1
|
Hung CL, Chang HH, Lee SW, Chiang YW. Stepwise activation of the pro-apoptotic protein Bid at mitochondrial membranes. Cell Death Differ 2021; 28:1910-1925. [PMID: 33462413 PMCID: PMC8184993 DOI: 10.1038/s41418-020-00716-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
Caspase-8-cleaved Bid (cBid) associates with mitochondria and promotes the activation of BAX, leading to mitochondria outer membrane permeabilization (MOMP) and apoptosis. However, current structural models of cBid are largely based on studies using membrane vesicles and detergent micelles. Here we employ spin-label ESR and site-directed PEGylation methods to identify conformations of cBid at real mitochondrial membranes, revealing stepwise mechanisms in the activation process. Upon the binding of cBid to mitochondria, its structure is reorganized to expose the BH3 domain while leaving the structural integrity only slightly altered. The mitochondria-bound cBid is in association with Mtch2 and it remains in the primed state until interacting with BAX. The interaction subsequently triggers the fragmentation of cBid, causes large conformational changes, and promotes BAX-mediated MOMP. Our results reveal structural differences of cBid between mitochondria and other lipid-like environments and, moreover, highlight the role of the membrane binding in modifying cBid structure and assisting the inactive-to-active transition in function.
Collapse
Affiliation(s)
- Chien-Lun Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Ho Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Su Wei Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Voltage and pH difference across the membrane control the S4 voltage-sensor motion of the Hv1 proton channel. Sci Rep 2020; 10:21293. [PMID: 33277511 PMCID: PMC7718894 DOI: 10.1038/s41598-020-77986-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
The voltage-gated proton channel Hv1 is expressed in a variety of cells, including macrophages, sperm, and lung epithelial cells. Hv1 is gated by both the membrane potential and the difference between the intra- and extracellular pH (ΔpH). The coupling of voltage- and ∆pH-sensing is such that Hv1 opens only when the electrochemical proton gradient is outwardly directed. However, the molecular mechanism of this coupling is not known. Here, we investigate the coupling between voltage- and ΔpH-sensing of Ciona intestinalis proton channel (ciHv1) using patch-clamp fluorometry (PCF) and proton uncaging. We show that changes in ΔpH can induce conformational changes of the S4 voltage sensor. Our results are consistent with the idea that S4 can detect both voltage and ΔpH.
Collapse
|
3
|
Chaves G, Bungert-Plümke S, Franzen A, Mahorivska I, Musset B. Zinc modulation of proton currents in a new voltage-gated proton channel suggests a mechanism of inhibition. FEBS J 2020; 287:4996-5018. [PMID: 32160407 PMCID: PMC7754295 DOI: 10.1111/febs.15291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/10/2020] [Accepted: 03/10/2020] [Indexed: 02/03/2023]
Abstract
The HV1 voltage‐gated proton (HV1) channel is a key component of the cellular proton extrusion machinery and is pivotal for charge compensation during the respiratory burst of phagocytes. The best‐described physiological inhibitor of HV1 is Zn2+. Externally applied ZnCl2 drastically reduces proton currents reportedly recorded in Homo sapiens, Rattus norvegicus, Mus musculus, Oryctolagus cuniculus, Rana esculenta, Helix aspersa, Ciona intestinalis, Coccolithus pelagicus, Emiliania huxleyi, Danio rerio, Helisoma trivolvis, and Lingulodinium polyedrum, but with considerable species variability. Here, we report the effects of Zn2+ and Cd2+ on HV1 from Nicoletia phytophila, NpHV1. We introduced mutations at potential Zn2+ coordination sites and measured Zn2+ inhibition in different extracellular pH, with Zn2+ concentrations up to 1000 μm. Zn2+ inhibition in NpHV1 was quantified by the slowing of the activation time constant and a positive shift of the conductance–voltage curve. Replacing aspartate in the S3‐S4 loop with histidine (D145H) enhanced both the slowing of activation kinetics and the shift in the voltage–conductance curve, such that Zn2+ inhibition closely resembled that of the human channel. Histidine is much more effective than aspartate in coordinating Zn2+ in the S3‐S4 linker. A simple Hodgkin Huxley model of NpHV1 suggests a decrease in the opening rate if it is inhibited by zinc or cadmium. Limiting slope measurements and high‐resolution clear native gel electrophoresis (hrCNE) confirmed that NpHV1 functions as a dimer. The data support the hypothesis that zinc is coordinated in between the dimer instead of the monomer. Zinc coordination sites may be potential targets for drug development.
