1
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
Affiliation(s)
- Alessandro Gori
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Lodigiani
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Stella G Colombarolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| | - Greta Bergamaschi
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
2
|
Rostami B, Irani S, Bolhassani A, Cohan RA. M918: A Novel Cell Penetrating Peptide for Effective Delivery of HIV-1 Nef and Hsp20-Nef Proteins into Eukaryotic Cell Lines. Curr HIV Res 2019; 16:280-287. [PMID: 30520377 PMCID: PMC6416460 DOI: 10.2174/1570162x17666181206111859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 12/02/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND HIV-1 Nef protein is a possible attractive target in the development of therapeutic HIV vaccines including protein-based vaccines. The most important disadvantage of protein-based vaccines is their low immunogenicity which can be improved by heat shock proteins (Hsps) as an immunomodulator, and cell-penetrating peptides (CPPs) as a carrier. METHODS In this study, the HIV-1 Nef and Hsp20-Nef proteins were generated in E.coli expression system for delivery into the HEK-293T mammalian cell line using a novel cell-penetrating peptide, M918, in a non-covalent fashion. The size, zeta potential and morphology of the peptide/protein complexes were studied by scanning electron microscopy (SEM) and Zeta sizer. The efficiency of Nef and Hsp20-Nef transfection using M918 was evaluated by western blotting in HEK-293T cell line. RESULTS The SEM data confirmed the formation of discrete nanoparticles with a diameter of approximately 200-250 nm and 50-80 nm for M918/Nef and M918/Hsp20-Nef, respectively. The dominant band of ~ 27 kDa and ~ 47 kDa was detected in the transfected cells with the Nef/ M918 and Hsp20-Nef/ M918 nanoparticles at a molar ratio of 1:20 using anti-HIV-1 Nef monoclonal antibody. These bands were not detected in the un-transfected and transfected cells with Nef or Hsp20- Nef protein alone indicating that M918 could increase the penetration of Nef and Hsp20-Nef proteins into the cells. CONCLUSION These data suggest that M918 CPP can be used to enter HIV-1 Nef and Hsp20-Nef proteins inside mammalian cells efficiently as a promising approach in HIV-1 vaccine development.
Collapse
Affiliation(s)
- Bahareh Rostami
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Pilot Nano-Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Restu WK, Nishida Y, Yamamoto S, Ishii J, Maruyama T. Short Oligopeptides for Biocompatible and Biodegradable Supramolecular Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8065-8074. [PMID: 29897242 DOI: 10.1021/acs.langmuir.8b00362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Short Phe-rich oligopeptides, consisting of only four and five amino acids, worked as effective supramolecular hydrogelators for buffer solutions at low gelator concentrations (0.5-1.5 wt %). Among 10 different oligopeptides synthesized, peptide P1 (Ac-Phe-Phe-Phe-Gly-Lys) showed high gelation ability. Transmission electron microscopy observations suggested that the peptide molecules self-assembled into nanofibrous networks, which turned into gels. The hydrogel of peptide P1 showed reversible thermal gel-sol transition and viscoelastic properties typical of a gel. Circular dichroism spectra revealed that peptide P1 formed a β-sheetlike structure, which decreased with increasing temperature. The self-assembly of peptide P1 occurred even in the presence of nutrients in culture media and common surfactants. Escherichia coli and yeast successfully grew on the hydrogel. The hydrogel exhibited low cytotoxicity to animal cells. Finally, we demonstrated that functional compounds can be released from the hydrogel in different manners based on the interaction between the compounds and the hydrogel.
