1
|
Lenz S, Bodnariuc I, Renaud-Young M, Butler TM, MacCallum JL. Understanding FABP7 binding to fatty acid micelles and membranes. Biophys J 2023; 122:603-615. [PMID: 36698315 PMCID: PMC9989940 DOI: 10.1016/j.bpj.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are chaperones that facilitate the transport of long-chain fatty acids within the cell and can provide cargo-dependent localization to specific cellular compartments. Understanding the nature of this transport is important because lipid signaling functions are associated with metabolic pathways impacting disease pathologies including cancer, autism, and schizophrenia. FABPs often associate with cell membranes to acquire and deliver their bound cargo as part of transport. We focus on brain FABP (FABP7), which demonstrates localization to the cytoplasm and nucleus, influencing transcription and fatty acid metabolism. We use a combined biophysical-computational approach to elucidate the interaction between FABP7 and model membranes. Specifically, we use multiple experiments to demonstrate that FABP7 can bind oleic acid and docosahexaenoic acid micelles. Data from NMR and multiscale molecular dynamics simulations reveal that the interaction with micelles is through FABP7's portal region residues. Simulations suggest that binding to membranes occurs through the same residues as micelles. Simulations also capture binding events where fatty acids dissociate from the membrane and enter FABP7's binding pocket. Overall, our data shed light on the interactions between FABP7 and OA or DHA micelles and provide insight into the transport of long-chain fatty acids.
Collapse
Affiliation(s)
- Stefan Lenz
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Iulia Bodnariuc
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | | - Tanille M Butler
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Justin L MacCallum
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Differences in Charge Distribution in Leishmania tarentolae Leishmanolysin Result in a Reduced Enzymatic Activity. Int J Mol Sci 2022; 23:ijms23147660. [PMID: 35887004 PMCID: PMC9321319 DOI: 10.3390/ijms23147660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmania tarentolae is a non-pathogenic trypanosomatid isolated from lizards widely used for heterologous protein expression and extensively studied to understand the pathogenic mechanisms of leishmaniasis. The repertoire of leishmanolysin genes was reported to be expanded in L. tarentolae genome, but no proteolytic activity was detected. Here, we analyzed L. tarentolae leishmanolysin proteins from the genome to the structural levels and evaluated the enzymatic activity of the wild-type and overexpressing mutants of leishmanolysin. A total of 61 leishmanolysin sequences were retrieved from the L. tarentolae genome. Five of them were selected for phylogenetic analysis, and for three of them, we built 3D models based on the crystallographic structure of L. major ortholog. Molecular dynamics simulations of these models disclosed a less negative electrostatic potential compared to the template. Subsequently, L. major LmjF.10.0460 and L. tarentolae LtaP10.0650 leishmanolysins were cloned in a pLEXSY expression system into L. tarentolae. Proteins from the wild-type and the overexpressing parasites were submitted to enzymatic analysis. Our results revealed that L. tarentolae leishmanolysins harbor a weak enzymatic activity about three times less abundant than L. major leishmanolysin. Our findings strongly suggest that the less negative electrostatic potential of L. tarentolae leishmanolysin can be the reason for the reduced proteolytic activity detected in this parasite.
Collapse
|
3
|
Moqadam M, Tubiana T, Moutoussamy EE, Reuter N. Membrane models for molecular simulations of peripheral membrane proteins. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1932589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Mahmoud Moqadam
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Thibault Tubiana
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Emmanuel E. Moutoussamy
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Galassi VV, Villarreal MA, Montich GG. Relevance of the protein macrodipole in the membrane-binding process. Interactions of fatty-acid binding proteins with cationic lipid membranes. PLoS One 2018. [PMID: 29518146 PMCID: PMC5843346 DOI: 10.1371/journal.pone.0194154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The fatty acid-binding proteins L-BABP and Rep1-NCXSQ bind to anionic lipid membranes by electrostatic interactions. According to Molecular Dynamics (MD) simulations, the interaction of the protein macrodipole with the membrane electric field is a driving force for protein binding and orientation in the interface. To further explore this hypothesis, we studied the interactions of these proteins with cationic lipid membranes. As in the case of anionic lipid membranes, we found that both proteins, carrying a negative as well as a positive net charge, were bound to the positively charged membrane. Their major axis, those connecting the bottom of the β-barrel with the α-helix portal domain, were rotated about 180 degrees as compared with their orientations in the anionic lipid membranes. Fourier transform infrared (FTIR) spectroscopy of the proteins showed that the positively charged membranes were also able to induce conformational changes with a reduction of the β-strand proportion and an increase in α-helix secondary structure. Fatty acid-binding proteins (FABPs) are involved in several cell processes, such as maintaining lipid homeostasis in cells. They transport hydrophobic molecules in aqueous medium and deliver them into lipid membranes. Therefore, the interfacial orientation and conformation, both shown herein to be electrostatically determined, have a strong correlation with the specific mechanism by which each particular FABP exerts its biological function.
