1
|
Hryc J, Markiewicz M, Pasenkiewicz-Gierula M. Stacks of monogalactolipid bilayers can transform into a lattice of water channels. iScience 2023; 26:107863. [PMID: 37766978 PMCID: PMC10520361 DOI: 10.1016/j.isci.2023.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The lipid matrix of thylakoid membranes is a lamellar bilayer, but under a certain condition it can convert locally into a nonlamellar structure. This is possible because one of the main membrane lipids, MGDG, promotes the formation of an inverse hexagonal phase. Here, the spontaneous transformation of aligned hydrated MGDG bilayers into nonlamellar structures is investigated using all-atom molecular dynamics simulation. Previous studies have demonstrated that MGDG polar head groups connect vertically across the interface. In this study, the evolution of the system's initial structure into a lattice of water channels and contacted surfaces created by numerous vertical MGDG connections depended on the width of the hydrating water layers. These widths controlled the bilayers' ability to bend, which was a prerequisite for channel formation. Locally, an intensive exchange of MGDG molecules between apposing bilayer leaflets occurred, although a stable semi-toroidal stalk did not develop.
Collapse
Affiliation(s)
- Jakub Hryc
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michal Markiewicz
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Porras-Gómez M, Shoaib T, Steer D, Espinosa-Marzal RM, Leal C. Pathological cardiolipin-promoted membrane hemifusion stiffens pulmonary surfactant membranes. Biophys J 2022; 121:886-896. [PMID: 35176270 PMCID: PMC8943818 DOI: 10.1016/j.bpj.2022.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
Lower tract respiratory diseases such as pneumonia are pervasive, affecting millions of people every year. The stability of the air/water interface in alveoli and the mechanical performance during the breathing cycle are regulated by the structural and elastic properties of pulmonary surfactant membranes (PSMs). Respiratory dysfunctions and pathologies often result in, or are caused by, impairment of the PSMs. However, a gap remains between our knowledge of the etiology of lung diseases and the fundamental properties of PSMs. For example, bacterial pneumonia in humans and mice has been associated with aberrant levels of cardiolipin, a mitochondrial-specific, highly unsaturated 4-tailed anionic phospholipid, in lung fluid, which likely disrupts the structural and mechanical integrity of PSMs. Specifically, cardiolipin is expected to significantly alter PSM elasticity due to its intrinsic molecular properties favoring membrane folding away from a flat configuration. In this paper, we investigate the structural and mechanical properties of the lipidic components of PSMs using lipid-based models as well as bovine extracts affected by the addition of pathological cardiolipin levels. Specifically, using a combination of optical and atomic force microscopy with a surface force apparatus, we demonstrate that cardiolipin strongly promotes hemifusion of PSMs and that these local membrane contacts propagate at larger scales, resulting in global stiffening of lung membranes.
Collapse
Affiliation(s)
- Marilyn Porras-Gómez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Tooba Shoaib
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Dylan Steer
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Rosa Maria Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Cecília Leal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
3
|
Zec N, Mangiapia G, Hendry AC, Barker R, Koutsioubas A, Frielinghaus H, Campana M, Ortega-Roldan JL, Busch S, Moulin JF. Mutually Beneficial Combination of Molecular Dynamics Computer Simulations and Scattering Experiments. MEMBRANES 2021; 11:507. [PMID: 34357157 PMCID: PMC8304056 DOI: 10.3390/membranes11070507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
We showcase the combination of experimental neutron scattering data and molecular dynamics (MD) simulations for exemplary phospholipid membrane systems. Neutron and X-ray reflectometry and small-angle scattering measurements are determined by the scattering length density profile in real space, but it is not usually possible to retrieve this profile unambiguously from the data alone. MD simulations predict these density profiles, but they require experimental control. Both issues can be addressed simultaneously by cross-validating scattering data and MD results. The strengths and weaknesses of each technique are discussed in detail with the aim of optimizing the opportunities provided by this combination.
Collapse
Affiliation(s)
- Nebojša Zec
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| | - Gaetano Mangiapia
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| | - Alex C. Hendry
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (A.C.H.); (J.L.O.-R.)
| | - Robert Barker
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK;
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (A.K.); (H.F.)