Collapse
Affiliation(s)
- Witta Kartika Restu
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
- Research Center for Chemistry , Indonesian Institute of Sciences, Kawasan Puspiptek Serpong , Tangerang Selatan , Banten 15314 , Indonesia
| | - Yuki Nishida
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
| | - Shota Yamamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
| |
Collapse
|
4
|
Stereochemistry as a determining factor for the effect of a cell-penetrating peptide on cellular viability and epithelial integrity. Biochem J 2018; 475:1773-1788. [PMID: 29686042 DOI: 10.1042/bcj20180155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/07/2023]
Abstract
Cell-penetrating peptides (CPPs) comprise efficient peptide-based delivery vectors. Owing to the inherent poor enzymatic stability of peptides, CPPs displaying partial or full replacement of l-amino acids with the corresponding d-amino acids might possess advantages as delivery vectors. Thus, the present study aims to elucidate the membrane- and metabolism-associated effects of l-Penetratin (l-PEN) and its corresponding all-d analog (d-PEN). These effects were investigated when exerted on hepatocellular (HepG2) or intestinal (Caco-2 and IEC-6) cell culture models. The head-to-head comparison of these enantiomeric CPPs included evaluation of their effects on cell viability and morphology, epithelial membrane integrity, and cellular ultrastructure. In all investigated cell models, a rapid decrease in cell viability, pronounced membrane perturbation and an altered ultrastructure were detected upon exposure to d-PEN. At equimolar concentrations, these observations were less pronounced or even absent for cells exposed to l-PEN. Both CPPs remained stable for at least 2 h during exposure to proliferating cells (cultured for 24 h), although d-PEN exhibited a longer half-life when compared with that of l-PEN when exposed to well-differentiated cell monolayers (cultured for 18-20 days). Thus, the stereochemistry of the CPP penetratin significantly influences its effects on cell viability and epithelial integrity when profiled against a panel of mammalian cells.
Collapse
|
5
|
Shteinfer-Kuzmine A, Amsalem Z, Arif T, Zooravlov A, Shoshan-Barmatz V. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Mol Oncol 2018; 12:1077-1103. [PMID: 29698587 PMCID: PMC6026870 DOI: 10.1002/1878-0261.12313] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/22/2018] [Accepted: 04/15/2018] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial VDAC1 mediates cross talk between the mitochondria and other parts of the cell by transporting anions, cations, ATP, Ca2+, and metabolites and serves as a key player in apoptosis. As such, VDAC1 is involved in two important hallmarks of cancer development, namely energy and metabolic reprograming and apoptotic cell death evasion. We previously developed cell‐penetrating VDAC1‐derived peptides that interact with hexokinase (HK), Bcl‐2, and Bcl‐xL to prevent the anti‐apoptotic activities of these proteins and induce cancer cell death, with a focus on leukemia and glioblastoma. In this study, we demonstrated the sensitivity of a panel of genetically characterized cancer cell lines, differing in origin and carried mutations, to VDAC1‐based peptide‐induced apoptosis. Noncancerous cell lines were less affected by the peptides. Furthermore, we constructed additional VDAC1‐based peptides with the aim of improving targeting, selectivity, and cellular stability, including R‐Tf‐D‐LP4, containing the transferrin receptor internalization sequence (Tf) that allows targeting of the peptide to cancer cells, known to overexpress the transferrin receptor. The mode of action of the VDAC1‐based peptides involves HK detachment, interfering with the action of anti‐apoptotic proteins, and thus activating multiple routes leading to an impairment of cell energy and metabolism homeostasis and the induction of apoptosis. Finally, in xenograft glioblastoma, lung, and breast cancer mouse models, R‐Tf‐D‐LP4 inhibited tumor growth while inducing massive cancer cell death, including of cancer stem cells. Thus, VDAC1‐based peptides offer an innovative new conceptual framework for cancer therapy.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zohar Amsalem
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra Zooravlov
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
6
|
Kebebe D, Liu Y, Wu Y, Vilakhamxay M, Liu Z, Li J. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. Int J Nanomedicine 2018; 13:1425-1442. [PMID: 29563797 PMCID: PMC5849936 DOI: 10.2147/ijn.s156616] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents.
Collapse
Affiliation(s)
- Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Yuanyuan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumei Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maikhone Vilakhamxay
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Verdurmen WPR, Mazlami M, Plückthun A. A quantitative comparison of cytosolic delivery via different protein uptake systems. Sci Rep 2017; 7:13194. [PMID: 29038564 PMCID: PMC5643320 DOI: 10.1038/s41598-017-13469-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023] Open
Abstract
Over many years, a variety of delivery systems have been investigated that have the capacity to shuttle macromolecular cargoes, especially proteins, into the cytosol. Due to the lack of an objective way to quantify cytosolic delivery, relative delivery efficiencies of the various transport systems have remained unclear. Here, we demonstrate the use of the biotin ligase assay for a quantitative comparison of protein transport to the cytosol via cell-penetrating peptides, supercharged proteins and bacterial toxins in four different cell lines. The data illustrate large differences in both the total cellular internalization, which denotes any intracellular location including endosomes, and in the cytosolic uptake of the transport systems, with little correlation between the two. Also, we found significant differences between the cell lines. In general, protein transport systems based on cell-penetrating peptides show a modest total uptake, and mostly do not deliver cargo to the cytosol. Systems based on bacterial toxins show a modest receptor-mediated internalization but an efficient delivery to the cytosol. Supercharged proteins, on the contrary, are not receptor-specific and lead to massive total internalization into endosomes, but only low amounts end up in the cytosol.
