1
|
Sharma P, Singh S, Gopi P, Rani MSS, Singh P, Pandya P, Ali MS. Evaluating the carcinogenic potential of trazodone hydrochloride via duplex DNA targeting: Molecular interaction, binding mechanism and affinity assessment via structural calculations. J Pharm Biomed Anal 2025; 263:116881. [PMID: 40300316 DOI: 10.1016/j.jpba.2025.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
Trazodone Hydrochloride (TRZ) is a selective serotonin antagonist reuptake inhibitor (SARI) antidepressant that is widely prescribed to treat depression. In this study, we have observed that TRZ disturbs the duplex DNA structure around the binding site causing base flip in the major groove and disrupting sequence readout. TRZ binds in the minor groove, yet it disturbs the DNA structure significantly, causing problems in sequence readout. Therefore, it would be interesting to investigate the interaction between duplex DNA. DNA binding study was conducted using multi-spectroscopic methods coupled with molecular simulations. Fluorescence investigations revealed a static quenching mechanism between TRZ and CT-DNA with a moderate binding strength (2.7 ×104 LM-1 at 288 K, 1.1 ×104 LM-1 at 298 K, 5.2 ×103 LM-1 at 308 K). The thermodynamic parameters suggested that the complexation was spontaneous, enthalpy-driven (-69.006 kJ/mol), with an entropy of -0.168 kJ/mol and Gibbs free energy ranging between -18.93 to -16.03 kJ/mol. Complexation was primarily facilitated by the formation of hydrogen bonds and Van der Waals forces which corroborated by the MM/PBSA findings. Detailed assessment of the binding mode and interaction mechanism through Molecular Docking and Molecular Dynamics Simulations (150 ns) indicated TRZ's affinity for the minor groove of CT-DNA which was further validated experimentally through displacement study with the known minor groove binder, DAPI. CD spectroscopy of CT-DNA in the absence and presence of TRZ revealed minor variations in the negative and positive bands indicative of groove binding. The structural variations of TRZ observed during binding indicated minor conformational adjustments and repositioning, especially at piperazine and chlorophenyl ring, providing stable interactions in the form of stacking forces leading to better fit within the binding site, particularly within the AT region of the CT-DNA's minor groove. The findings from this study will enhance our understanding of the interaction between TRZ and CT-DNA, adding depth to existing knowledge in the field.
Collapse
Affiliation(s)
- Palak Sharma
- Department of Forensic Science, Mody University of Science and Technology, Lakshmangarh, Rajasthan 332311, India
| | - Shweta Singh
- Department of Forensic Science, Kristu Jayanti College, Autonomous, Bengaluru 560077, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida 201303, India
| | | | - Pratik Singh
- Amity Institute of Forensic Sciences, Amity University, Noida 201303, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida 201303, India.
| | - Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Hosseini Nasab N, Raza H, Eom YS, Shah FH, Kwak JH, Kim SJ. Exploring chalcone-sulfonyl piperazine hybrids as anti-diabetes candidates: design, synthesis, biological evaluation, and molecular docking study. Mol Divers 2025; 29:43-59. [PMID: 38775996 DOI: 10.1007/s11030-024-10831-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/25/2024] [Indexed: 02/02/2025]
Abstract
To address the escalating rates of diabetes mellitus worldwide, there is a growing need for novel compounds. The demand for more affordable and efficient methods of managing diabetes is increasing due to the inevitable side effects associated with existing antidiabetic medications. In this present research, various chalcone-sulfonyl piperazine hybrid compounds (5a-k) were designed and synthesized to develop inhibitors against alpha-glucosidase and alpha-amylase. In addition, several spectroscopic methods, including FT-IR, 1H-NMR, 13C-NMR, and HRMS, were employed to confirm the exact structures of the synthesized derivatives. All synthesized compounds were evaluated for their ability to inhibit alpha-glucosidase and alpha-amylase in vitro using acarbose as the reference standard and they showed excellent to good inhibitory potentials. Compound 5k exhibited excellent inhibitory activity against alpha-glucosidase (IC50 = 0.31 ± 0.01 µM) and alpha-amylase (IC50 = 4.51 ± 1.15 µM), which is 27-fold more active against alpha-glucosidase and 7-fold more active against alpha-amylase compared to acarbose, which had IC50 values of 8.62 ± 1.66 µM for alpha-glucosidase and 30.97 ± 2.91 µM for alpha-amylase. It was discovered from the Lineweaver-Burk plot that 5k exhibited competitive inhibition against alpha-glucosidase. Furthermore, cytotoxicity screening assay results against human fibroblast HT1080 cells showed that all compounds had a good level of safety profile. To explore the binding interactions of the most potent compound (5k) with the active site of enzymes, molecular docking research was conducted, and the results obtained supported the experimental data.
