1
|
Nyholm TKM, Engberg O, Hautala V, Tsuchikawa H, Lin KL, Murata M, Slotte JP. Impact of Acyl Chain Mismatch on the Formation and Properties of Sphingomyelin-Cholesterol Domains. Biophys J 2019; 117:1577-1588. [PMID: 31610877 DOI: 10.1016/j.bpj.2019.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/30/2022] Open
Abstract
Lateral segregation and the formation of lateral domains are well-known phenomena in ternary lipid bilayers composed of an unsaturated (low gel-to-liquid phase transition temperature (Tm)) phospholipid, a saturated (high-Tm) phospholipid, and cholesterol. The formation of lateral domains has been shown to be influenced by differences in phospholipid acyl chain unsaturation and length. Recently, we also showed that differential interactions of cholesterol with low- and high-Tm phospholipids in the bilayer can facilitate phospholipid segregation. Now, we have investigated phospholipid-cholesterol interactions and their role in lateral segregation in ternary bilayers composed of different unsaturated phosphatidylcholines (PCs) with varying acyl chain lengths, N-palmitoyl-D-erythro-sphingomyelin (PSM), and cholesterol. Using deuterium NMR spectroscopy, we determined how PSM was influenced by the acyl chain composition in surrounding PC environments and correlated this with the affinity of cholestatrienol (a fluorescent cholesterol analog) for PSM in the different PC environments. Results from a combination of time-resolved fluorescence measurements of trans-parinaric acid and Förster resonance energy transfer experiments showed that the relative affinity of cholesterol for phospholipids determined the degree to which the sterol promoted domain formation. From Förster resonance energy transfer, deuterium NMR, and differential scanning calorimetry results, it was clear that cholesterol also influenced both the thermostability of the domains and the degree of order in and outside the PSM-rich domains. The results of this study have shown that the affinity of cholesterol for both low-Tm and high-Tm phospholipids and the effects of low- and high-Tm phospholipids on each other influence both lateral structure and domain properties in complex bilayers. We envision that similar effects also contribute to lateral heterogeneity in even more complex biological membranes.
Collapse
Affiliation(s)
- Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland.
| | - Oskar Engberg
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Victor Hautala
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kai-Lan Lin
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| |
Collapse
|
2
|
Steady state analysis of influx and transbilayer distribution of ergosterol in the yeast plasma membrane. Theor Biol Med Model 2019; 16:13. [PMID: 31412941 PMCID: PMC6694696 DOI: 10.1186/s12976-019-0108-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Background The transbilayer sterol distribution between both plasma membrane (PM) leaflets has long been debated. Recent studies in mammalian cells and in yeast show that the majority of sterol resides in the inner PM leaflet. Since sterol flip-flop in model membranes is rapid and energy-independent, a mechanistic understanding for net enrichment of sterol in one leaflet is lacking. Import of ergosterol in yeast can take place via the ABC transporters Aus1/Pdr11 under anaerobic growth conditions, eventually followed by rapid non-vesicular sterol transport to the endoplasmic reticulum (ER). Little is known about how these transport steps are dynamically coordinated. Methods Here, a kinetic steady state model is presented which considers sterol import via Aus1/Pdr11, sterol flip-flop across the PM, bi-molecular complex formation and intracellular sterol release followed by eventual transport to and esterification of sterol in the ER. The steady state flux is calculated, and a thermodynamic analysis of feasibility is presented. Results It is shown that the steady state sterol flux across the PM can be entirely controlled by irreversible sterol import via Aus1/Pdr11. The transbilayer sterol flux at steady state is a non-linear function of the chemical potential difference of sterol between both leaflets. Non-vesicular release of sterol on the cytoplasmic side of the PM lowers the attainable sterol enrichment in the inner leaflet. Including complex formation of sterol with phospholipids or proteins can explain several puzzling experimental observations; 1) rapid sterol flip-flop across the PM despite net sterol enrichment in one leaflet, 2) a pronounced steady state sterol gradient between PM and ER despite fast non-vesicular sterol exchange between both compartments and 3) a non-linear dependence of ER sterol on ergosterol abundance in the PM. Conclusions A steady state model is presented that can account for the observed sterol asymmetry in the yeast PM, the strong sterol gradient between PM and ER and threshold-like expansion of ER sterol for increasing sterol influx into the PM. The model also provides new insight into selective uptake of cholesterol and its homeostasis in mammalian cells, and it provides testable predictions for future experiments.