Collapse
Affiliation(s)
- Wouter P R Verdurmen
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Marigona Mazlami
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Farkhani SM, Shirani A, Mohammadi S, Zakeri-Milani P, Shahbazi Mojarrad J, Valizadeh H. Effect of poly-glutamate on uptake efficiency and cytotoxicity of cell penetrating peptides. IET Nanobiotechnol 2016; 10:87-95. [PMID: 27074859 DOI: 10.1049/iet-nbt.2015.0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell penetrating peptides (CPPs) were developed as vehicles for efficient delivery of various molecules. An ideal CPP-peptide should not display any toxicity against cancer cells as well as healthy cells and efficiently enter into the cell. Because of the cationic nature and the intrinsic vector capabilities, these peptides can cause cytotoxicity. One of the possible reasons for toxicity of CPPs is direct translocation and consequently, pore formation on the plasma membrane. In this study it was demonstrated that interaction of poly-glutamate with CPP considerably reduced their cytotoxicity in A549 cell. This strategy could be useful for efficient drug delivery mediated by CPP.
Collapse
Affiliation(s)
| | - Ali Shirani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Biotechnology Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Javed H, Menon SA, Al-Mansoori KM, Al-Wandi A, Majbour NK, Ardah MT, Varghese S, Vaikath NN, Haque ME, Azzouz M, El-Agnaf OM. Development of Nonviral Vectors Targeting the Brain as a Therapeutic Approach For Parkinson's Disease and Other Brain Disorders. Mol Ther 2016; 24:746-758. [PMID: 26700614 PMCID: PMC4886934 DOI: 10.1038/mt.2015.232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and postural instability, for which there is no effective treatment available till date. Here, we report the development of nonviral vectors specific for neuronal cells that can deliver short interfering RNA (siRNA) against the α-synuclein gene (SNCA), and prevent PD-like symptoms both in vitro and in vivo. These vectors not only help siRNA duplexes cross the blood-brain barrier in mice, but also stabilize these siRNAs leading to a sustainable 60-90% knockdown of α-synuclein protein. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rapidly develop PD-like symptoms which were significantly alleviated when SNCA was knocked down using our vectors. Together, our data not only confirm the central role of α-synuclein in the onset of PD, but also provide a proof of principle that these nonviral vectors can be used as novel tools to design effective strategies to combat central nervous system diseases.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sindhu A Menon
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Karima M Al-Mansoori
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdelmojib Al-Wandi
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nour K Majbour
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiji Varghese
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nishant N Vaikath
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - M Emdadul Haque
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Omar Ma El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, and College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825 Doha, Qatar.
| |
Collapse
|
10
|
Martin C, Oyen E, Mangelschots J, Bibian M, Ben Haddou T, Andrade J, Gardiner J, Van Mele B, Madder A, Hoogenboom R, Spetea M, Ballet S. Injectable peptide hydrogels for controlled-release of opioids. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00440c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peptide-based hydrogels as a drug carrier system for the subcutaneous administration of morphine.