Collapse
Affiliation(s)
- Gustavo Chaves
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| | - Stefanie Bungert-Plümke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich, Jülich, Germany
| | - Iryna Mahorivska
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| | - Boris Musset
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| |
Collapse
|
4
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
5
|
DeCoursey TE, Morgan D, Musset B, Cherny VV. Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J Gen Physiol 2017; 148:97-118. [PMID: 27481712 PMCID: PMC4969798 DOI: 10.1085/jgp.201611619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated proton channel (HV1) is a widely distributed, proton-specific ion channel with unique properties. Since 2006, when genes for HV1 were identified, a vast array of mutations have been generated and characterized. Accessing this potentially useful resource is hindered, however, by the sheer number of mutations and interspecies differences in amino acid numbering. This review organizes all existing information in a logical manner to allow swift identification of studies that have characterized any particular mutation. Although much can be gained from this meta-analysis, important questions about the inner workings of HV1 await future revelation.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institut für Physiologie, PMU Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
6
|
Abstract
Hv1 is a voltage-gated proton-selective channel that plays critical parts in host defense, sperm motility, and cancer progression. Hv1 contains a conserved voltage-sensor domain (VSD) that is shared by a large family of voltage-gated ion channels, but it lacks a pore domain. Voltage sensitivity and proton conductivity are conferred by a unitary VSD that consists of four transmembrane helices. The architecture of Hv1 differs from that of cation channels that form a pore in the center among multiple subunits (as in most cation channels) or homologous repeats (as in voltage-gated sodium and calcium channels). Hv1 forms a dimer in which a cytoplasmic coiled coil underpins the two protomers and forms a single, long helix that is contiguous with S4, the transmembrane voltage-sensing segment. The closed-state structure of Hv1 was recently solved using X-ray crystallography. In this article, we discuss the gating mechanism of Hv1 and focus on cooperativity within dimers and their sensitivity to metal ions.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; , ,
| | | | | |
Collapse
|
7
|
Li Q, Shen R, Treger JS, Wanderling SS, Milewski W, Siwowska K, Bezanilla F, Perozo E. Resting state of the human proton channel dimer in a lipid bilayer. Proc Natl Acad Sci U S A 2015; 112:E5926-35. [PMID: 26443860 PMCID: PMC4640771 DOI: 10.1073/pnas.1515043112] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The voltage-gated proton channel Hv1 plays a critical role in the fast proton translocation that underlies a wide range of physiological functions, including the phagocytic respiratory burst, sperm motility, apoptosis, and metastatic cancer. Both voltage activation and proton conduction are carried out by a voltage-sensing domain (VSD) with strong similarity to canonical VSDs in voltage-dependent cation channels and enzymes. We set out to determine the structural properties of membrane-reconstituted human proton channel (hHv1) in its resting conformation using electron paramagnetic resonance spectroscopy together with biochemical and computational methods. We evaluated existing structural templates and generated a spectroscopically constrained model of the hHv1 dimer based on the Ci-VSD structure at resting state. Mapped accessibility data revealed deep water penetration through hHv1, suggesting a highly focused electric field, comprising two turns of helix along the fourth transmembrane segment. This region likely contains the H(+) selectivity filter and the conduction pore. Our 3D model offers plausible explanations for existing electrophysiological and biochemical data, offering an explicit mechanism for voltage activation based on a one-click sliding helix conformational rearrangement.
