor Vergata, Rome, Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, Rome, Italy.
| | - Anna Maria Caccuri
- Department of Chemical Sciences and Technologies, University of Tor Vergata, Rome, Italy; The NAST Centre for Nanoscience and Nanotechnology and Innovative Instrumentation, University of Tor Vergata, Rome, Italy.
| |
Collapse
|
6
|
Javed A, Balhuizen MD, Pannekoek A, Bikker FJ, Heesterbeek DAC, Haagsman HP, Broere F, Weingarth M, Veldhuizen EJA. Effects of Escherichia coli LPS Structure on Antibacterial and Anti-Endotoxin Activities of Host Defense Peptides. Pharmaceuticals (Basel) 2023; 16:1485. [PMID: 37895956 PMCID: PMC10609994 DOI: 10.3390/ph16101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The binding of Host Defense Peptides (HDPs) to the endotoxin of Gram-negative bacteria has important unsolved aspects. For most HDPs, it is unclear if binding is part of the antibacterial mechanism or whether LPS actually provides a protective layer against HDP killing. In addition, HDP binding to LPS can block the subsequent TLR4-mediated activation of the immune system. This dual activity is important, considering that HDPs are thought of as an alternative to conventional antibiotics, which do not provide this dual activity. In this study, we systematically determine, for the first time, the influence of the O-antigen and Lipid A composition on both the antibacterial and anti-endotoxin activity of four HDPs (CATH-2, PR-39, PMAP-23, and PMAP36). The presence of the O-antigen did not affect the antibacterial activity of any of the tested HDPs. Similarly, modification of the lipid A phosphate (MCR-1 phenotype) also did not affect the activity of the HDPs. Furthermore, assessment of inner and outer membrane damage revealed that CATH-2 and PMAP-36 are profoundly membrane-active and disrupt the inner and outer membrane of Escherichia coli simultaneously, suggesting that crossing the outer membrane is the rate-limiting step in the bactericidal activity of these HDPs but is independent of the presence of an O-antigen. In contrast to killing, larger differences were observed for the anti-endotoxin properties of HDPs. CATH-2 and PMAP-36 were much stronger at suppressing LPS-induced activation of macrophages compared to PR-39 and PMAP-23. In addition, the presence of only one phosphate group in the lipid A moiety reduced the immunomodulating activity of these HDPs. Overall, the data strongly suggest that LPS composition has little effect on bacterial killing but that Lipid A modification can affect the immunomodulatory role of HDPs. This dual activity should be considered when HDPs are considered for application purposes in the treatment of infectious diseases.
Collapse
Affiliation(s)
- Ali Javed
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.); (A.P.); (F.B.)
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands;
| | - Melanie D. Balhuizen
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.D.B.); (H.P.H.)
| | - Arianne Pannekoek
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.); (A.P.); (F.B.)
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands;
| | - Dani A. C. Heesterbeek
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Henk P. Haagsman
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.D.B.); (H.P.H.)
| | - Femke Broere
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.); (A.P.); (F.B.)
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands;
| | - Edwin J. A. Veldhuizen
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.); (A.P.); (F.B.)
| |
Collapse
|
7
|
Roversi D, Troiano C, Salnikov E, Giordano L, Riccitelli F, De Zotti M, Casciaro B, Loffredo MR, Park Y, Formaggio F, Mangoni ML, Bechinger B, Stella L. Effects of antimicrobial peptides on membrane dynamics: A comparison of fluorescence and NMR experiments. Biophys Chem 2023; 300:107060. [PMID: 37336097 DOI: 10.1016/j.bpc.2023.107060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Antimicrobial peptides (AMPs) represent a promising class of compounds to fight resistant infections. They are commonly thought to kill bacteria by perturbing the permeability of their cell membranes. However, bacterial killing requires a high coverage of the cell surface by bound peptides, at least in the case of cationic and amphipathic AMPs. Therefore, it is conceivable that peptide accumulation on the bacterial membranes might interfere with vital cellular functions also by perturbing bilayer dynamics, a hypothesis that has been termed "sand in the gearbox". Here we performed a systematic study of such possible effects, for two representative peptides (the cationic cathelicidin PMAP-23 and the peptaibol alamethicin), employing fluorescence and NMR spectroscopies. These approaches are commonly applied to characterize lipid order and dynamics, but sample different time-scales and could thus report on different membrane properties. In our case, fluorescence anisotropy measurements on liposomes labelled with probes localized at different depths in the bilayer showed that both peptides perturb membrane fluidity and order. Pyrene excimer-formation experiments showed a peptide-induced reduction in lipid lateral mobility. Finally, laurdan fluorescence indicated that peptide binding reduces water penetration below the headgroups region. Comparable effects were observed also in fluorescence experiments performed directly on live bacterial cells. By contrast, the fatty acyl chain order parameters detected by deuterium NMR spectroscopy remained virtually unaffected by addition of the peptides. The apparent discrepancy between the two techniques confirms previous sporadic observations and is discussed in terms of the different characteristic times of the two approaches. The perturbation of membrane dynamics in the ns timescale, indicated by the multiple fluorescence approaches reported here, could contribute to the antimicrobial activity of AMPs, by affecting the function of membrane proteins, which is strongly dependent on the physicochemical properties of the bilayer.
Collapse
Affiliation(s)
- Daniela Roversi
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Cassandra Troiano
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Evgeniy Salnikov
- RMN et Biophysique des membranes, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France
| | - Lorenzo Giordano
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesco Riccitelli
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Bruno Casciaro
- Department of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Maria Rosa Loffredo
- Department of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Republic of Korea
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Burkhard Bechinger
- RMN et Biophysique des membranes, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France; Institut Universitaire de France, Paris 75005, France
| | - Lorenzo Stella
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
8
|
Troiano C, De Ninno A, Casciaro B, Riccitelli F, Park Y, Businaro L, Massoud R, Mangoni ML, Bisegna P, Stella L, Caselli F. Rapid Assessment of Susceptibility of Bacteria and Erythrocytes to Antimicrobial Peptides by Single-Cell Impedance Cytometry. ACS Sens 2023. [PMID: 37421371 PMCID: PMC10391704 DOI: 10.1021/acssensors.3c00256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Antimicrobial peptides (AMPs) represent a promising class of compounds to fight antibiotic-resistant infections. In most cases, they kill bacteria by making their membrane permeable and therefore exhibit low propensity to induce bacterial resistance. In addition, they are often selective, killing bacteria at concentrations lower than those at which they are toxic to the host. However, clinical applications of AMPs are hindered by a limited understanding of their interactions with bacteria and human cells. Standard susceptibility testing methods are based on the analysis of the growth of a bacterial population and therefore require several hours. Moreover, different assays are required to assess the toxicity to host cells. In this work, we propose the use of microfluidic impedance cytometry to explore the action of AMPs on both bacteria and host cells in a rapid manner and with single-cell resolution. Impedance measurements are particularly well-suited to detect the effects of AMPs on bacteria, due to the fact that the mechanism of action involves perturbation of the permeability of cell membranes. We show that the electrical signatures of Bacillus megaterium cells and human red blood cells (RBCs) reflect the action of a representative antimicrobial peptide, DNS-PMAP23. In particular, the impedance phase at high frequency (e.g., 11 or 20 MHz) is a reliable label-free metric for monitoring DNS-PMAP23 bactericidal activity and toxicity to RBCs. The impedance-based characterization is validated by comparison with standard antibacterial activity assays and absorbance-based hemolytic activity assays. Furthermore, we demonstrate the applicability of the technique to a mixed sample of B. megaterium cells and RBCs, which paves the way to study AMP selectivity for bacterial versus eukaryotic cells in the presence of both cell types.