Collapse
Affiliation(s)
- Charlotte Martin
- Research Group of Organic Chemistry
- Vrije Universiteit Brussel
- Brussels
- Belgium
| | - Edith Oyen
- Research Group of Organic Chemistry
- Vrije Universiteit Brussel
- Brussels
- Belgium
| | - Jeroen Mangelschots
- Research Group of Organic Chemistry
- Vrije Universiteit Brussel
- Brussels
- Belgium
| | - Mathieu Bibian
- Research Group of Organic Chemistry
- Vrije Universiteit Brussel
- Brussels
- Belgium
| | - Tanila Ben Haddou
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy and Center for Molecular Biosciences (CMBI)
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| | | | | | - Bruno Van Mele
- Physical Chemistry and Polymer Science
- Vrije Universiteit Brussel
- B-1050 Brussels
- Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group
- Ghent University
- 9000 Ghent
- Belgium
| | | | - Mariana Spetea
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy and Center for Molecular Biosciences (CMBI)
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| | - Steven Ballet
- Research Group of Organic Chemistry
- Vrije Universiteit Brussel
- Brussels
- Belgium
| |
Collapse
|
11
|
Sarett SM, Nelson CE, Duvall CL. Technologies for controlled, local delivery of siRNA. J Control Release 2015; 218:94-113. [PMID: 26476177 PMCID: PMC4665980 DOI: 10.1016/j.jconrel.2015.09.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022]
Abstract
The discovery of RNAi in the late 1990s unlocked a new realm of therapeutic possibilities by enabling potent and specific silencing of theoretically any desired genetic target. Better elucidation of the mechanism of action, the impact of chemical modifications that stabilize and reduce nonspecific effects of siRNA molecules, and the key design considerations for effective delivery systems has spurred progress toward developing clinically-successful siRNA therapies. A logical aim for initial siRNA translation is local therapies, as delivering siRNA directly to its site of action helps to ensure that a sufficient dose reaches the target tissue, lessens the potential for off-target side effects, and circumvents the substantial systemic delivery barriers. While locally injected or topically applied siRNA has progressed into numerous clinical trials, an enormous opportunity exists to develop sustained-release, local delivery systems that enable both spatial and temporal control of gene silencing. This review focuses on material platforms that establish both localized and controlled gene silencing, with emphasis on the systems that show most promise for clinical translation.
Collapse
Affiliation(s)
- Samantha M Sarett
- Vanderbilt University Department of Biomedical Engineering, United States
| | | | - Craig L Duvall
- Vanderbilt University Department of Biomedical Engineering, United States.
| |
Collapse
|
12
|
Abstract
In the era of biomedicines and engineered carrier systems, cell penetrating peptides (CPPs) have been established as a promising tool for therapeutic application. Likewise, other therapeutic peptides, successful in vivo application of CPPs will strongly depend on peptide stability, the bottleneck for this type of biodegradable molecules. In this review, the authors describe the current knowledge of the in vivo degradation for known CPPs and the different strategies available to provide a higher resistance to metabolic degradation while preserving cell penetration efficiency. Peptide stability can be improved by different means, either modifying the structure to make it unrecognizable to proteases, or preventing access of proteolytic enzymes by applying conformation restriction or shielding strategies.
Collapse
|
13
|
Hao X, Yan Q, Zhao J, Wang W, Huang Y, Chen Y. TAT Modification of Alpha-Helical Anticancer Peptides to Improve Specificity and Efficacy. PLoS One 2015; 10:e0138911. [PMID: 26405806 PMCID: PMC4583266 DOI: 10.1371/journal.pone.0138911] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/06/2015] [Indexed: 01/10/2023] Open
Abstract
HPRP-A1 is an amphipathic α-helical anticancer peptide (ACP) derived from the N-terminus of ribosomal protein L1 (RpL1) of Helicobacter pylori. In our previously study, HPRP-A1 has been reported that induced HeLa cell apoptosis in a caspase-dependent approach and involved both by the death receptor ‘extrinsic’ pathway and the mitochondria ‘intrinsic’ pathway. Here we report the construction of a new hybrid peptide, HPRP-A1-TAT, comprising the cell-permeating peptide TAT linked to the C-terminus of HPRP-A1. This peptide exhibits higher anticancer activity against HeLa cells with lower toxicity against human RBC than HPRP-A1. Two FITC-labeled peptides, FITC-HPRP-A1 and FITC-HPRP-A1-TAT, were used to investigate and compare the cellular uptake mechanism using fluorescence spectra and flow cytometry. Compared with HPRP-A1, HPRP-A1-TAT quickly crossed cell, entered the cytoplasm via endocytosis, and disrupted the cell membrane integrity. HPRP-A1-TAT exhibited stronger anticancer activity than HPRP-A1 at the same concentration by increasing early apoptosis of HeLa cells and inducing caspase activity. Notably, after 24 h, the cellular concentration of HPRP-A1-TAT was higher than that of HPRP-A1. This result suggests that TAT protects HPRP-A1 against degradation, likely due to its high number of positively charged amino acids or the further release of peptides into cancer cells from endocytotic vesicles. We believe that this TAT modification approach may provide an effective new strategy for improving the therapeutic index and anticancer activity of ACPs for clinical use.
