1
|
Barai M, Manna E, Sultana H, Mandal MK, Manna T, Patra A, Roy B, Gowda V, Chang CH, Akentiev AV, Bykov AG, Noskov BA, Moitra P, Ghosh C, Yusa SI, Bhattacharya S, Kumar Panda A. Physicochemical Studies on Amino Acid Based Metallosurfactants in Combination with Phospholipid. Chem Asian J 2024; 19:e202400284. [PMID: 38953124 DOI: 10.1002/asia.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Dicarboxylate metallosurfactants (AASM), synthesized by mixing N-dodecyl aminomalonate, -aspartate and -glutamate with CaCl2, MnCl2 and CdCl2, were characterized by XRD, FTIR, and NMR spectroscopy. Layered structures, formed by metallosurfactants, were evidenced from differential scanning calorimetry and thermogravimetric analyses. Solvent-spread monolayer of AASM in combination with soyphosphatidylcholine (SPC) and cholesterol (CHOL) were studied using Langmuir surface balance. With increasing mole fraction of AASM mean molecular area increased and passed through maxima at ~60 mol% of AASMs, indicating molecular packing reorganization. Systems with 20 and 60 mol% AASM exhibited positive deviations from ideal behavior signifying repulsive interaction between the AASM and SPC, while synergistic interactions were established from the negative deviation at other combinations. Dynamic surface elasticity increased with increasing surface pressure signifying formation of rigid monolayer. Transition of monolayer from gaseous to liquid expanded to liquid condensed state was established by Brewster angle microscopic studies. Stability of the hybrid vesicles, formed by AASM+SPC+CHOL, were established by monitoring their size, zeta potential and polydispersity index values over 100 days. Size and spherical morphology of hybrid vesicles were confirmed by transmission electron microscopic studies. Biocompatibility of the hybrid vesicles were established by cytotoxicity studies revealing their possible applications in drug delivery and imaging.
Collapse
Affiliation(s)
- Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Emili Manna
- Centre for Life Sciences, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Habiba Sultana
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Manas Kumar Mandal
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Biplab Roy
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Vasantha Gowda
- Department of Biomedical Science, Malmö University, SE-20506, Malmö, Sweden
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Alexander V Akentiev
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Alexey G Bykov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Parikshit Moitra
- Department of Chemical Sciences, IISER, Berhampur, Odisha, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Hyogo, 671-2280, Japan
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Indian Institute of Science Education and Research, Tirupati, -517507, Andhra Pradesh, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| |
Collapse
|
2
|
Jaikishan S, Lavainne M, Ravald HK, Scobbie K, Dusa F, Maheswari R, Turpeinen J, Eikemans I, Chen R, Rantala J, Aseyev V, Maier NN, Wiedmer SK. Fragment-based approach to study fungicide-biomimetic membrane interactions. SOFT MATTER 2024. [PMID: 39012330 DOI: 10.1039/d4sm00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In this study, the molecular interactions of the allylamine-type fungicide butenafine and a set of substructures ("fragments") with liposomes mimicking biological membranes were studied to gain a better understanding of the structural factors governing membrane affinity and perturbation. Specifically, drug/fragment-membrane interactions were investigated using an interdisciplinary approach involving micro differential scanning calorimetry, open-tubular capillary electrochromatography, nanoplasmonic sensing, and quartz crystal microbalance. By incubating the drug and the fragment compounds with liposomes with varying lipid composition or by externally adding the compounds to preformed liposomes, a detailed mechanistic picture on the underlying drug/fragment-membrane interactions was obtained. The nature and the degree of ionisation of polar head groups of the lipids had a major influence on the nature of drug-membrane interactions, and so had the presence and relative concentration of cholesterol within the membranes. The in-depth understanding of drug/fragment-membranes interactions established by the presented interdisciplinary fragment-based approach may be useful in guiding the design and early-stage evaluation of prospective antifungal drug candidates, and the discovery of agents with improved membrane penetrating characteristics in general.