Collapse
Affiliation(s)
- Narges Hosseini Nasab
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Young Seok Eom
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Fahad Hassan Shah
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea.
| |
Collapse
|
3
|
Pawar MA, Shevalkar GB, Vavia PR. Design and Development of Gastro-retentive Drug Delivery System for Trazodone Hydrochloride: a Promising Alternative to Innovator's Controlled-Release Tablet. AAPS PharmSciTech 2022; 23:251. [PMID: 36071254 DOI: 10.1208/s12249-022-02404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Trazodone hydrochloride (TZN) is a serotonin reuptake inhibitor that treats a major depressive disorder. It exhibits a short plasma half-life of 4.1 h and shows pH-dependent solubility. Above its pKa (6.74), solubility of TZN is very low, affecting its dissolution in the lower part of GIT. Hence, the present work aimed to develop gastro-retentive floating tablet of TZN. Central composite design was employed to optimize the formulation. Formulation variables like the concentration of HPMC-K100M, Polyox WSR 303 Leo, and sodium bicarbonate were evaluated for the responses like floating lag time and drug release. X-ray imaging study was performed on rabbits to determine the in vivo gastric retention of the optimized formulation. The accelerated stability study was conducted on optimized tablets as per ICH guidelines. Floating lag time and f2 value of the optimized formulation were found to be 2.51±0.02 min and 62.79, respectively. X-ray imaging studies in rabbits determined the in vivo gastro retention time. After 12 h of administration, tablet remained in the gastric region, indicating better retentive power. Accelerated stability studies showed sufficient formulation stability even after 3 months of storage. All these studies depict that the floating gastro-retentive system could be used as an alternative to the innovator formulation.
Collapse
Affiliation(s)
- Manoj A Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, Matunga (E), Mumbai, 400019, India
| | - Ganesh B Shevalkar
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, Matunga (E), Mumbai, 400019, India.
| |
Collapse
|
4
|
Civelek N, Bilge D. Investigating the Molecular Effects of Curcumin by Using Model Membranes. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09710-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Liposomes as biomembrane models: Biophysical techniques for drug-membrane interaction studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Fragment-based labeling using condensation reactions of six potential 5-HT7R PET tracers. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Pérez-Isidoro R, Costas M. The effect of neuroleptic drugs on DPPC/sphingomyelin/cholesterol membranes. Chem Phys Lipids 2020; 229:104913. [PMID: 32335028 DOI: 10.1016/j.chemphyslip.2020.104913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
The hydrophobic nature of neuroleptic drugs renders that these molecules interact not only with protein receptors, but also with the lipids constituting the membrane bilayer. We present a systematic study of the effect of seven neuroleptic drugs on a biomembrane model composed of DPPC, sphingomyelin, and cholesterol. Differential scanning calorimetry (DSC) measurements were used to monitor the gel-fluid phase transition of the lipid bilayer at three pH values and also as a function of drug concentration. The implementation of a new methodology to mix lipids homogeneously allowed us to assemble bilayers completely free of organic solvents. The seven neuroleptics were: trifluoperazine, haloperidol decanoate, clozapine, quetiapine, olanzapine, aripiprazole, and amisulpride. The DSC results show that the insertion of the drug into the bilayer produces a fluidization and a disordering of the bilayer. The bilayer perturbation is qualitatively the same for all the studied drugs, but quantitatively different. The driving force for the neuroleptic drug to place itself in the lipid bilayer is entropic in nature, signaling to the importance of the size and geometry of the drugs. The drug protonated species produce stronger effects than their non-protonated forms. At high concentrations two of the neuroleptics revert the fluidization effect and another completely abolishes the gel-fluid transition. The DSC data and the associated discussion contribute to the understanding of the interactions between neuroleptic drugs and lipid membranes.
Collapse
Affiliation(s)
- R Pérez-Isidoro
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| | - M Costas
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| |
Collapse
|
8
|
Elhesaisy N, Swidan S. Trazodone Loaded Lipid Core Poly (ε-caprolactone) Nanocapsules: Development, Characterization and in Vivo Antidepressant Effect Evaluation. Sci Rep 2020; 10:1964. [PMID: 32029776 PMCID: PMC7005163 DOI: 10.1038/s41598-020-58803-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/29/2019] [Indexed: 11/21/2022] Open
Abstract
Trazodone hydrochloride (TRH) is a lipophilic drug which is used effectively as an antidepressant. Its poor solubility and short half-life represent an obstacle for its successful use. Nanocapsules with biodegradable polymeric shell are successful drug delivery systems for controlling the release of drugs. To enhance the entrapment of lipophilic drugs, oils can be added forming a lipophilic core in which the drug is more soluble. The aim of this study was to enhance the efficacy of TRH and prolong its action by formulating it into lipid core polymeric shell nanocapsules. Nanocapules were prepared using nanoprecipitation technique. All prepared formulations were in nano size range and negatively charged. The TRH entrapment efficiency (EE%) in lipid core nanocapsules was up to 74.8 ± 0.5% when using Labrafac lipophile as a lipid core compared to only 55.7 ± 0.9% in lipid free polymeric nanospheres. Controlled TRH release was achieved for all prepared formulations. Forced swim test results indicated the significant enhancement of antidepressant effect of the selected TRH loaded Labrafac lipophile core nanocapsules formulation compared to control and TRH dispersion in phosphate buffer. It is concluded that lipid core nanocapsules is a promising carrier for the enhancement of TRH efficacy.