Collapse
Affiliation(s)
- Xueyu Hao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Qiuyan Yan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Jing Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Wenren Wang
- Changchun ProteLight Pharmaceutical & Biotechnology Co., Ltd., Changchun, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
- * E-mail: (YH); (YC)
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
- * E-mail: (YH); (YC)
| |
Collapse
|
14
|
Radicioni G, Stringaro A, Molinari A, Nocca G, Longhi R, Pirolli D, Scarano E, Iavarone F, Manconi B, Cabras T, Messana I, Castagnola M, Vitali A. Characterization of the cell penetrating properties of a human salivary proline-rich peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2868-77. [PMID: 26325345 DOI: 10.1016/j.bbamem.2015.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/22/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022]
Abstract
Saliva contains hundreds of small proline-rich peptides most of which derive from the post-translational and post-secretory processing of the acidic and basic salivary proline-rich proteins. Among these peptides we found that a 20 residue proline-rich peptide (p1932), commonly present in human saliva and patented for its antiviral activity, was internalized within cells of the oral mucosa. The cell-penetrating properties of p1932 have been studied in a primary gingival fibroblast cell line and in a squamous cancer cell line, and compared to its retro-inverso form. We observed by mass-spectrometry, flow cytometry and confocal microscopy that both peptides were internalized in the two cell lines on a time scale of minutes, being the natural form more efficient than the retro-inverso one. The cytosolic localization was dependent on the cell type: both peptide forms were able to localize within nuclei of tumoral cells, but not in the nuclei of gingival fibroblasts. The uptake was shown to be dependent on the culture conditions used: peptide internalization was indeed effective in a complete medium than in a serum-free one allowing the hypothesis that the internalization could be dependent on the cell cycle. Both peptides were internalized likely by a lipid raft-mediated endocytosis mechanism as suggested by the reduced uptake in the presence of methyl-ß-cyclodextrin. These results suggest that the natural peptide may play a role within the cells of the oral mucosa after its secretion and subsequent internalization. Furthermore, lack of cytotoxicity of both peptide forms highlights their possible application as novel drug delivery agents.
Collapse
Affiliation(s)
- Giorgia Radicioni
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, L.go F. Vito, 1, 00168 Rome, Italy.
| | - Annarita Stringaro
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Agnese Molinari
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Giuseppina Nocca
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, L.go F. Vito, 1, 00168 Rome, Italy.
| | - Renato Longhi
- Istituto per la Chimica del Riconoscimento Molecolare, Italian National Research Council, Via Mario Bianco, 9, 20100 Milan, Italy.
| | - Davide Pirolli
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, L.go F. Vito, 1, 00168 Rome, Italy.
| | - Emanuele Scarano
- Dipartimento di Otorinolaringoiatria, Facoltà di Medicina, Catholic University, Largo A. Gemelli, 8, 00168 Rome, Italy.
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, L.go F. Vito, 1, 00168 Rome, Italy.
| | - Barbara Manconi
- Dipartimento di Scienze Applicate ai Biosistemi, University of Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy.
| | - Tiziana Cabras
- Dipartimento di Scienze Applicate ai Biosistemi, University of Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy.
| | - Irene Messana
- Dipartimento di Scienze Applicate ai Biosistemi, University of Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy.
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, L.go F. Vito, 1, 00168 Rome, Italy.
| | - Alberto Vitali
- Istituto per la Chimica del Riconoscimento Molecolare, Italian National Research Council, Rome, L. go F. Vito, 1, 00168 Rome, Italy.
| |
Collapse
|
15
|
Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Sci Rep 2015; 5:11719. [PMID: 26114640 PMCID: PMC4481774 DOI: 10.1038/srep11719] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Cell penetrating peptides (CPPs) are peptides that can be translocated into cells and used as a carrier platform for the intracellular uptake of cargo molecules. Subject to the source of CPP sequences and their positively charged nature, the cytotoxicity and immunogenicity of conventional CPPs needs to be optimized to expand their utility for biomedical applications. In addition to these safety issues, the stability of CPPs needs to be addressed since their positively charged residues are prone to interact with the biological milieu. As an effort to overcome these limitations of the current CPP technology, we isolated CPP candidate sequences and synthesized peptides from twelve isoforms of annexin, a family of membrane-interacting human proteins. The candidate screen returned a CPP rich in hydrophobic residues that showed more efficient cellular uptake than TAT-CPP. We then investigated the uptake mechanism, subcellular localization, and biophysical properties of the newly found CPP, verifying low cytotoxicity, long-term serum stability, and non-immunogenicity. Finally, model proteins conjugated to this peptide were successfully delivered into mammalian cells both in vitro and in vivo, indicating a potential use of the peptide as a carrier for the delivery of macromolecular cargos.