Collapse
Affiliation(s)
- Vanesa V. Galassi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica “Ranwel Caputto”, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Marcos A. Villarreal
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba. Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Córdoba, Argentina
| | - Guillermo G. Montich
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica “Ranwel Caputto”, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- * E-mail:
| |
Collapse
|
6
|
Sutter A, Antunes D, Silva-Almeida M, Costa MGDS, Caffarena ER. Structural insights into leishmanolysins encoded on chromosome 10 of Leishmania (Viannia) braziliensis. Mem Inst Oswaldo Cruz 2017; 112:617-625. [PMID: 28902287 PMCID: PMC5572447 DOI: 10.1590/0074-02760160522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/02/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Leishmanolysins have been described as important parasite virulence factors because of their roles in the infection of promastigotes and resistance to host’s defenses. Leishmania (Viannia) braziliensis contains several leishmanolysin genes in its genome, especially in chromosome 10. However, the functional impact of such diversity is not understood, but may be attributed partially to the lack of structural data for proteins from this parasite. OBJECTIVES This works aims to compare leishmanolysin sequences from L. (V.) braziliensis and to understand how the diversity impacts in their structural and dynamic features. METHODS Leishmanolysin sequences were retrieved from GeneDB. Subsequently, 3D models were built using comparative modeling methods and their dynamical behavior was studied using molecular dynamic simulations. FINDINGS We identified three subgroups of leishmanolysins according to sequence variations. These differences directly affect the electrostatic properties of leishmanolysins and the geometry of their active sites. We identified two levels of structural heterogeneity that might be related to the ability of promastigotes to interact with a broad range of substrates. MAIN CONCLUSION Altogether, the structural plasticity of leishmanolysins may constitute an important evolutionary adaptation rarely explored when considering the virulence of L. (V.) braziliensis parasites.
Collapse
Affiliation(s)
- Amanda Sutter
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Rio de Janeiro, RJ, Brasil
| | - Deborah Antunes
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Rio de Janeiro, RJ, Brasil
| | - Mariana Silva-Almeida
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | | | - Ernesto Raul Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
7
|
Conformational changes, from β-strand to α-helix, of the fatty acid-binding protein ReP1-NCXSQ in anionic lipid membranes: dependence with the vesicle curvature. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:165-177. [DOI: 10.1007/s00249-017-1243-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
8
|
Zamarreño F, Giorgetti A, Amundarain MJ, Viso JF, Córsico B, Costabel MD. Conserved charged amino acids are key determinants for fatty acid binding proteins (FABPs)-membrane interactions. A multi-methodological computational approach. J Biomol Struct Dyn 2017; 36:861-877. [PMID: 28298157 DOI: 10.1080/07391102.2017.1301271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Based on the analysis of the mechanism of ligand transfer to membranes employing in vitro methods, Fatty Acid Binding Protein (FABP) family has been divided in two subgroups: collisional and diffusional FABPs. Although the collisional mechanism has been well characterized employing in vitro methods, the structural features responsible for the difference between collisional and diffusional mechanisms remain uncertain. In this work, we have identified the amino acids putatively responsible for the interaction with membranes of both, collisional and diffusional, subgroups of FABPs. Moreover, we show how specific changes in FABPs' structure could change the mechanism of interaction with membranes. We have computed protein-membrane interaction energies for members of each subgroup of the family, and performed Molecular Dynamics simulations that have shown different configurations for the initial interaction between FABPs and membranes. In order to generalize our hypothesis, we extended the electrostatic and bioinformatics analysis over FABPs of different mammalian genus. Also, our methodological approach could be used for other systems involving protein-membrane interactions.
Collapse
Affiliation(s)
- Fernando Zamarreño
- a Departamento de Física, Grupo de Biofísica - UNS , IFISUR, Universidad Nacional del Sur, CONICET , Bahía Blanca , Argentina
| | - Alejandro Giorgetti
- b Department of Biotechnology, Faculty of Mathematical , Physical and Natural Sciences, University of Verona , Verona , Italy
| | - María Julia Amundarain
- a Departamento de Física, Grupo de Biofísica - UNS , IFISUR, Universidad Nacional del Sur, CONICET , Bahía Blanca , Argentina
| | - Juan Francisco Viso
- a Departamento de Física, Grupo de Biofísica - UNS , IFISUR, Universidad Nacional del Sur, CONICET , Bahía Blanca , Argentina
| | - Betina Córsico
- c Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP) , Universidad Nacional de La Plata , La Plata , Argentina
| | - Marcelo D Costabel
- a Departamento de Física, Grupo de Biofísica - UNS , IFISUR, Universidad Nacional del Sur, CONICET , Bahía Blanca , Argentina
| |
Collapse
|
9
|
Zhang JL, Zheng QC, Yu LY, Li ZQ, Zhang HX. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter. J Chem Inf Model 2016; 56:1539-46. [PMID: 27472561 DOI: 10.1021/acs.jcim.6b00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.
Collapse
Affiliation(s)
- Ji-Long Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University , Changchun 130021, Jilin, People's Republic of China.,Department of Chemistry and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Qing-Chuan Zheng
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| | - Li-Ying Yu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| | - Zheng-Qiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University , Changchun 130021, Jilin, People's Republic of China
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| |
Collapse
|