1
|
Balleza D. The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides. Antibiotics (Basel) 2025; 14:422. [PMID: 40426489 PMCID: PMC12108317 DOI: 10.3390/antibiotics14050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable α-helical structure. The conformational dynamics of these pore-forming peptides, α-PFP, is, thus, encoded in their amino acid sequence, which also predetermines their intrinsic flexibility. However, although the role of flexibility is widely recognized as fundamental in their bioactivity, it is still unclear whether this parameter is indeed decisive, as there are reports favoring the view of highly disruptive flexible peptides and others where relative rigidity also predetermines high rates of permeability across membranes. In this review we discuss in depth all those aspects linked to the conformational dynamics of these small biomolecules and which depend on the composition, sequence and dynamic performance both in aqueous phase and in close interaction with phospholipids. In addition, evidence is provided for the contribution of the known carboxyamidation in some well-studied α-PFPs, which are preferentially associated with sequences intrinsically more rigid than those not amidated and generally more flexible than the former. Taken together, this information is of great relevance for the optimization of new antibiotic peptides.
Collapse
Affiliation(s)
- Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz 91897, Mexico
| |
Collapse
|
2
|
Coelho NCS, Portuondo DLF, Lima J, Velásquez AMA, Valente V, Carlos IZ, Cilli EM, Graminha MAS. Peptide Dimerization as a Strategy for the Development of Antileishmanial Compounds. Molecules 2024; 29:5170. [PMID: 39519812 PMCID: PMC11547375 DOI: 10.3390/molecules29215170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Leishmaniasis is recognized as a serious public health problem in Brazil and around the world. The limited availability of drugs for treatment, added to the diversity of side effects and the emergence of resistant strains, shows the importance of research focused on the development of new molecules, thus contributing to treatments. Therefore, this work aimed to identify leishmanicidal compounds using a peptide dimerization strategy, as well as to understand their mechanisms of action. Herein, it was demonstrated that the dimerization of the peptide TSHa, (TSHa)2K, presented higher potency and selectivity than its monomeric form when evaluated against Leishmania mexicana and Leishmania amazonensis. Furthermore, these compounds are capable of inhibiting the parasite cysteine protease, an important target explored for the development of antileishmanial compounds, as well as to selectively interact with the parasite membranes, as demonstrated by flow cytometry, permeabilization, and fluorescence microscopy experiments. Based on this, the identified molecules are candidates for use in in vivo studies with animal models to combat leishmaniasis.
Collapse
Affiliation(s)
- Natália C. S. Coelho
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Deivys L. F. Portuondo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Jhonatan Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Angela M. A. Velásquez
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Valéria Valente
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Iracilda Z. Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Eduardo M. Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Márcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| |
Collapse
|
3
|
Fong-Coronado PA, Ramirez V, Quintero-Hernández V, Balleza D. A Critical Review of Short Antimicrobial Peptides from Scorpion Venoms, Their Physicochemical Attributes, and Potential for the Development of New Drugs. J Membr Biol 2024; 257:165-205. [PMID: 38990274 PMCID: PMC11289363 DOI: 10.1007/s00232-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
Scorpion venoms have proven to be excellent sources of antimicrobial agents. However, although many of them have been functionally characterized, they remain underutilized as pharmacological agents, despite their evident therapeutic potential. In this review, we discuss the physicochemical properties of short scorpion venom antimicrobial peptides (ssAMPs). Being generally short (13-25 aa) and amidated, their proven antimicrobial activity is generally explained by parameters such as their net charge, the hydrophobic moment, or the degree of helicity. However, for a complete understanding of their biological activities, also considering the properties of the target membranes is of great relevance. Here, with an extensive analysis of the physicochemical, structural, and thermodynamic parameters associated with these biomolecules, we propose a theoretical framework for the rational design of new antimicrobial drugs. Through a comparison of these physicochemical properties with the bioactivity of ssAMPs in pathogenic bacteria such as Staphylococcus aureus or Acinetobacter baumannii, it is evident that in addition to the net charge, the hydrophobic moment, electrostatic energy, or intrinsic flexibility are determining parameters to understand their performance. Although the correlation between these parameters is very complex, the consensus of our analysis suggests that there is a delicate balance between them and that modifying one affects the rest. Understanding the contribution of lipid composition to their bioactivities is also underestimated, which suggests that for each peptide, there is a physiological context to consider for the rational design of new drugs.