Collapse
|
3
|
Grosjean K, Der C, Robert F, Thomas D, Mongrand S, Simon-Plas F, Gerbeau-Pissot P. Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3545-3557. [PMID: 29722895 PMCID: PMC6022670 DOI: 10.1093/jxb/ery152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/16/2018] [Indexed: 05/20/2023]
Abstract
The laterally heterogeneous plant plasma membrane (PM) is organized into finely controlled specialized areas that include membrane-ordered domains. Recently, the spatial distribution of such domains within the PM has been identified as playing a key role in cell responses to environmental challenges. To examine membrane order at a local level, BY-2 tobacco suspension cell PMs were labelled with an environment-sensitive probe (di-4-ANEPPDHQ). Four experimental models were compared to identify mechanisms and cell components involved in short-term (1 h) maintenance of the ordered domain organization in steady-state cell PMs: modulation of the cytoskeleton or the cell wall integrity of tobacco BY-2 cells; and formation of giant vesicles using either a lipid mixture of tobacco BY-2 cell PMs or the original lipid and protein combinations of the tobacco BY-2 cell PM. Whilst inhibiting phosphorylation or disrupting either the cytoskeleton or the cell wall had no observable effects, we found that lipids and proteins significantly modified both the abundance and spatial distribution of ordered domains. This indicates the involvement of intrinsic membrane components in the local physical state of the plant PM. Our findings support a major role for the 'lipid raft' model, defined as the sterol-dependent ordered assemblies of specific lipids and proteins in plant PM organization.
Collapse
Affiliation(s)
- Kevin Grosjean
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Christophe Der
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Franck Robert
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Dominique Thomas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR, CNRS, Université de Bordeaux, Bordeaux, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | | |
Collapse
|
4
|
Xu Y, Yu Z, Zhang D, Huang J, Wu C, Yang G, Yan K, Zhang S, Zheng C. CYSTM, a Novel Non-Secreted Cysteine-Rich Peptide Family, Involved in Environmental Stresses in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:423-438. [PMID: 29272523 DOI: 10.1093/pcp/pcx202] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/12/2017] [Indexed: 05/24/2023]
Abstract
The cysteine-rich transmembrane module (CYSTM) is comprised of a small molecular protein family that is found in a diversity of tail-anchored membrane proteins across eukaryotes. This protein family belongs to novel uncharacteristic non-secreted cysteine-rich peptides (NCRPs) according to their conserved domain and small molecular weight, and genome-wide analysis of this family has not yet been undertaken in plants. In this study, 13 CYSTM genes were identified and located on five chromosomes with diverse densities in Arabidopsis thaliana. The CYSTM proteins could be classified into four subgroups based on domain similarity and phylogenetic topology. Encouragingly, the CYSTM members were expressed in at least one of the tested tissues and dramatically responded to various abiotic stresses, indicating that they played vital roles in diverse developmental processes, especially in stress responses. CYSTM peptides displayed a complex subcellular localization, and most were detected at the plasma membrane and cytoplasm. Of particular interest, CYSTM members could dimerize with themselves or others through the C-terminal domain, and we built a protein-protein interaction map between CYSTM members in Arabidopsis for the first time. In addition, an analysis of CYSTM3 overexpression lines revealed negative regulation for this gene in salt stress responses. We demonstrate that the CYSTM family, as a novel and ubiquitous non-secreted cysteine-rich peptide family, plays a vital role in resistance to abiotic stress. Collectively, our comprehensive analysis of CYSTM members will facilitate future functional studies of the small peptides.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zipeng Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Di Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|
5
|
Rajan R, Hayashi F, Nagashima T, Matsumura K. Toward a Molecular Understanding of the Mechanism of Cryopreservation by Polyampholytes: Cell Membrane Interactions and Hydrophobicity. Biomacromolecules 2016; 17:1882-93. [DOI: 10.1021/acs.biomac.6b00343] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Robin Rajan
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Fumiaki Hayashi
- NMR
Facility Support Unit, NMR Facility, Division of Structural and Synthetic
Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Toshio Nagashima
- NMR
Facility, Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Kazuaki Matsumura
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
6
|
Nyholm TK. Lipid-protein interplay and lateral organization in biomembranes. Chem Phys Lipids 2015; 189:48-55. [DOI: 10.1016/j.chemphyslip.2015.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023]
|
7
|
Kel O, Tamimi A, Thielges MC, Fayer MD. Ultrafast Structural Dynamics Inside Planar Phospholipid Multibilayer Model Cell Membranes Measured with 2D IR Spectroscopy. J Am Chem Soc 2013; 135:11063-74. [DOI: 10.1021/ja403675x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oksana Kel
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Amr Tamimi
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Megan C. Thielges
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United
States
| |
Collapse
|