Collapse
Affiliation(s)
- Cassandra Troiano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, 00133 Rome, Italy
| | - Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Riccitelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yoonkyung Park
- Department of Biomedical Science, College of Natural science, Chosun University, Gwangju 61452, Republic of Korea
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, Italian National Research Council, 00133 Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Federica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
9
|
Cantini F, Giannì P, Bobone S, Troiano C, van Ingen H, Massoud R, Perini N, Migliore L, Savarin P, Sanders C, Stella L, Sette M. Structural and Functional Characterization of the Newly Designed Antimicrobial Peptide Crabrolin21. MEMBRANES 2023; 13:365. [PMID: 36984752 PMCID: PMC10053045 DOI: 10.3390/membranes13030365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: antimicrobial resistance is becoming a dramatic problem for public health, and the design of new antimicrobial agents is an active research area. (2) Methods: based on our previous work, we designed an improved version of the crabrolin peptide and characterized its functional and structural properties with a wide range of techniques. (3) Results: the newly designed peptide, crabrolin21, is much more active than the previous ones and shows specific selectivity towards bacterial cells. (4) Conclusions: crabrolin21 shows interesting properties and deserves further studies.
Collapse
Affiliation(s)
- Francesca Cantini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019 Firenze, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, 50019 Firenze, Italy
| | - Paola Giannì
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
- Fondazione G.I.M.EM.A.-Franco Mandelli Onlus, 00182 Rome, Italy
| | - Sara Bobone
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cassandra Troiano
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Renato Massoud
- Department of Experimental Medicine, University of Rome Tor Vergata, Viale della Ricerca Scientifica, 00133 Rome, Italy
| | - Nicoletta Perini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luciana Migliore
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- eCampus University, 22060 Novedrate, Italy
| | - Philippe Savarin
- Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), Sorbonne Paris Nord University, The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| | - Charles Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lorenzo Stella
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Sette
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
- Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), Sorbonne Paris Nord University, The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| |
Collapse
|
10
|
Hemmingsen LM, Giordani B, Paulsen MH, Vanić Ž, Flaten GE, Vitali B, Basnet P, Bayer A, Strøm MB, Škalko-Basnet N. Tailored anti-biofilm activity - Liposomal delivery for mimic of small antimicrobial peptide. BIOMATERIALS ADVANCES 2023; 145:213238. [PMID: 36527962 DOI: 10.1016/j.bioadv.2022.213238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The eradication of bacteria embedded in biofilms is among the most challenging obstacles in the management of chronic wounds. These biofilms are found in most chronic wounds; moreover, the biofilm-embedded bacteria are considerably less susceptible to conventional antimicrobial treatment than the planktonic bacteria. Antimicrobial peptides and their mimics are considered attractive candidates in the pursuit of novel therapeutic options for the treatment of chronic wounds and general bacterial eradication. However, some limitations linked to these membrane-active antimicrobials are making their clinical use challenging. Novel innovative delivery systems addressing these limitations represent a smart solution. We hypothesized that incorporation of a novel synthetic mimic of an antimicrobial peptide in liposomes could improve its anti-biofilm effect as well as the anti-inflammatory activity. The small synthetic mimic of an antimicrobial peptide, 7e-SMAMP, was incorporated into liposomes (~280 nm) tailored for skin wounds and evaluated for its potential activity against both biofilm formation and eradication of pre-formed biofilms. The 7e-SMAMP-liposomes significantly lowered inflammatory response in murine macrophages (~30 % reduction) without affecting the viability of macrophages or keratinocytes. Importantly, the 7e-SMAMP-liposomes completely eradicated biofilms produced by Staphylococcus aureus and Escherichia coli above concentrations of 6.25 μg/mL, whereas in Pseudomonas aeruginosa the eradication reached 75 % at the same concentration. Incorporation of 7e-SMAMP in liposomes improved both the inhibition of biofilm formation as well as biofilm eradication in vitro, as compared to non-formulated antimicrobial, therefore confirming its potential as a novel therapeutic option for bacteria-infected chronic wounds.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Barbara Giordani
- Beneficial Microbes Research Group, Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Marianne H Paulsen
- Department of Chemistry, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway; Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Željka Vanić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Beatrice Vitali
- Beneficial Microbes Research Group, Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Purusotam Basnet
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Universitetsveien 57, N-9037 Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Morten B Strøm
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway.
| |
Collapse
|
11
|
Bortolotti A, Troiano C, Bobone S, Konai MM, Ghosh C, Bocchinfuso G, Acharya Y, Santucci V, Bonacorsi S, Di Stefano C, Haldar J, Stella L. Mechanism of lipid bilayer perturbation by bactericidal membrane-active small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184079. [PMID: 36374761 DOI: 10.1016/j.bbamem.2022.184079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Membrane-active small molecules (MASMs) are small organic molecules designed to reproduce the fundamental physicochemical properties of natural antimicrobial peptides: their cationic charge and amphiphilic character. This class of compounds has a promising broad range of antimicrobial activity and, at the same time, solves some major limitations of the peptides, such as their high production costs and low in vivo stability. Most cationic antimicrobial peptides act by accumulating on the surface of bacterial membranes and causing the formation of defects when a threshold is reached. Due to the drastically different structures of the two classes of molecules, it is not obvious that small-molecule antimicrobials act in the same way as natural peptides, and very few data are available on this aspect. Here we combined spectroscopic studies and molecular dynamics simulations to characterize the mechanism of action of two different MASMs. Our results show that, notwithstanding their simple structure, these molecules act just like antimicrobial peptides. They bind to the membrane surface, below the head-groups, and insert their apolar moieties in the core of the bilayer. Like many natural peptides, they cause the formation of defects when they reach a high coverage of the membrane surface. In addition, they cause membrane aggregation, and this property could contribute to their antimicrobial activity.