Collapse
Affiliation(s)
- Qufei Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Jeremy S Treger
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Sherry S Wanderling
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Wieslawa Milewski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Klaudia Siwowska
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
A specialized molecular motion opens the Hv1 voltage-gated proton channel. Nat Struct Mol Biol 2015; 22:283-290. [PMID: 25730777 PMCID: PMC4385474 DOI: 10.1038/nsmb.2978] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
The Hv1 proton channel is unique among voltage-gated channels for containing the pore and gate within its voltage-sensing domain. Pore opening has been proposed to include assembly of the selectivity filter between an arginine (R3) of segment S4 and an aspartate (D1) of segment S1. We determined whether gating involves motion of S1, using Ciona intestinalis Hv1. We found that channel opening is concomitant with solution access to the pore-lining face of S1, from the cytoplasm to deep inside the pore. Voltage- and patch-clamp fluorometry showed that this involves a motion of S1 relative to its surroundings. S1 motion and the S4 motion that precedes it are each influenced by residues on the other helix, thus suggesting a dynamic interaction between S1 and S4. Our findings suggest that the S1 of Hv1 has specialized to function as part of the channel's gate.
Collapse
|
9
|
Fujiwara Y, Kurokawa T, Okamura Y. Long α helices projecting from the membrane as the dimer interface in the voltage-gated H(+) channel. ACTA ACUST UNITED AC 2014; 143:377-86. [PMID: 24567511 PMCID: PMC3933940 DOI: 10.1085/jgp.201311082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Continuous helices extending from the transmembrane region to the cytoplasmic region form a dimeric interface to regulate activation of the voltage-gated H+ channel. The voltage-gated H+ channel (Hv) is a H+-permeable voltage-sensor domain (VSD) protein that consists of four transmembrane segments (S1–S4). Hv assembles as a dimeric channel and two transmembrane channel domains function cooperatively, which is mediated by the coiled-coil assembly domain in the cytoplasmic C terminus. However, the structural basis of the interdomain interactions remains unknown. Here, we provide a picture of the dimer configuration based on the analyses of interactions among two VSDs and a coiled-coil domain. Systematic mutations of the linker region between S4 of VSD and the coiled-coil showed that the channel gating was altered in the helical periodicity with the linker length, suggesting that two domains are linked by helices. Cross-linking analyses revealed that the two S4 helices were situated closely in the dimeric channel. The interaction interface between the two S4 and the assembly interface of the coiled-coil domain were aligned in the same direction based on the phase angle calculation along α helices. Collectively, we propose that continuous helices stretching from the transmembrane to the cytoplasmic region in the dimeric interface regulate the channel activation in the Hv dimer.
Collapse
Affiliation(s)
- Yuichiro Fujiwara
- Integrative Physiology, Graduate School of Medicine, and 2 Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | | | | |
Collapse
|
10
|
Takeshita K, Sakata S, Yamashita E, Fujiwara Y, Kawanabe A, Kurokawa T, Okochi Y, Matsuda M, Narita H, Okamura Y, Nakagawa A. X-ray crystal structure of voltage-gated proton channel. Nat Struct Mol Biol 2014; 21:352-7. [DOI: 10.1038/nsmb.2783] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
|
11
|
Fujiwara Y, Okamura Y. Temperature-sensitive gating of voltage-gated proton channels. CURRENT TOPICS IN MEMBRANES 2014; 74:259-92. [PMID: 25366240 DOI: 10.1016/b978-0-12-800181-3.00010-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The voltage-gated proton channel (Hv) mediates robust proton transport down the proton electrochemical gradient. Hv is mainly expressed in immune cells, including neutrophils and macrophages, the physiological functions of which are temperature sensitive. In those cells, Hv plays key roles in the regulation of reactive oxygen species production and pH homeostasis. Proton transport through Hv is regulated by both the membrane potential and the pH difference across the cell membrane. Earlier studies showed that the properties of Hv, including proton conductance and gating, are highly temperature dependent. Hv consists of a voltage sensor domain involved in both voltage sensing and proton permeation and a C-terminal coiled coil region. Although the channel's activities are innate to the protomers, normally two protomers assemble as a dimer via interaction between C-terminal coiled coils. We recently discovered that the coiled-coil region of Hv dissociates at around room temperature, and that subtle changes in the coiled-coil region affect temperature-sensitive gating. In this chapter, we describe the physiological functions and molecular mechanisms of Hv, focusing mainly on the structure and thermosensitive properties of Hv.
Collapse
Affiliation(s)
- Yuichiro Fujiwara
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|