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (A.K.); (H.F.)
| | - Mario Campana
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot OX11 0QX, UK;
| | | | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| | - Jean-François Moulin
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| |
Collapse
|
4
|
Scheu M, Komorowski K, Shen C, Salditt T. A stalk fluid forming above the transition from the lamellar to the rhombohedral phase of lipid membranes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:265-278. [PMID: 33590276 PMCID: PMC8071804 DOI: 10.1007/s00249-020-01493-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 02/01/2023]
Abstract
In this work, we present evidence for the formation of transient stalks in aligned multilamellar stacks of lipid membranes. Just above the phase transition from the fluid ([Formula: see text]) lamellar phase to the rhombohedral phase (R), where lipid stalks crystallize on a super-lattice within the lipid bilayer stack, we observe a characteristic scattering pattern, which can be attributed to a correlated fluid of transient stalks. Excess (off-axis) diffuse scattering with a broad modulation around the position which later transforms to a sharp peak of the rhombohedral lattice, gives evidence for the stalk fluid forming as a pre-critical effect, reminiscent of critical phenomena in the vicinity of second-order phase transitions. Using high-resolution off-specular X-ray scattering and lineshape analysis we show that this pre-critical regime is accompanied by an anomalous elasticity behavior of the membrane stack, in particular an increase in inter-bilayer compressibility, i.e., a decrease in the compression modulus.
Collapse
Affiliation(s)
- Max Scheu
- Institute for X-ray Physics, Friedrich-Hund-Platz 1, 37073, Göttingen, Germany
| | - Karlo Komorowski
- Institute for X-ray Physics, Friedrich-Hund-Platz 1, 37073, Göttingen, Germany
| | - Chen Shen
- DESY Photon Science, Notkestr.85, 22607, Hamburg, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Friedrich-Hund-Platz 1, 37073, Göttingen, Germany.
| |
Collapse
|
5
|
Self-assembly of supported lipid multi-bilayers investigated by time-resolved X-ray diffraction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183437. [PMID: 32783887 DOI: 10.1016/j.bbamem.2020.183437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022]
Abstract
Supported lipid multi-bilayers or bilayer stacks are an important model membrane system, particularly suitable for surface-sensitive characterization methods like X-ray and neutron diffraction. Spreading organic solution (sOS) is one of the most widely used protocols for the preparation of lipid multi-bilayers. Despite its great popularity, the self-assembly mechanism of the bilayers is not yet fully elucidated, limiting further improvements of this protocol. In order to solve this problem, we investigated the formation process of lipid bilayers in the sOS protocol, using in-situ time-resolved X-ray diffraction, complemented by X-ray reflectivity and molecular dynamics simulation. Results reveal a simultaneous self-assembly scheme for both cholesterol-free and cholesterol-containing bilayers, with one bilayer phase forming at the surface and the other forming in the solution. The solution phase gradually transforms into the surface phase, yielding clean single phase in the end.
Collapse
|
6
|
Bruininks BM, Souza PC, Ingolfsson H, Marrink SJ. A molecular view on the escape of lipoplexed DNA from the endosome. eLife 2020; 9:52012. [PMID: 32297853 PMCID: PMC7170654 DOI: 10.7554/elife.52012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
The use of non-viral vectors for in vivo gene therapy could drastically increase safety, whilst reducing the cost of preparing the vectors. A promising approach to non-viral vectors makes use of DNA/cationic liposome complexes (lipoplexes) to deliver the genetic material. Here we use coarse-grained molecular dynamics simulations to investigate the molecular mechanism underlying efficient DNA transfer from lipoplexes. Our computational fusion experiments of lipoplexes with endosomal membrane models show two distinct modes of transfection: parallel and perpendicular. In the parallel fusion pathway, DNA aligns with the membrane surface, showing very quick release of genetic material shortly after the initial fusion pore is formed. The perpendicular pathway also leads to transfection, but release is slower. We further show that the composition and size of the lipoplex, as well as the lipid composition of the endosomal membrane, have a significant impact on fusion efficiency in our models.
Collapse
Affiliation(s)
- Bart Mh Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, Netherlands
| | - Paulo Ct Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, Netherlands
| | - Helgi Ingolfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, Netherlands
| |
Collapse
|
7
|
Komorowski K, Salditt A, Xu Y, Yavuz H, Brennich M, Jahn R, Salditt T. Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering. Biophys J 2019; 114:1908-1920. [PMID: 29694868 PMCID: PMC5936998 DOI: 10.1016/j.bpj.2018.02.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 12/02/2022] Open
Abstract
We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca2+ or Mg2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering.