Collapse
Affiliation(s)
- A Bortolotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - C Troiano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - S Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - M M Konai
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - C Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - G Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Y Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - V Santucci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - S Bonacorsi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - C Di Stefano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - J Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India; School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India.
| | - L Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
12
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
13
|
Allsopp R, Pavlova A, Cline T, Salyapongse AM, Gillilan RE, Di YP, Deslouches B, Klauda JB, Gumbart JC, Tristram-Nagle S. Antimicrobial Peptide Mechanism Studied by Scattering-Guided Molecular Dynamics Simulation. J Phys Chem B 2022; 126:6922-6935. [PMID: 36067064 PMCID: PMC10392866 DOI: 10.1021/acs.jpcb.2c03193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In an effort to combat rising antimicrobial resistance, our labs have rationally designed cationic, helical, amphipathic antimicrobial peptides (AMPs) as alternatives to traditional antibiotics since AMPs incur bacterial resistance in weeks, rather than days. One highly positively charged AMP, WLBU2 (+13e), (RRWV RRVR RWVR RVVR VVRR WVRR), has been shown to be effective in killing both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria by directly perturbing the bacterial membrane nonspecifically. Previously, we used two equilibrium experimental methods: synchrotron X-ray diffuse scattering (XDS) providing lipid membrane thickness and neutron reflectometry (NR) providing WLBU2 depth of penetration into three lipid model membranes (LMMs). The purpose of the present study is to use the results from the scattering experiments to guide molecular dynamics (MD) simulations to investigate the detailed biophysics of the interactions of WLBU2 with LMMs of Gram-negative outer and inner membranes, and Gram-positive cell membranes, to elucidate the mechanisms of bacterial killing. Instead of coarse-graining, backmapping, or simulating without bias for several microseconds, all-atom (AA) simulations were guided by the experimental results and then equilibrated for ∼0.5 μs. Multiple replicas of the inserted peptide were run to probe stability and reach a combined time of at least 1.2 μs for G(-) and also 2.0 μs for G(+). The simulations with experimental comparisons help rule out certain structures and orientations and propose the most likely set of structures, orientations, and effects on the membrane. The simulations revealed that water, phosphates, and ions enter the hydrocarbon core when WLBU2 is positioned there. For an inserted peptide, the three types of amino acids, arginine, tryptophan, and valine (R, W, V), are arranged with the 13 Rs extending from the hydrocarbon core to the phosphate group, Ws are located at the interface, and Vs are more centrally located. For a surface state, R, W, and V are positioned relative to the bilayer interface as expected from their hydrophobicities, with Rs closest to the phosphate group, Ws close to the interface, and Vs in between. G(-) and G(+) LMMs are thinned ∼1 Å by the addition of WLBU2. Our results suggest a dual anchoring mechanism for WLBU2 both in the headgroup and in the hydrocarbon region that promotes a defect region where water and ions can flow across the slightly thinned bacterial cell membrane.
Collapse
Affiliation(s)
- Robert Allsopp
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tyler Cline
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Aria M Salyapongse
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Liu Y, Shen T, Chen L, Zhou J, Wang C. Analogs of the Cathelicidin-Derived Antimicrobial Peptide PMAP-23 Exhibit Improved Stability and Antibacterial Activity. Probiotics Antimicrob Proteins 2021; 13:273-286. [PMID: 32666297 DOI: 10.1007/s12602-020-09686-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptides (AMPs) have gained interesting as a new type of antimicrobial agent. The cathelicidin-derived antimicrobial peptide PMAP-23 has broad-spectrum antibacterial activity, and to improve its antimicrobial activity, we used amino acid substitution at position 5 or 19 of PMAP-23 to design three analogs, named PMAP-23R (Leu5--Arg), PMAP-23I (Thr19--Ile), and PMAP-23RI (Leu5--Arg and Thr19--Ile). We found that the analog peptides exhibited higher stability and improved antibacterial activity compared with PMAP-23. Additionally, the analog peptides PMAP-23I and PMAP-23RI inhibited the growth of Shigella flexneri CICC 21534, whereas PMAP-23 and PMAP-23R exhibited no antibacterial activity against S. flexneri CICC 21534. Moreover, the peptide analogs showed negligible hemolysis and cytotoxicity. We also found that PMAP-23RI exerted impressive therapeutic effects on mice infected with Staphylococcus aureus ATCC 25923 and Salmonella enterica serovar Typhimurium SL1344. PMAP-23RI induced a greater reduction in pathological damage and a higher decrease in the bacterial gene copies in the lung and liver tissues and greatly reduced mouse mortality. In conclusion, the peptide analogs PMAP-23R, PMAP-23I, and PMAP-23RI enhanced the stability and antimicrobial activity of PMAP-23, but PMAP-23RI exhibits more promise as a new antimicrobial agent candidate for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yongqing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China
| | - Tengfei Shen
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China
| | - Liangliang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China
| | - Jiangfei Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China
| | - Chen Wang
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China.
| |
Collapse
|
15
|
Loffredo MR, Savini F, Bobone S, Casciaro B, Franzyk H, Mangoni ML, Stella L. Inoculum effect of antimicrobial peptides. Proc Natl Acad Sci U S A 2021; 118:e2014364118. [PMID: 34021080 PMCID: PMC8166072 DOI: 10.1073/pnas.2014364118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The activity of many antibiotics depends on the initial density of cells used in bacterial growth inhibition assays. This phenomenon, termed the inoculum effect, can have important consequences for the therapeutic efficacy of the drugs, because bacterial loads vary by several orders of magnitude in clinically relevant infections. Antimicrobial peptides are a promising class of molecules in the fight against drug-resistant bacteria because they act mainly by perturbing the cell membranes rather than by inhibiting intracellular targets. Here, we report a systematic characterization of the inoculum effect for this class of antibacterial compounds. Minimum inhibitory concentration values were measured for 13 peptides (including all-D enantiomers) and peptidomimetics, covering more than seven orders of magnitude in inoculated cell density. In most cases, the inoculum effect was significant for cell densities above the standard inoculum of 5 × 105 cells/mL, while for lower densities the active concentrations remained essentially constant, with values in the micromolar range. In the case of membrane-active peptides, these data can be rationalized by considering a simple model, taking into account peptide-cell association, and hypothesizing that a threshold number of cell-bound peptide molecules is required in order to cause bacterial killing. The observed effect questions the clinical utility of activity and selectivity determinations performed at a fixed, standardized cell density. A routine evaluation of the dependence of the activity of antimicrobial peptides and peptidomimetics on the inoculum should be considered.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Filippo Savini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Bruno Casciaro
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
16
|
Martins IBS, Viegas TG, Dos Santos Alvares D, de Souza BM, Palma MS, Ruggiero Neto J, de Araujo AS. The effect of acidic pH on the adsorption and lytic activity of the peptides Polybia-MP1 and its histidine-containing analog in anionic lipid membrane: a biophysical study by molecular dynamics and spectroscopy. Amino Acids 2021; 53:753-767. [PMID: 33890127 DOI: 10.1007/s00726-021-02982-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune system of many species. AMPs are short sequences rich in charged and non-polar residues. They act on the lipid phase of the plasma membrane without requiring membrane receptors. Polybia-MP1 (MP1), extracted from a native wasp, is a broad-spectrum bactericide, an inhibitor of cancer cell proliferation being non-hemolytic and non-cytotoxic. MP1 mechanism of action and its adsorption mode is not yet completely known. Its adsorption to lipid bilayer and lytic activity is most likely dependent on the ionization state of its two acidic and three basic residues and consequently on the bulk pH. Here we investigated the effect of bulk acidic (pH 5.5) and neutral pH (7.4) solution on the adsorption, insertion, and lytic activity of MP1 and its analog H-MP1 to anionic (7POPC:3POPG) model membrane. H-MP1 is a synthetic analog of MP1 with lysines replaced by histidines. Bulk pH changes could modulate this peptide efficiency. The combination of different experimental techniques and molecular dynamics (MD) simulations showed that the adsorption, insertion, and lytic activity of H-MP1 are highly sensitive to bulk pH in opposition to MP1. The atomistic details, provided by MD simulations, showed peptides contact their N-termini to the bilayer before the insertion and then lay parallel to the bilayer. Their hydrophobic faces inserted into the acyl chain phase disturb the lipid-packing.