Collapse
|
16
|
Insights into the molecular mechanisms of action of bioportides: a strategy to target protein-protein interactions. Expert Rev Mol Med 2015; 17:e1. [DOI: 10.1017/erm.2014.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell-penetrating peptides (CPPs) are reliable vehicles for the target-selective intracellular delivery of therapeutic agents. The identification and application of numerous intrinsically bioactive CPPs, now designated as bioportides, is further endorsement of the tremendous clinical potential of CPP technologies. The refinement of proteomimetic bioportides, particularly sequences that mimic cationic α-helical domains involved in protein-protein interactions (PPIs), provides tremendous opportunities to modulate this emergent drug modality in a clinical setting. Thus, a number of CPP-based constructs are currently undergoing clinical trials as human therapeutics, with a particular focus upon anti-cancer agents. A well-characterised array of synthetic modifications, compatible with modern solid-phase synthesis, can be utilised to improve the biophysical and pharmacological properties of bioportides and so achieve cell-and tissue-selective targeting in vivo. Moreover, considering the recent successful development of stapled α-helical peptides as anti-cancer agents, we hypothesise that similar structural modifications are applicable to the design of bioportides that more effectively modulate the many interactomes known to underlie human diseases. Thus, we propose that stapled-helical bioportides could satisfy all of the clinical requirements for metabolically stable, intrinsically cell-permeable agents capable of regulating discrete PPIs by a dominant negative mode of action with minimal toxicity.
Collapse
|
17
|
Abstract
![]()
RNA
interference (RNAi) is an endogenous process in which small
noncoding RNAs, including small interfering RNAs (siRNAs) and microRNAs
(miRNAs), post-transcriptionally regulate gene expressions. In general,
siRNA and miRNA/miRNA mimics are similar in nature and activity except
their origin and specificity. Although both siRNAs and miRNAs have
been extensively studied as novel therapeutics for a wide range of
diseases, the large molecular weight, anionic surface charges, instability
in blood circulation, and intracellular trafficking to the RISC after
cellular uptake have hindered the translation of these RNAs from bench
to clinic. As a result, a great variety of delivery systems have been
investigated for safe and effective delivery of small noncoding RNAs.
Among these systems, peptides, especially cationic peptides, have
emerged as a promising type of carrier due to their inherent ability
to condense negatively charged RNAs, ease of synthesis, controllable
size, and tunable structure. In this review, we will focus on three
major types of cationic peptides, including poly(l-lysine)
(PLL), protamine, and cell penetrating peptides (CPP), as well as
peptide targeting ligands that have been extensively used in RNA delivery.
The delivery strategies, applications, and limitations of these cationic
peptides in siRNA/miRNA delivery will be discussed.