Collapse
Affiliation(s)
- Karlo Komorowski
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany; Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Annalena Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Yihui Xu
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Halenur Yavuz
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Martha Brennich
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
8
|
Seiwert D, Witt H, Ritz S, Janshoff A, Paulsen H. The Nonbilayer Lipid MGDG and the Major Light-Harvesting Complex (LHCII) Promote Membrane Stacking in Supported Lipid Bilayers. Biochemistry 2018; 57:2278-2288. [PMID: 29577715 DOI: 10.1021/acs.biochem.8b00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thylakoid membrane of algae and land plants is characterized by its intricate architecture, comprising tightly appressed membrane stacks termed grana. The contributions of individual components to grana stack formation are not yet fully elucidated. As an in vitro model, we use supported lipid bilayers made of thylakoid lipid mixtures to study the effect of major light-harvesting complex (LHCII), different lipids, and ions on membrane stacking, seen as elevated structures forming on top of the planar membrane surface in the presence of LHCII protein. These structures were examined by confocal laser scanning microscopy, atomic force microscopy, and fluorescence recovery after photobleaching, revealing multilamellar LHCII-membrane stacks composed of connected lipid bilayers. Both native-like and non-native interactions between the LHCII complexes may contribute to membrane appression in the supported bilayers. However, applying in vivo-like salt conditions to uncharged glycolipid membranes drastically increased the level of stack formation due to enforced LHCII-LHCII interactions, which is in line with recent crystallographic and cryo-electron microscopic data [Wan, T., et al. (2014) Mol. Plant 7, 916-919; Albanese, P., et al. (2017) Sci. Rep. 7, 10067-10083]. Furthermore, we observed the nonbilayer lipid MGDG to strongly promote membrane stacking, pointing to the long-term proposed function of MGDG in stabilizing the inner membrane leaflet of highly curved margins in the periphery of each grana disc because of its negative intrinsic curvature [Murphy, D. J. (1982) FEBS Lett. 150, 19-26].
Collapse
Affiliation(s)
- Dennis Seiwert
- Institute of Molecular Physiology , Johannes Gutenberg University Mainz , Johannes-von-Müller-Weg 6 , 55128 Mainz , Germany
| | - Hannes Witt
- Institute of Physical Chemistry , University of Goettingen , Tammannstrasse 6 , 37077 Goettingen , Germany
| | - Sandra Ritz
- Microscopy Core Facility , Institute of Molecular Biology , Ackermannweg 4 , 55128 Mainz , Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry , University of Goettingen , Tammannstrasse 6 , 37077 Goettingen , Germany
| | - Harald Paulsen
- Institute of Molecular Physiology , Johannes Gutenberg University Mainz , Johannes-von-Müller-Weg 6 , 55128 Mainz , Germany
| |
Collapse
|
9
|
Xu Y, Kuhlmann J, Brennich M, Komorowski K, Jahn R, Steinem C, Salditt T. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:566-578. [PMID: 29106973 DOI: 10.1016/j.bbamem.2017.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins.
Collapse
Affiliation(s)
- Yihui Xu
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jan Kuhlmann
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Martha Brennich
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 90181, Grenoble 38042, France
| | - Karlo Komorowski
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen 37077, Germany
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
10
|
X-ray structural investigations of fusion intermediates: Lipid model systems and beyond. Semin Cell Dev Biol 2016; 60:65-77. [DOI: 10.1016/j.semcdb.2016.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 11/20/2022]
|
11
|
Kawamoto S, Klein ML, Shinoda W. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism. J Chem Phys 2016; 143:243112. [PMID: 26723597 DOI: 10.1063/1.4933087] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.
Collapse
Affiliation(s)
- Shuhei Kawamoto
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, SERC Building 1925 North 12th Street, Philadelphia, Pennsylvania 19122, USA
| | - Wataru Shinoda
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
12
|
Fan ZA, Tsang KY, Chen SH, Chen YF. Revisit the Correlation between the Elastic Mechanics and Fusion of Lipid Membranes. Sci Rep 2016; 6:31470. [PMID: 27534263 PMCID: PMC4989284 DOI: 10.1038/srep31470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/18/2016] [Indexed: 01/10/2023] Open
Abstract
Membrane fusion is a vital process in key cellular events. The fusion capability of a membrane depends on its elastic properties and varies with its lipid composition. It is believed that as the composition varies, the consequent change in C0 (monolayer spontaneous curvature) is the major factor dictating fusion, owing to the associated variation in GEs (elastic energies) of the fusion intermediates (e.g. stalk). By exploring the correlations among fusion, C0 and Kcp (monolayer bending modulus), we revisit this long-held belief and re-examine the fusogenic contributions of some relevant factors. We observe that not only C0 but also Kcp variations affect fusion, with depression in Kcp leading to suppression in fusion. Variations in GEs and inter-membrane interactions cannot account for the Kcp-fusion correlation; fusion is suppressed even as the GEs decrease with Kcp, indicating the presence of factor(s) with fusogenic importance overtaking that of GE. Furthermore, analyses find that the C0 influence on fusion is effected via modulating GE of the pre-fusion planar membrane, rather than stalk. The results support a recent proposition calling for a paradigm shift from the conventional view of fusion and may reshape our understanding to the roles of fusogenic proteins in regulating cellular fusion machineries.
Collapse
Affiliation(s)
- Zih-An Fan
- Department of Chemical and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan
| | - Kuan-Yu Tsang
- Department of Chemical and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan
| | - Si-Han Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan
| | - Yi-Fan Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan
| |
Collapse
|