Collapse
Affiliation(s)
- Ingrid Bernardes Santana Martins
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil
| | - Taisa Giordano Viegas
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil
| | - Dayane Dos Santos Alvares
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil
| | - Bibiana Monson de Souza
- Department of Basic and Applied Biology, Institute of Biosciences, UNESP-São Paulo State University, Rio Claro, SP, Brazil
| | - Mário Sérgio Palma
- Department of Basic and Applied Biology, Institute of Biosciences, UNESP-São Paulo State University, Rio Claro, SP, Brazil
| | - João Ruggiero Neto
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil.
| | - Alexandre Suman de Araujo
- Department of Physics, IBILCE, UNESP-São Paulo State University, Cristóvão Colombo, 2265-Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
17
|
Joodaki F, Martin LM, Greenfield ML. Computational Study of Helical and Helix-Hinge-Helix Conformations of an Anti-Microbial Peptide in Solution by Molecular Dynamics and Vibrational Analysis. J Phys Chem B 2021; 125:703-721. [PMID: 33464100 DOI: 10.1021/acs.jpcb.0c07988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many classical antimicrobial peptides adopt an amphipathic helical structure at a water-membrane interface. Prior studies led to the hypothesis that a hinge near the middle of a helical peptide plays an important role in facilitating peptide-membrane interactions. Here, dynamics and vibrations of a designed hybrid antimicrobial peptide LM7-2 in solution were simulated to investigate its hinge formation. Molecular dynamics simulation results on the basis of the CHARMM36 force field showed that the α-helix LM7-2 bent around two or three residues near the middle of the peptide, stayed in a helix-hinge-helix conformation for a short period of time, and then returned to a helical conformation. High-resolution computational vibrational techniques were applied on the LM7-2 system when it has α-helical and helix-hinge-helix conformations to understand how this structural change affects its inherent vibrations. These studies concentrated on the calculation of frequencies that correspond to backbone amide bands I, II, and III: vibrational modes that are sensitive to changes in the secondary structure of peptides and proteins. To that end, Fourier transforms were applied to thermal fluctuations in C-N-H angles, C-N bond lengths, and C═O bond lengths of each amide group. In addition, instantaneous all-atom normal mode analysis was applied to monitor and detect the characteristic amide bands of each amide group within LM7-2 during the MD simulation. Computational vibrational results indicate that shapes and frequencies of amide bands II and especially III were altered only for amide groups near the hinge. These methods provide high-resolution vibrational information that can complement spectroscopic vibrational studies. They assist in interpreting spectra of similar systems and suggest a marker for the presence of the helix-hinge-helix motif. Moreover, radial distribution functions indicated an increase in the probability of hydrogen bonding between water and a hydrogen atom connected to nitrogen (HN) in such a hinge. The probability of intramolecular hydrogen bond formation between HN and an amide group oxygen atom within LM7-2 was lower around the hinge. No correlation has been found between the presence of a hinge and hydrogen bonds between amide group oxygen atoms and the hydrogen atoms of water molecules. This result suggests a mechanism for hinge formation wherein hydrogen bonds to oxygen atoms of water replace intramolecular hydrogen bonds as the peptide backbone folds.
Collapse
Affiliation(s)
- Faramarz Joodaki
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lenore M Martin
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Michael L Greenfield
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
18
|
Nguyen MHL, DiPasquale M, Rickeard BW, Yip CG, Greco KN, Kelley EG, Marquardt D. Time-resolved SANS reveals pore-forming peptides cause rapid lipid reorganization. NEW J CHEM 2021. [DOI: 10.1039/d0nj04717a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Time-resolved SANS showed alamethicin and melittin promote DMPC lipid vesicle mixing and perturb DMPC kinetics in similar ways.
Collapse
Affiliation(s)
| | | | - Brett W. Rickeard
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Caesar G. Yip
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Kaity N. Greco
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Elizabeth G. Kelley
- NIST Center for Neutron Research
- National Institute of Standards and Technology
- Gaithersburg
- USA
| | - Drew Marquardt
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
- Department of Physics
| |
Collapse
|
19
|
Kumar R, Ali SA, Singh SK, Bhushan V, Mathur M, Jamwal S, Mohanty AK, Kaushik JK, Kumar S. Antimicrobial Peptides in Farm Animals: An Updated Review on Its Diversity, Function, Modes of Action and Therapeutic Prospects. Vet Sci 2020; 7:vetsci7040206. [PMID: 33352919 PMCID: PMC7766339 DOI: 10.3390/vetsci7040206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are the arsenals of the innate host defense system, exhibiting evolutionarily conserved characteristics that are present in practically all forms of life. Recent years have witnessed the emergence of antibiotic-resistant bacteria compounded with a slow discovery rate for new antibiotics that have necessitated scientific efforts to search for alternatives to antibiotics. Research on the identification of AMPs has generated very encouraging evidence that they curb infectious pathologies and are also useful as novel biologics to function as immunotherapeutic agents. Being innate, they exhibit the least cytotoxicity to the host and exerts a wide spectrum of biological activity including low resistance among microbes and increased wound healing actions. Notably, in veterinary science, the constant practice of massive doses of antibiotics with inappropriate withdrawal programs led to a high risk of livestock-associated antimicrobial resistance. Therefore, the world faces tremendous pressure for designing and devising strategies to mitigate the use of antibiotics in animals and keep it safe for posterity. In this review, we illustrate the diversity of farm animal-specific AMPs, and their biochemical foundations, mode of action, and prospective application in clinics. Subsequently, we present the data for their systematic classification under the major and minor groups, antipathogenic action, and allied bioactivities in the host. Finally, we address the limitations of their clinical implementation and envision areas for further advancement.