Collapse
Affiliation(s)
- Ravi S Shukla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | | | | |
Collapse
|
18
|
Is there a future for cell-penetrating peptides in oligonucleotide delivery? Eur J Pharm Biopharm 2013; 85:5-11. [DOI: 10.1016/j.ejpb.2013.03.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/23/2022]
|
19
|
Jones S, Lukanowska M, Suhorutsenko J, Oxenham S, Barratt C, Publicover S, Copolovici DM, Langel Ü, Howl J. Intracellular translocation and differential accumulation of cell-penetrating peptides in bovine spermatozoa: evaluation of efficient delivery vectors that do not compromise human sperm motility. Hum Reprod 2013; 28:1874-89. [PMID: 23585561 DOI: 10.1093/humrep/det064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Do cell penetrating peptides (CPPs) translocate into spermatozoa and, if so, could they be utilized to deliver a much larger protein cargo? SUMMARY ANSWER Chemically diverse polycationic CPPs rapidly and efficiently translocate into spermatozoa. They exhibit differential accumulation within intracellular compartments without detrimental influences upon cellular viability or motility but they are relatively ineffective in transporting larger proteins. WHAT IS ALREADY KNOWN Endocytosis, the prevalent route of protein internalization into eukaryotic cells, is severely compromised in mature spermatozoa. Thus, the translocation of many bioactive agents into sperm is relatively inefficient. However, the delivery of bioactive moieties into mature spermatozoa could be significantly improved by the identification and utility of an efficient and inert vectorial delivery technology. STUDY DESIGN CPP translocation efficacies, their subsequent differential intracellular distribution and the influence of peptides upon viability were determined in bovine spermatozoa. Temporal analyses of sperm motility in the presence of exogenously CPPs utilized normozoospermic human donor samples. MATERIALS AND METHODS CPPs were prepared by manual, automated and microwave-enhanced solid phase synthesis. Confocal fluorescence microscopy determined the intracellular distribution of rhodamine-conjugated CPPs in spermatozoa. Quantitative uptake and kinetic analyses compared the translocation efficacies of chemically diverse CPPs and conjugates of biotinylated CPPs and avidin. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) conversion assays were employed to analyse the influence of CPPs upon sperm cell viability and sperm class assays determined the impact of CPPs on motility in capacitated and non-capacitated human samples. MAIN RESULTS Chemically heterogeneous CPPs readily translocated into sperm to accumulate within discrete intracellular compartments. Mitoparan (INLKKLAKL(Aib)KKIL), for example, specifically accumulated within the mitochondria located in the sperm midpiece. The unique plasma membrane composition of sperm is a critical factor that directly influences the uptake efficacy of structurally diverse CPPs. No correlations in efficacies were observed when comparing CPP uptake into sperm with either uptake into fibroblasts or direct translocation across a phosphatidylcholine membrane. These comparative investigations identified C105Y (CSIPPEVKFNKPFVYLI) as a most efficient pharmacokinetic modifier for general applications in sperm biology. Significantly, CPP uptake induced no detrimental influence upon either bovine sperm viability or the motility of human sperm. As a consequence of the lack of endocytotic machinery, the CPP-mediated delivery of much larger protein complexes into sperm is relatively inefficient when compared with the similar process in fibroblasts. LIMITATIONS, REASONS FOR CAUTION It is possible that some CPPs could directly influence aspects of sperm biology and physiology that were not analysed in this study. WIDER IMPLICATIONS OF THE FINDINGS CPP technologies have significant potential to deliver selected bioactive moieties and so could modulate the biology and physiology of human sperm biology both prior- and post-fertilization.
Collapse
Affiliation(s)
- Sarah Jones
- Molecular Pharmacology Research Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cell Penetrating Peptoids (CPPos): Synthesis of a Small Combinatorial Library by Using IRORI MiniKans. Pharmaceuticals (Basel) 2012; 5:1265-81. [PMID: 24281336 PMCID: PMC3816671 DOI: 10.3390/ph5121265] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 01/10/2023] Open
Abstract
Cell penetrating peptoids (CPPos) are potent mimics of the corresponding cell penetrating peptides (CPPs). The synthesis of diverse oligomeric libraries that display a variety of backbone scaffolds and side-chain appendages are a very promising source of novel CPPos, which can be used to either target different cellular organelles or even different tissues and organs. In this study we established the submonomer-based solid phase synthesis of a “proof of principle” peptoid library in IRORI MiniKans to expand the amount for phenotypic high throughput screens of CPPos. The library consisting of tetrameric peptoids [oligo(N-alkylglycines)] was established on Rink amide resin in a split and mix approach with hydrophilic and hydrophobic peptoid side chains. All CPPos of the presented library were labeled with rhodamine B to allow for the monitoring of cellular uptake by fluorescent confocal microscopy. Eventually, all the purified peptoids were subjected to live cell imaging to screen for CPPos with organelle specificity. While highly charged CPPos enter the cells by endocytosis with subsequent endosomal release, critical levels of lipophilicity allow other CPPos to specifically localize to mitochondria once a certain lipophilicity threshold is reached.