Collapse
Affiliation(s)
- Shishir Jaikishan
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Marine Lavainne
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Henri K Ravald
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Kieran Scobbie
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Filip Dusa
- Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, Brno 60200, Czech Republic
| | - Rekha Maheswari
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Jenni Turpeinen
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Ian Eikemans
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Rui Chen
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Julia Rantala
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Vladimir Aseyev
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Norbert N Maier
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Susanne K Wiedmer
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
3
|
Roy B, Guha P, Chang CH, Nahak P, Karmakar G, Bykov AG, Akentiev AV, Noskov BA, Patra A, Dutta K, Ghosh C, Panda AK. Effect of cationic dendrimer on membrane mimetic systems in the form of monolayer and bilayer. Chem Phys Lipids 2024; 258:105364. [PMID: 38040405 DOI: 10.1016/j.chemphyslip.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/01/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Interactions between a zwitterionic phospholipid, 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and four anionic phospholipids dihexadecyl phosphate (DHP), 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG), 1, 2-dipalmitoyl-sn-glycero-3-phosphate (DPP) and 1, 2-dipalmitoyl-sn-glycero-3-phospho ethanol (DPPEth) in combination with an additional amount of 30 mol% cholesterol were separately investigated at air-buffer interface through surface pressure (π) - area (A) measurements. π-A isotherm derived parameters revealed maximum negative deviation from ideality for the mixtures comprising 30 mol% anionic lipids. Besides the film functionality, structural changes of the monomolecular films at different surface pressures in the absence and presence of polyamidoamine (PAMAM, generation 4), a cationic dendrimer, were visualised through Brewster angle microscopy and fluorescence microscopic studies. Fluidity/rigidity of monolayers were assessed by surface dilatational rheology studies. Effect of PAMAM on the formation of adsorbed monolayer, due to bilayer disintegration of liposomes (DPPC:anionic lipids= 7:3 M/M, and 30 mol% cholesterol) were monitored by surface pressure (π) - time (t) isotherms. Bilayer disintegration kinetics were dependent on lipid head group and chain length, besides dendrimer concentration. Such studies are considered to be an in vitro cell membrane model where the alteration of molecular orientation play important roles in understanding the nature of interaction between the dendrimer and cell membrane. Liposome-dendrimer aggregates were nontoxic to breast cancer cell line as well as in doxorubicin treated MDA-MB-468 cell line suggesting their potential as drug delivery systems.
Collapse
Affiliation(s)
- Biplab Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India; Chemistry of Interfaces Group, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Pritam Guha
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India; Department for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Prasant Nahak
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Gourab Karmakar
- Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Alexey G Bykov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Alexander V Akentiev
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
4
|
Membrane lipid organization and nicotinic acetylcholine receptor function: A two-way physiological relationship. Arch Biochem Biophys 2022; 730:109413. [DOI: 10.1016/j.abb.2022.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
5
|
Zaborowska M, Dziubak D, Matyszewska D, Sek S, Bilewicz R. Designing a Useful Lipid Raft Model Membrane for Electrochemical and Surface Analytical Studies. Molecules 2021; 26:5483. [PMID: 34576954 PMCID: PMC8467995 DOI: 10.3390/molecules26185483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
A model biomimetic system for the study of protein reconstitution or drug interactions should include lipid rafts in the mixed lipid monolayer, since they are usually the domains embedding membrane proteins and peptides. Four model lipid films composed of three components: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol (Chol) and sphingomyelin (SM) mixed in different molar ratios were proposed and investigated using surface pressure measurements and thermodynamic analysis of the monolayers at the air-water interface and imaged by Brewster angle microscopy. The ternary monolayers were transferred from the air-water onto the gold electrodes to form bilayer films and were studied for the first time by electrochemical methods: alternative current voltammetry and electrochemical impedance spectroscopy and imaged by atomic force microscopy. In excess of DOPC, the ternary systems remained too liquid for the raft region to be stable, while in the excess of cholesterol the layers were too solid. The layers with SM in excess lead to the formation of Chol:SM complexes but the amount of the fluid matrix was very low. The equimolar content of the three components lead to the formation of a stable and well-organized assembly with well-developed raft microdomains of larger thickness, surrounded by the more fluid part of the bilayer. The latter is proposed as a convenient raft model membrane for further physicochemical studies of interactions with drugs or pollutants or incorporation of membrane proteins.
Collapse
Affiliation(s)
| | - Damian Dziubak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland;
| |
Collapse
|
6
|
Roy B, Guha P, Nahak P, Karmakar G, Maiti S, Mandal AK, Bykov AG, Akentiev AV, Noskov BA, Tsuchiya K, Torigoe K, Panda AK. Biophysical Correlates on the Composition, Functionality, and Structure of Dendrimer-Liposome Aggregates. ACS OMEGA 2018; 3:12235-12245. [PMID: 31459298 PMCID: PMC6645486 DOI: 10.1021/acsomega.8b01187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 06/10/2023]
Abstract
Interaction between negatively charged liposomes and cationic polyamidoamine dendrimers of different generations was investigated through size, zeta potential, turbidity, electron microscopy, atomic force microscopy, fluorescence spectroscopy, and calorimetric studies. Liposomes with the binary combination of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) + dihexadecyl phosphate, DPPC + 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, DPPC + 1,2-dipalmitoyl-sn-glycero-3-phosphate, and DPPC + 1,2-dipalmitoyl-sn-glycero-3-phosphoethanol were stable up to 60 days. The electrostatic nature of dendrimer-lipid bilayer interaction was evidenced through charge neutralization and subsequent reversal upon added dendrimer to liposome. Dendrimer-liposome interaction depended on its generation (5 > 4 > 3) in addition to the charge, head groups, and hydrocarbon chain length of lipids. Fluorescence anisotropy and differential scanning calorimetry studies suggest the fluidization of the bilayer, although the surface rigidity was enhanced by the added dendrimers. Thermodynamic parameters of the interaction processes were evaluated by isothermal titration and differential scanning calorimetric studies. The binding processes were exothermic in nature. The enthalpy of transition of the chain melting of lipids decreased systematically with increasing dendrimer concentration and generation. Dendrimer-liposome aggregates were nontoxic to healthy human blood cell, suggesting the potential of such aggregates as drug delivery systems.