Collapse
|
20
|
Savini F, Loffredo M, Troiano C, Bobone S, Malanovic N, Eichmann T, Caprio L, Canale V, Park Y, Mangoni M, Stella L. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183291. [DOI: 10.1016/j.bbamem.2020.183291] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
21
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
22
|
Li J, Fernández-Millán P, Boix E. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections. Curr Top Med Chem 2020; 20:1238-1263. [DOI: 10.2174/1568026620666200303122626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023]
Abstract
Background:Antimicrobial resistance (AMR) to conventional antibiotics is becoming one of the main global health threats and novel alternative strategies are urging. Antimicrobial peptides (AMPs), once forgotten, are coming back into the scene as promising tools to overcome bacterial resistance. Recent findings have attracted attention to the potentiality of AMPs to work as antibiotic adjuvants.Methods:In this review, we have tried to collect the currently available information on the mechanism of action of AMPs in synergy with other antimicrobial agents. In particular, we have focused on the mechanisms of action that mediate the inhibition of the emergence of bacterial resistance by AMPs.Results and Conclusion:We find in the literature many examples where AMPs can significantly reduce the antibiotic effective concentration. Mainly, the peptides work at the bacterial cell wall and thereby facilitate the drug access to its intracellular target. Complementarily, AMPs can also contribute to permeate the exopolysaccharide layer of biofilm communities, or even prevent bacterial adhesion and biofilm growth. Secondly, we find other peptides that can directly block the emergence of bacterial resistance mechanisms or interfere with the community quorum-sensing systems. Interestingly, the effective peptide concentrations for adjuvant activity and inhibition of bacterial resistance are much lower than the required for direct antimicrobial action. Finally, many AMPs expressed by innate immune cells are endowed with immunomodulatory properties and can participate in the host response against infection. Recent studies in animal models confirm that AMPs work as adjuvants at non-toxic concentrations and can be safely administrated for novel combined chemotherapies.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| |
Collapse
|
23
|
Multifunctional Acidocin 4356 Combats Pseudomonas aeruginosa through Membrane Perturbation and Virulence Attenuation: Experimental Results Confirm Molecular Dynamics Simulation. Appl Environ Microbiol 2020; 86:AEM.00367-20. [PMID: 32169940 DOI: 10.1128/aem.00367-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 11/20/2022] Open
Abstract
A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (∼8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections.IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections.
Collapse
|
24
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
25
|
Vaezi Z, Bortolotti A, Luca V, Perilli G, Mangoni ML, Khosravi-Far R, Bobone S, Stella L. Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183107. [PMID: 31678022 DOI: 10.1016/j.bbamem.2019.183107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 01/02/2023]
Abstract
Host defense peptides selectively kill bacterial and cancer cells (including those that are drug-resistant) by perturbing the permeability of their membranes, without being significantly toxic to the host. Coulombic interactions between these cationic and amphipathic peptides and the negatively charged membranes of pathogenic cells contribute to the selective toxicity. However, a positive charge is not sufficient for selectivity, which can be achieved only by a finely tuned balance of electrostatic and hydrophobic driving forces. A common property of amphipathic peptides is the formation of aggregated structures in solution, but the role of this phenomenon in peptide activity and selectivity has received limited attention. Our data on the anticancer peptide killerFLIP demonstrate that aggregation strongly increases peptide selectivity, by reducing the effective peptide hydrophobicity and thus the affinity towards membranes composed of neutral lipids (like the outer layer of healthy eukaryotic cell membranes). Aggregation is therefore a useful tool to modulate the selectivity of membrane active peptides and peptidomimetics.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Bortolotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Luca
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Giulia Perilli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Roya Khosravi-Far
- BiomaRx Inc, Cambridge, MA, USA; Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
26
|
Gong H, Zhang J, Hu X, Li Z, Fa K, Liu H, Waigh TA, McBain A, Lu JR. Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34609-34620. [PMID: 31448889 DOI: 10.1021/acsami.9b10028] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antimicrobial peptides (AMPs) can target bacterial membranes and kill bacteria through membrane structural damage and cytoplasmic leakage. A group of surfactant-like cationic AMPs was developed from substitutions to selective amino acids in the general formula of G(IIKK)3I-NH2, (called G3, a de novo AMP), to explore the correlation between AMP hydrophobicity and bioactivity. A threshold surface pressure over 12 mN/m was required to cause measurable antimicrobial activity and this corresponded to a critical AMP concentration. Greater surface activity exhibited stronger antimicrobial activity but had the drawback of worsening hemolytic activity. Small unilamellar vesicles (SUVs) with specific lipid compositions were used to model bacterial and host mammalian cell membranes by mimicking the main structural determinants of the charge and composition. Leakage from the SUVs of encapsulated carboxyfluorescein measured by fluorescence spectroscopy indicated a negative correlation between hydrophobicity and model membrane selectivity, consistent with measurements of the zeta potential that demonstrated the extent of AMP binding onto model SUV lipid bilayers. Experiments with model lipid membranes thus explained the trend of minimum inhibitory concentrations and selectivity measured from real cell systems and demonstrated the dominant influence of hydrophobicity. This work provides useful guidance for the improvement of the potency of AMPs via structural design, whilst taking due consideration of cytotoxicity.
Collapse
|
27
|
Koivuniemi A, Fallarero A, Bunker A. Insight into the antimicrobial mechanism of action of β 2,2-amino acid derivatives from molecular dynamics simulation: Dancing the can-can at the membrane surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183028. [PMID: 31376362 DOI: 10.1016/j.bbamem.2019.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023]
Abstract
The development of antimicrobial agents that target and selectively disrupt biofilms is a pressing issue since, so far, no antibiotics have been developed that achieve this effectively. Previous experimental work has found a promising set of antibacterial peptides: β2,2-amino acid derivatives, relatively small molecules with common structural elements composed of a polar head group and two non-polar hydrocarbon arms. In order to develop insight into possible mechanisms of action of these novel antibacterial agents, we have performed an in silico investigation of four leading β2,2-amino acid derivatives, interacting with models of both bacterial (target) and eukaryotic (host) membranes, using molecular dynamics simulation with a model with all-atom resolution. We found an unexpected result that could shed light on the mechanism of action of these antimicrobial agents: the molecules assume a conformation where one of the hydrophobic arms is directed downward into the membrane core while the other is directed upwards, out of the membrane and exposed above the position of the membrane headgroups; we dubbed this conformation the "can-can pose". Intriguingly, the can-can pose was most closely linked to the choice of headgroup. Also, the compound previously found to be most effective against biofilms displayed the strongest extent of this behavior and, additionally, this behavior was more pronounced for this compound in the bacterial than in the eukaryotic membrane. We hypothesize that adopting the can-can pose could possibly disrupt the protective peptidoglycan macronet found on the exterior of the bacterial membrane.