Collapse
|
21
|
Howl J, Matou-Nasri S, West DC, Farquhar M, Slaninová J, Ostenson CG, Zorko M, Ostlund P, Kumar S, Langel U, McKeating J, Jones S. Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cell Mol Life Sci 2012; 69:2951-66. [PMID: 22527714 PMCID: PMC11114504 DOI: 10.1007/s00018-012-0979-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 12/22/2022]
Abstract
Cell-penetrating peptides (CPPs) have proven utility for the highly efficient intracellular delivery of bioactive cargoes that include peptides, proteins, and oligonucleotides. The many strategies developed to utilize CPPs solely as pharmacokinetic modifiers necessarily requires them to be relatively inert. Moreover, it is feasible to combine one or multiple CPPs with bioactive cargoes either by direct chemical conjugation or, more rarely, as non-covalent complexes. In terms of the message-address hypothesis, this combination of cargo (message) linked to a CPP (address) as a tandem construct conforms to the sychnological organization. More recently, we have introduced the term bioportide to describe monomeric CPPs that are intrinsically bioactive. Herein, we describe the design and biochemical properties of two rhegnylogically organized monometic CPPs that collectively modulate a variety of biological and pathophysiological phenomena. Thus, camptide, a cell-penetrant sequence located within the first intracellular loop of a human calcitonin receptor, regulates cAMP-dependent processes to modulate insulin secretion and viral infectivity. Nosangiotide, a bioportide derived from endothelial nitric oxide synthase, potently inhibits many aspects of the endothelial cell morphology and movement and displays potent anti-angiogenic activity in vivo. We conclude that, due to their capacity to translocate and target intracellular signaling events, bioportides represent an innovative generic class of bioactive agents.
Collapse
Affiliation(s)
- John Howl
- Research Institute in Healthcare Science, School of Applied Sciences, University of Wolverhampton, Wolverhampton, WV1 1LY, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guo Q, Zhao G, Hao F, Guan Y. Effects of the TAT peptide orientation and relative location on the protein transduction efficiency. Chem Biol Drug Des 2012; 79:683-90. [PMID: 22188730 DOI: 10.1111/j.1747-0285.2011.01315.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To understand the protein transduction domain (PTD)-mediated protein transduction behavior and to explore its potential in delivering biopharmaceutic drugs, we prepared four TAT-EGFP conjugates: TAT(+)-EGFP, TAT(-)-EGFP, EGFP-TAT(+) and EGFP-TAT(-), where TAT(+) and TAT(-) represent the original and the reversed TAT sequence, respectively. These four TAT-EGFP conjugates were incubated with HeLa and PC12 cells for in vitro study as well as injected intraperitoneally to mice for in vivo study. Flow cytometric results showed that four TAT-EGFP conjugates were able to traverse HeLa and PC12 cells with almost equal transduction efficiency. The in vivo study showed that the TAT-EGFP conjugates could be delivered into different organs of mice with different transduction capabilities. Bioinformatic analyses and CD spectroscopic data revealed that the TAT peptide has no defined secondary structure, and conjugating the TAT peptide to the EGFP cargo protein would not alter the native structure and the function of the EGFP protein. These results conclude that the sequence orientation, the spatial structure, and the relative location of the TAT peptide have much less effect on the TAT-mediated protein transduction. Thus, the TAT-fused conjugates could be constructed in more convenient and flexible formats for a wide range of biopharmaceutical applications.
Collapse
Affiliation(s)
- Qingguo Guo
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
23
|
Preferential uptake of L- versus D-amino acid cell-penetrating peptides in a cell type-dependent manner. ACTA ACUST UNITED AC 2011; 18:1000-10. [PMID: 21867915 DOI: 10.1016/j.chembiol.2011.06.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 06/03/2011] [Accepted: 06/10/2011] [Indexed: 01/03/2023]
Abstract
The use of protease-resistant D-peptides is a prominent strategy for overcoming proteolytic sensitivity in the use of cell-penetrating peptides (CPPs) as delivery vectors. So far, no major differences have been reported for the uptake of L- and D-peptides. Here we report that cationic L-CPPs are taken up more efficiently than their D-counterparts in MC57 fibrosarcoma and HeLa cells but not in Jurkat T leukemia cells. Reduced uptake of D-peptides co-occurred with persistent binding to heparan sulfates (HS) at the plasma membrane. In vitro binding studies of L- and D-peptides with HS indicated similar binding affinities. Our results identify two key events in the uptake of CPPs: binding to HS chains and the initiation of internalization. Only the second event depends on the chirality of the CPP. This knowledge may be exploited for a stereochemistry-dependent preferential targeting of cells.
Collapse
|
24
|
Li H, Nelson CE, Evans BC, Duvall CL. Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 2011; 17:293-319. [PMID: 21348831 DOI: 10.2174/138161211795049642] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide "stapling", cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|