Collapse
Affiliation(s)
- Biplab Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Pritam Guha
- Department
of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Prasant Nahak
- Department
of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Gourab Karmakar
- Department
of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Souvik Maiti
- Proteomics
and Structural Biology Unit, CSIR-Institute
of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | - Amit Kumar Mandal
- Chemical
Biology Laboratory, Department of Sericulture, Raiganj University, Uttar Dinajpur 733134, West Bengal, India
| | - Alexey G. Bykov
- Department
of Colloid Chemistry, St. Petersburg State
University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Alexander V. Akentiev
- Department
of Colloid Chemistry, St. Petersburg State
University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Boris A. Noskov
- Department
of Colloid Chemistry, St. Petersburg State
University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Koji Tsuchiya
- Department
of Pure and Applied Chemistry, Tokyo University
of Science, 2641 Yamazaki, Noda, Tokyo 278-8510, Japan
| | - Kanjiro Torigoe
- Department
of Pure and Applied Chemistry, Tokyo University
of Science, 2641 Yamazaki, Noda, Tokyo 278-8510, Japan
| | - Amiya Kumar Panda
- Department
of Chemistry and Chemical Technology, Vidyasagar
University, Midnapore 721102, West Bengal, India
| |
Collapse
|
7
|
Kepczynski M, Róg T. Functionalized lipids and surfactants for specific applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2362-2379. [PMID: 26946243 DOI: 10.1016/j.bbamem.2016.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101, Tampere, Finland; Department of Physics, Helsinki University, P.O. Box 64, FI 00014 Helsinki, Finland.
| |
Collapse
|
8
|
Pinheiro M, Arêde M, Caio JM, Moiteiro C, Lúcio M, Reis S. Drug-membrane interaction studies applied to N'-acetyl-rifabutin. Eur J Pharm Biopharm 2013; 85:597-603. [PMID: 23523541 DOI: 10.1016/j.ejpb.2013.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/06/2013] [Accepted: 02/28/2013] [Indexed: 12/01/2022]
Abstract
This work aims the systematic study of the biophysical interactions of a novel antimycobacterial compound (N'-acetyl-rifabutin, RFB2) with membrane models of different lipid composition and surface charge. Membrane mimetic models were used to evaluate the RFB2's membrane partition, its preferential location across the membrane, and the effect of RFB2 on the biophysical properties of the membrane, which ultimately might be related with the antimycobacterial compound bioavailability and the membrane toxicity. According to the aforementioned, liposomes of dimyristoyl-sn-glycero-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) were, respectively, used as mimetic models of human and bacterial cell membranes. The antimycobacterial compound lipophilicity was evaluated by spectroscopic methods, which enabled the determination of the partition coefficient (Kp). To study the RFB2 membrane's location, fluorescence quenching studies and lifetime measurements were executed in liposomes labeled with fluorescent probes. In order to evaluate the changes induced by RFB2 on the membrane biophysical properties, dynamic light scattering (DLS) and steady-state anisotropy were performed. The overall results reveal a strong interaction between RFB2 and the membrane models and allowed the evaluation of its lipophilicity, which is a key molecular descriptor in the characterization of novel potential drugs. Moreover, the higher partition of RFB2 and the more pronounced changes in the biophysical parameters of the negatively charged membrane model suggest that RFB2 has more affinity to the bacterial membrane. For the above-mentioned reasons, this work supports that RFB2 has a potential value as a drug in pharmaceutical formulations used to treat mycobacterial infections.
Collapse
Affiliation(s)
- Marina Pinheiro
- REQUIMTE, Departamento de Ciências Química, Universidade do Porto, Portugal
| | | | | | | | | | | |
Collapse
|
9
|
Sergelius C, Yamaguchi S, Yamamoto T, Engberg O, Katsumura S, Slotte JP. Cholesterol's interactions with serine phospholipids — A comparison of N-palmitoyl ceramide phosphoserine with dipalmitoyl phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:785-91. [DOI: 10.1016/j.bbamem.2012.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 12/13/2022]
|
10
|
Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order. Biophys J 2011; 100:2633-41. [PMID: 21641308 DOI: 10.1016/j.bpj.2011.03.066] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 01/08/2023] Open
Abstract
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.
Collapse
|
11
|
Ekholm O, Jaikishan S, Lönnfors M, Nyholm TK, Slotte JP. Membrane bilayer properties of sphingomyelins with amide-linked 2- or 3-hydroxylated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:727-32. [DOI: 10.1016/j.bbamem.2010.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 01/21/2023]
|