Collapse
Affiliation(s)
- Artturi Koivuniemi
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Adyary Fallarero
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alex Bunker
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
28
|
Kim S, Lee DG. PMAP-23 triggers cell death by nitric oxide-induced redox imbalance in Escherichia coli. Biochim Biophys Acta Gen Subj 2019; 1863:1187-1195. [PMID: 31026481 DOI: 10.1016/j.bbagen.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Antibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed toward the pre-antibiotic era. Antimicrobial peptides (AMPs) are a host defense component against infectious pathogens in response to innate immunity. PMAP-23, an AMP derived from porcine myeloid, possesses antibacterial activity. It is currently not clear how the antibacterial activity of PMAP-23 is manifested. METHODS The disruptive effect of nitric oxide (NO) on the catalase activity, reactive oxygen species (ROS) production, DNA oxidation and apoptosis-like death were evaluated using the NO generation inhibitor. RESULTS In this investigation, PMAP-23 generates NO in a dose dependent manner. NO deactivated catalase and this antioxidant could not protect Escherichia coli against ROS, especially hydroxyl radical. This redox imbalance was shown to induce oxidative stress, thus leading to DNA strand break. Consequently, PMAP-23 treated E. coli cells resulted in apoptosis-like death. These physiological changes were inhibited when NO generation was inhibited. In the ΔdinF mutant, the levels of DNA strand break sharply increased and the cells were more sensitive to PMAP-23 than wild type. CONCLUSION Our data strongly indicates that PMAP-23 mediates apoptosis-like cell death through affecting intracellular NO homeostasis. Furthermore, our results demonstrate that DinF functioned in protection from oxidative DNA damage. GENERAL SIGNIFICANCE The identification of PMAP-23 antibacterial activity and mechanism provides a promising antibacterial agent, supporting the role of NO in cell death regulation.
Collapse
Affiliation(s)
- Suhyun Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
29
|
Kim S, Lee DG. Role of calcium in reactive oxygen species-induced apoptosis in Candida albicans: an antifungal mechanism of antimicrobial peptide, PMAP-23. Free Radic Res 2019; 53:8-17. [DOI: 10.1080/10715762.2018.1511052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Suhyun Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
30
|
Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:175-214. [DOI: 10.1007/978-981-13-3588-4_11] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
32
|
Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J Microbiol Biotechnol 2018; 34:62. [PMID: 29651655 DOI: 10.1007/s11274-018-2444-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Antimicrobial peptides (AMPs) have been established over millennia as powerful components of the innate immune system of many organisms. Due to their broad spectrum of activity and the development of host resistance against them being unlikely, AMPs are strong candidates for controlling drug-resistant pathogenic microbial pathogens. AMPs cause cell death through several independent or cooperative mechanisms involving membrane lysis, non-lytic activity, and/or intracellular mechanisms. Biochemical determinants such as peptide length, primary sequence, charge, secondary structure, hydrophobicity, amphipathicity and host cell membrane composition together influence the biological activities of peptides. A number of biophysical techniques have been used in recent years to study the mechanisms of action of AMPs. This work appraises the molecular parameters that determine the biocidal activity of AMPs and overviews their mechanisms of actions and the diverse biochemical, biophysical and microscopy techniques utilised to elucidate these.
Collapse
|
33
|
Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Young-Speirs M, Drouin D, Cavalcante PA, Barkema HW, Cobo ER. Host defense cathelicidins in cattle: types, production, bioactive functions and potential therapeutic and diagnostic applications. Int J Antimicrob Agents 2018; 51:813-821. [PMID: 29476808 DOI: 10.1016/j.ijantimicag.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
Cathelicidins are a primitive class of host defense peptides and are known for their broad-spectrum antimicrobial activity against bacteria, fungi, and enveloped viruses. These small, cationic, proteolytically-activated peptides are diverse in structure, encompassing a wide range of activities on host immune and inflammatory cell responses. The dual capacity of cathelicidins to directly control infection and regulate host defenses highlights the potential use of these peptides as alternatives to antibiotics and immunomodulators. Cathelicidins are found in many mammalian species; this review focuses on bovine cathelicidins. Eight naturally and two synthetically occurring bovine cathelicidins are described in detail, with a focus on recent advances in their expression, location and biological roles. This review also presents an overview of the bioactive functions of cathelicidins in bovine mastitis, a disease causing economic losses in cattle dairy production. Comparison of the structural, antimicrobial, cytotoxic and mechanistic properties of bovine cathelicidins advances the knowledge needed for the development of these peptides as potential identifiers of infectious diseases (e.g., bovine mastitis) and as novel therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Morgan Young-Speirs
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominique Drouin
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paloma Araujo Cavalcante
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R Cobo
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
35
|
Savini F, Bobone S, Roversi D, Mangoni ML, Stella L. From liposomes to cells: Filling the gap between physicochemical and microbiological studies of the activity and selectivity of host‐defense peptides. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Filippo Savini
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRome00133 Italy
| | - Sara Bobone
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRome00133 Italy
| | - Daniela Roversi
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRome00133 Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Italia‐Fondazione Cenci BolognettiSapienza University of RomeRome, via degli Apuli9‐00185 Italy
| | - Lorenzo Stella
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRome00133 Italy
| |
Collapse
|
36
|
Konai MM, Samaddar S, Bocchinfuso G, Santucci V, Stella L, Haldar J. Selectively targeting bacteria by tuning the molecular design of membrane-active peptidomimetic amphiphiles. Chem Commun (Camb) 2018; 54:4943-4946. [DOI: 10.1039/c8cc01926f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the design of membrane-active peptidomimetic molecules with a tunable arrangement of hydrophobic and polar groups.
Collapse
Affiliation(s)
- Mohini M. Konai
- Antimicrobial Research Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | | | - Valerio Santucci
- Department of Chemical Science and Technologies
- University of Rome Tor Vergata
- Rome
- Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies
- University of Rome Tor Vergata
- Rome
- Italy
| | - Jayanta Haldar
- Antimicrobial Research Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
37
|
Biondi B, Peggion C, De Zotti M, Pignaffo C, Dalzini A, Bortolus M, Oancea S, Hilma G, Bortolotti A, Stella L, Pedersen JZ, Syryamina VN, Tsvetkov YD, Dzuba SA, Toniolo C, Formaggio F. Conformational properties, membrane interaction, and antibacterial activity of the peptaibiotic chalciporin A: Multitechnique spectroscopic and biophysical investigations on the natural compound and labeled analogs. Biopolymers 2017; 110. [PMID: 29127716 DOI: 10.1002/bip.23083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 02/28/2024]
Abstract
In this work, an extensive set of spectroscopic and biophysical techniques (including FT-IR absorption, CD, 2D-NMR, fluorescence, and CW/PELDOR EPR) was used to study the conformational preferences, membrane interaction, and bioactivity properties of the naturally occurring synthetic 14-mer peptaibiotic chalciporin A, characterized by a relatively low (≈20%), uncommon proportion of the strongly helicogenic Aib residue. In addition to the unlabeled peptide, we gained in-depth information from the study of two labeled analogs, characterized by one or two residues of the helicogenic, nitroxyl radical-containing TOAC. All three compounds were prepared using the SPPS methodology, which was carefully modified in the course of the syntheses of TOAC-labeled analogs in view of the poorly reactive α-amino function of this very bulky residue and the specific requirements of its free-radical side chain. Despite its potentially high flexibility, our results point to a predominant, partly amphiphilic, α-helical conformation for this peptaibiotic. Therefore, not surprisingly, we found an effective membrane affinity and a remarkable penetration propensity. However, chalciporin A exhibits a selectivity in its antibacterial activity not in agreement with that typical of the other members of this peptide class.