Collapse
Affiliation(s)
- Nahla Elhesaisy
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
- The Center for Drug Research and Development (CDRD), The British University in Egypt, El-Sherouk city, Cairo, 11837, Egypt.
| |
Collapse
|
9
|
Eudragit S100 Entrapped Liposome for Curcumin Delivery: Anti-Oxidative Effect in Caco-2 Cells. COATINGS 2020. [DOI: 10.3390/coatings10020114] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcumin is a natural polyphenol with strong antioxidant activity. However, this molecule shows a very poor bioavailability, instability, and rapid metabolism in vivo. In this work curcumin was loaded in Eudragit-coated liposomes to create a gastroresistant carrier, able to protect its load from degradation and free it at the site of absorption in the colon region. Small unilamellar vesicles were prepared and coated with Eudragit by a pH-driven method. The physico-chemical properties of the prepared systems were assessed by light scattering, transmission electron microscopy, infrared spectroscopy, and differential scanning calorimetry. The uptake of vesicles by Caco-2 cells and the anti-oxidant activity in cells were evaluated. The produced vesicles showed dimensions of about forty nanometers that after covering with Eudragit resulted to have micrometric dimensions at acid pH. The experiments showed that at pH > 7.0 the polymeric coating dissolves, releasing the nanometric liposomes and allowing them to enter Caco-2 cells. Delivered curcumin loaded vesicles were then able to decrease significantly ROS levels as induced by H2O2 in Caco-2 cells. The proposed work showed the possibility of realizing effective gastroresistant curcumin liposome formulations for the delivery of antioxidant molecules to Caco-2 cells, potentially applicable to the treatment of pathological conditions related to intestinal oxidative stress.
Collapse
|
10
|
Arias JM, Tuttolomondo ME, Díaz SB, Ben Altabef A. Reorganization of Hydration Water of DPPC Multilamellar Vesicles Induced by l-Cysteine Interaction. J Phys Chem B 2018; 122:5193-5204. [DOI: 10.1021/acs.jpcb.8b01721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Juan M. Arias
- INQUINOA-CONICET, Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S. M. de Tucumán, R. Argentina
| | - María E. Tuttolomondo
- INQUINOA-CONICET, Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S. M. de Tucumán, R. Argentina
| | - Sonia B. Díaz
- INQUINOA-CONICET, Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S. M. de Tucumán, R. Argentina
| | - Aida Ben Altabef
- INQUINOA-CONICET, Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S. M. de Tucumán, R. Argentina
| |
Collapse
|
11
|
Pham VT, Nguyen TQ, Dao UPN, Nguyen TT. On the interaction between fluoxetine and lipid membranes: Effect of the lipid composition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:50-61. [PMID: 28982068 DOI: 10.1016/j.saa.2017.09.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 05/27/2023]
Abstract
Molecular interaction between the antidepressant fluoxetine and lipid bilayers was investigated in order to provide insights into the drug's incorporation to lipid membranes. In particular, the effects of lipid's unsaturation degree and cholesterol content on the partitioning of fluoxetine into large unilamellar vesicles (LUVs) comprised of unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated using second derivative spectrophotometry and Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). It was found that fluoxetine partitioned to a greater extent into the liquid-crystalline DOPC LUVs than into the solid-gel DPPC LUVs. The lipid physical state dependence of drug partitioning was verified by increasing the temperature in which the partition coefficient of fluoxetine significantly increased upon the change of the lipid phase from solid-gel to liquid-crystalline. The incorporation of 28mol% cholesterol into the LUVs exerted a significant influence on the drug partitioning into both DOPC and DPPC LUVs. The ATR-FTIR study revealed that fluoxetine perturbed the conformation of DOPC more strongly than that of DPPC due to the cis-double bonds in the lipid acyl chains. Fluoxetine possibly bound to the carbonyl moiety of the lipids through the hydrogen bonding formation while displaced some water molecules surrounding the PO2- regions of the lipid head groups. Cholesterol, however, could lessen the interaction between fluoxetine and the carbonyl groups of both DOPC and DPPC LUVs. These findings provided a better understanding of the role of lipid structure and cholesterol on the interaction between fluoxetine and lipid membranes, shedding more light into the drug's therapeutic action.
Collapse
Affiliation(s)
- Vy T Pham
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Trinh Q Nguyen
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Uyen P N Dao
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Trang T Nguyen
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
12
|
Effect of cis-(Z)-flupentixol on DPPC membranes in the presence and absence of cholesterol. Chem Phys Lipids 2016; 198:61-71. [DOI: 10.1016/j.chemphyslip.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/21/2016] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
|
13
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|
14
|
Suga K, Yoshida T, Ishii H, Okamoto Y, Nagao D, Konno M, Umakoshi H. Membrane Surface-Enhanced Raman Spectroscopy for Sensitive Detection of Molecular Behavior of Lipid Assemblies. Anal Chem 2015; 87:4772-80. [DOI: 10.1021/ac5048532] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Keishi Suga
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Tomohiro Yoshida
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Haruyuki Ishii
- Department
of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yukihiro Okamoto
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Daisuke Nagao
- Department
of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mikio Konno
- Department
of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hiroshi Umakoshi
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|