Collapse
Affiliation(s)
- Barbara Biondi
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Chiara Pignaffo
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Annalisa Dalzini
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, Sibiu, 550012, Romania
| | - Geta Hilma
- Department of Medicine, "Lucian Blaga" University of Sibiu, Sibiu, 550012, Romania
| | - Annalisa Bortolotti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Jens Z Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Victoria N Syryamina
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Yuri D Tsvetkov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Claudio Toniolo
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Fernando Formaggio
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| |
Collapse
|
38
|
Farrotti A, Conflitti P, Srivastava S, Ghosh JK, Palleschi A, Stella L, Bocchinfuso G. Molecular Dynamics Simulations of the Host Defense Peptide Temporin L and Its Q3K Derivative: An Atomic Level View from Aggregation in Water to Bilayer Perturbation. Molecules 2017; 22:molecules22071235. [PMID: 28737669 PMCID: PMC6152314 DOI: 10.3390/molecules22071235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/03/2022] Open
Abstract
Temporin L (TempL) is a 13 residue Host Defense Peptide (HDP) isolated from the skin of frogs. It has a strong affinity for lipopolysaccharides (LPS), which is related to its high activity against Gram-negative bacteria and also to its strong tendency to neutralize the pro-inflammatory response caused by LPS release from inactivated bacteria. A designed analog with the Q3K substitution shows an enhancement in both these activities. In the present paper, Molecular Dynamics (MD) simulations have been used to investigate the origin of these improved properties. To this end, we have studied the behavior of the peptides both in water solution and in the presence of LPS lipid-A bilayers, demonstrating that the main effect through which the Q3K substitution improves the peptide activities is the destabilization of peptide aggregates in water.
Collapse
Affiliation(s)
- Andrea Farrotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Paolo Conflitti
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Saurabh Srivastava
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Antonio Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| |
Collapse
|
39
|
Rational Design of Cyclic Antimicrobial Peptides Based on BPC194 and BPC198. Molecules 2017; 22:molecules22071054. [PMID: 28672817 PMCID: PMC6152393 DOI: 10.3390/molecules22071054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022] Open
Abstract
A strategy for the design of antimicrobial cyclic peptides derived from the lead compounds c(KKLKKFKKLQ) (BPC194) and c(KLKKKFKKLQ) (BPC198) is reported. First, the secondary β-structure of BPC194 and BPC198 was analyzed by carrying out molecular dynamics (MD) simulations. Then, based on the sequence pattern and the β-structure of BPC194 or BPC198, fifteen analogues were designed and synthesized on solid-phase. The best peptides (BPC490, BPC918, and BPC924) showed minimum inhibitory concentration (MIC) values <6.2 μM against Pseudomonas syringae pv. syringae and Xanthomonas axonopodis pv. vesicatoria, and an MIC value of 12.5 to 25 μM against Erwinia amylovora, being as active as BPC194 and BPC198. Interestingly, these three analogues followed the structural pattern defined from the MD simulations of the parent peptides. Thus, BPC490 maintained the parallel alignment of the hydrophilic pairs K¹-K⁸, K²-K⁷, and K⁴-K⁵, whereas BPC918 and BPC924 included the two hydrophilic interactions K³-Q10 and K⁵-K⁸. In short, MD simulations have proved to be very useful for ascertaining the structural features of cyclic peptides that are crucial for their biological activity. Such approaches could be further employed for the development of new antibacterial cyclic peptides.
Collapse
|
40
|
Savini F, Luca V, Bocedi A, Massoud R, Park Y, Mangoni ML, Stella L. Cell-Density Dependence of Host-Defense Peptide Activity and Selectivity in the Presence of Host Cells. ACS Chem Biol 2017; 12:52-56. [PMID: 27935673 DOI: 10.1021/acschembio.6b00910] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Host-defense peptides (HDPs) are promising compounds against multidrug-resistant microbes. In vitro, their bactericidal and toxic concentrations are significantly different, but this might be due to the use of separate assays, with different cell densities. For experiments with a single cell type, the cell-density dependence of the active concentration of the DNS-PMAP23 HDP could be predicted based on the water/cell-membrane partition equilibrium and exhibited a lower bound at low cell counts. On the basis of these data, in the simultaneous presence of both bacteria and an excess of human cells, one would expect no significant toxicity, but also inhibition of the bactericidal activity due to peptide sequestration by host cells. However, this inhibition did not take place in assays with mixed cell populations, showing that for the HDP esculentin-1a(1-21)NH2, a range of bactericidal, nontoxic concentrations exists and confirming the effective selectivity of HDPs. Mixed-cell assays might be necessary to effectively asses HDP selectivity.
Collapse
Affiliation(s)
| | - Vincenzo Luca
- Department
of Biochemical Sciences “A. Rossi Fanelli”, Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Yoonkyung Park
- Department
of Biotechnology, Chosun University, 501−759 Gwangju, Korea
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences “A. Rossi Fanelli”, Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | | |
Collapse
|
41
|
Schneider VAF, Coorens M, Ordonez SR, Tjeerdsma-van Bokhoven JLM, Posthuma G, van Dijk A, Haagsman HP, Veldhuizen EJA. Imaging the antimicrobial mechanism(s) of cathelicidin-2. Sci Rep 2016; 6:32948. [PMID: 27624595 PMCID: PMC5021996 DOI: 10.1038/srep32948] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/16/2016] [Indexed: 11/10/2022] Open
Abstract
Host defence peptides (HDPs) have the potential to become alternatives to conventional antibiotics in human and veterinary medicine. The HDP chicken cathelicidin-2 (CATH-2) has immunomodulatory and direct killing activities at micromolar concentrations. In this study the mechanism of action of CATH-2 against Escherichia coli (E. coli) was investigated in great detail using a unique combination of imaging and biophysical techniques. Live-imaging with confocal fluorescence microscopy demonstrated that FITC-labelled CATH-2 mainly localized at the membrane of E. coli. Upon binding, the bacterial membrane was readily permeabilized as was shown by propidium iodide influx into the cell. Concentration- and time-dependent effects of the peptide on E. coli cells were examined by transmission electron microscopy (TEM). CATH-2 treatment was found to induce dose-dependent morphological changes in E. coli. At sub-minimal inhibitory concentrations (sub-MIC), intracellular granulation, enhanced vesicle release and wrinkled membranes were observed, while membrane breakage and cell lysis occurred at MIC values. These effects were visible within 1–5 minute of peptide exposure. Immuno-gold TEM showed CATH-2 binding to bacterial membranes. At sub-MIC values the peptide rapidly localized intracellularly without visible membrane permeabilization. It is concluded that CATH-2 has detrimental effects on E. coli at concentrations that do not immediately kill the bacteria.
Collapse
Affiliation(s)
- Viktoria A F Schneider
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maarten Coorens
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Soledad R Ordonez
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Johanna L M Tjeerdsma-van Bokhoven
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - George Posthuma
- Department of Cell Biology, Cell Microscopy Core, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Albert van Dijk
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
42
|
Sahoo BR, Fujiwara T. Membrane Mediated Antimicrobial and Antitumor Activity of Cathelicidin 6: Structural Insights from Molecular Dynamics Simulation on Multi-Microsecond Scale. PLoS One 2016; 11:e0158702. [PMID: 27391304 PMCID: PMC4938549 DOI: 10.1371/journal.pone.0158702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022] Open
Abstract
The cathelicidin derived bovine antimicrobial peptide BMAP27 exhibits an effective microbicidal activity and moderate cytotoxicity towards erythrocytes. Irrespective of its therapeutic and multidimensional potentiality, the structural studies are still elusive. Moreover, the mechanism of BMAP27 mediated pore formation in heterogeneous lipid membrane systems is poorly explored. Here, we studied the effect of BMAP27 in model cell-membrane systems such as zwitterionic, anionic, thymocytes-like (TLM) and leukemia-like membranes (LLM) by performing molecular dynamics (MD) simulation longer than 100 μs. All-atom MD studies revealed a stable helical conformation in the presence of anionic lipids, however, significant loss of helicity was identified in TLM and zwitterionic systems. A peptide tilt (~45˚) and central kink (at residue F10) was found in anionic and LLM models, respectively, with an average membrane penetration of < 0.5 nm. Coarse-grained (CG) MD analysis on a multi-μs scale shed light on the membrane-dependent peptide and lipid organization. Stable micelle and end-to-end like oligomers were formed in zwitterionic and TLM models, respectively. In contrast, unstable oligomer formation and monomeric BMAP27 penetration were observed in anionic and LLM systems with selective anionic lipid aggregation (in LLM). Peptide penetration up to ~1.5 nm was observed in CG-MD systems with the BMAP27 C-terminal oriented towards the bilayer core. Structural inspection suggested membrane penetration by micelle/end-to-end like peptide oligomers (carpet-model like) in the zwitterionic/TLM systems, and transmembrane-mode (toroidal-pore like) in the anionic/LLM systems, respectively. Structural insights and energetic interpretation in BMAP27 mutant highlighted the role of F10 and hydrophobic residues in mediating a membrane-specific peptide interaction. Free energy profiling showed a favorable (-4.58 kcal mol-1 for LLM) and unfavorable (+0.17 kcal mol-1 for TLM) peptide insertion in anionic and neutral systems, respectively. This determination can be exploited to regulate cell-specific BMAP27 cytotoxicity for the development of potential drugs and antibiotics.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
43
|
Bobone S, De Zotti M, Bortolotti A, Biondi B, Ballano G, Palleschi A, Toniolo C, Formaggio F, Stella L. The fluorescence and infrared absorption probepara-cyanophenylalanine: Effect of labeling on the behavior of different membrane-interacting peptides. Biopolymers 2015; 104:521-32. [DOI: 10.1002/bip.22674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Bobone
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Marta De Zotti
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Annalisa Bortolotti
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Gema Ballano
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Claudio Toniolo
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| |
Collapse
|
44
|
Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals (Basel) 2015; 8:366-415. [PMID: 26184232 PMCID: PMC4588174 DOI: 10.3390/ph8030366] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics.
Collapse
|
45
|
Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:581-92. [DOI: 10.1016/j.bbamem.2014.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/22/2014] [Accepted: 11/05/2014] [Indexed: 01/07/2023]
|
46
|
Baul U, Vemparala S. Membrane-Bound Conformations of Antimicrobial Agents and Their Modes of Action. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
The effects of the C-terminal amidation of mastoparans on their biological actions and interactions with membrane-mimetic systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2357-68. [DOI: 10.1016/j.bbamem.2014.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 11/20/2022]
|
48
|
Roversi D, Luca V, Aureli S, Park Y, Mangoni ML, Stella L. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem Biol 2014; 9:2003-7. [PMID: 25058470 DOI: 10.1021/cb500426r] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antimicrobial peptides (AMPs) kill bacteria mainly through the perturbation of their membranes and are promising compounds to fight drug resistance. Models of the mechanism of AMPs-induced membrane perturbation were developed based on experiments in liposomes, but their relevance for bacterial killing is debated. We determined the association of an analogue of the AMP PMAP-23 to Escherichia coli cells, under the same experimental conditions used to measure bactericidal activity. Killing took place only when bound peptides completely saturated bacterial membranes (10(6)-10(7) bound peptides per cell), indicating that the "carpet" model for the perturbation of artificial bilayers is representative of what happens in real bacteria. This finding supports the view that, at least for this peptide, a microbicidal mechanism is possible in vivo only at micromolar total peptide concentrations. We also showed that, notwithstanding their simplicity, liposomes represent a reliable model to characterize AMPs partition in bacterial membranes.
Collapse
Affiliation(s)
- Daniela Roversi
- Department
of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Luca
- Department
of Biochemical Sciences “A. Rossi Fanelli”, Istituto
Pasteur-Fondazione Cenci Bolognetti, Sapienza Rome University, 00185 Rome, Italy
| | - Simone Aureli
- Department
of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yoonkyung Park
- Department
of Biotechnology, Chosun University, 501-759 Gwangju, Korea
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences “A. Rossi Fanelli”, Istituto
Pasteur-Fondazione Cenci Bolognetti, Sapienza Rome University, 00185 Rome, Italy
| | - Lorenzo Stella
- Department
of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
49
|
Bocchinfuso G, Conflitti P, Raniolo S, Caruso M, Mazzuca C, Gatto E, Placidi E, Formaggio F, Toniolo C, Venanzi M, Palleschi A. Aggregation propensity of Aib homo-peptides of different length: an insight from molecular dynamics simulations. J Pept Sci 2014; 20:494-507. [DOI: 10.1002/psc.2648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Gianfranco Bocchinfuso
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Paolo Conflitti
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Stefano Raniolo
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Mario Caruso
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Claudia Mazzuca
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Emanuela Gatto
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Ernesto Placidi
- Department of Physics; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
- CNR-ISM; Via Fosso del Cavaliere 100 I-00133 Roma Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry; University of Padova; I-35131 Padua Italy
| | - Claudio Toniolo
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry; University of Padova; I-35131 Padua Italy
| | - Mariano Venanzi
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| |
Collapse
|
50
|
Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 2013; 19:758-69. [DOI: 10.1002/psc.2574] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Yoonkyung Park
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Antonio Palleschi
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Kyung-Soo Hahm
- BioLeaders Corp.; 559 Yongsan-Dong, Yuseong-Ku Daejeon 305-500 Korea
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|