Collapse
Affiliation(s)
- Pedro Alejandro Fong-Coronado
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | - Verónica Ramirez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (FCQ-BUAP), Ciudad Universitaria, Puebla, México
| | | | - Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, México.
| |
Collapse
|
4
|
Silva ML, Carneiro MN, Cavalcante RMB, Guerrero JAP, Fontenelle ROS, Lorenzón EN, Cilli EM, Carneiro VA. K-aurein: A notable aurein 1.2-derived peptide that modulates Candida albicans filamentation and reduces biofilm biomass. Amino Acids 2023; 55:1003-1012. [PMID: 37442853 DOI: 10.1007/s00726-023-03288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Candida albicans is considered one of the most important opportunistic fungi due to the large arsenal of virulence factors that help throughout the progress of the infection. In this sense, antimicrobial peptides (AMPs) appear as an alternative, with great antifungal action. Among these, aurein 1.2 has been widely explored, becoming the basis for the discovery of new AMPs, such as K-aurein (K-au). Thus, this study evaluated the anti-C. albicans potential of K-au against virulence factors, planktonic growth, and biofilm formation of clinical isolates. Firstly, K-au antifungal activity was determined by the microdilution method and time-kill curve. The inhibition of hydrolytic enzyme secretion (proteinase, phospholipase, and hemolysin) and germ tube formation was tested. Then, the antibiofilm potential of K-au was verified through biomass quantification and scanning electron microscopy (SEM). All tests were compared with the classical antifungal drug, amphotericin B (AmB). The outcomes showed fungicidal action of K-au at 62.50 µg mL-1 for all isolates, with a time of action around 150-180 min, determined by the time-kill curve. K-au-treated cells decreased by around 40% of the germinative tube compared to the control. Additionally, K-au inhibited the biofilm formation by more than 90% compared to AmB and the control group. SEM images show apparent cellular disaggregation without the formation of filamentous structures. Therefore, the findings suggest a promising anti-C. albicans effect of K-au due to its fungicidal activity against planktonic cells, or its ability to inhibit important virulence factors like germ tube and biofilm formation. Thus, this peptide could be explored as a useful compound against C. albicans-related infection.
Collapse
Affiliation(s)
- Maria Laína Silva
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | - Maria Nágila Carneiro
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | - Rafaela Mesquita Bastos Cavalcante
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | - Jesús Alberto Pérez Guerrero
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | | | | | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Estadual University of São Paulo-UNESP, Araraquara, 14800-900, Brazil
| | - Victor Alves Carneiro
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil.
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA-UNINTA, Sobral, 62050-100, Brazil.
| |
Collapse
|
5
|
Qian S, Zolnierczuk PA. Interaction of a Short Antimicrobial Peptide on Charged Lipid Bilayer: A Case Study on Aurein 1.2 Peptide. BBA ADVANCES 2022; 2:100045. [PMID: 37082600 PMCID: PMC10074906 DOI: 10.1016/j.bbadva.2022.100045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Aurein 1.2 (aurein) is a short but active α-helical antimicrobial peptide discovered in Australian tree frogs (Litoria aurea). It shows inhibition on a broad spectrum of bacteria and cancer cells. With well-defined helicity, amphipathicity, and cationic charges, it readily binds to membranes and causes membrane change and disruption. This study provides details on how aurein interacts with charged lipid membranes by using neutron membrane diffraction (NMD) and neutron spin echo (NSE) spectroscopy on complex peptide-membrane systems. NMD provides higher resolution lipid bilayer structures than solution scattering. NMD revealed the peptide is mostly associated in the lipid headgroup region. Even at moderately high concentrations (e.g., peptide:lipid ratio of 1:30), aurein is located at the acyl chain-headgroup region without deep penetration into the hydrophobic acyl chain. However, it does reduce the elasticity of the membrane at that concentration, which was corroborated by the NSE results. Furthermore, NSE shows that aurein first softens the membrane, like many other α-helical peptides at low concentration, but then makes the membrane much more rigid, even without membrane pore formation. Combining our previous studies, the evidence shows that aurein at relatively low concentrations still modifies lipid distribution significantly and can cause membrane thinning and lateral segregation of charged lipids. At the same time, the membrane's mechanical properties are modified with much slower lipid diffusion. This suggests that aurein can attack the microbial membrane without the need to form membrane pores or disintegrate membranes; instead, it promotes the formation of domains at low concentration.
Collapse
Affiliation(s)
- Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
- Corresponding author.
| | - Piotr A. Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| |
Collapse
|
6
|
Fang Y, Zhu Y, Li L, Lai Z, Dong N, Shan A. Biomaterial-Interrelated Bacterial Sweeper: Simplified Self-Assembled Octapeptides with Double-Layered Trp Zipper Induces Membrane Destabilization and Bacterial Apoptosis-Like Death. SMALL METHODS 2021; 5:e2101304. [PMID: 34928043 DOI: 10.1002/smtd.202101304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Treatment of microbial-associated infections continues to be hampered by impaired antibacterial efficiency and the variability in nanomedicines. Herein, an octapeptide library with a double-layered zipper, constructed via a systematic arrangement, simplifying the sequence and optimizing the structure (diverse motifs including surfactant-like, central-bola, and end-bola), is assessed in terms of biological efficiency and self-assembly properties. The results indicate that peptides with double-layered Trp zipper exhibit significant antimicrobial activity. Extracellularly, affinity interactions between micelles and bacteria induce the lateral flow of the membrane and electric potential perturbation. Intracellularly, lead molecules cause apoptosis-like death, as indicated by excessive accumulation of reactive oxygen species, generation of a DNA ladder, and upregulation of mazEF expression. Among them, RW-1 performs the best in vivo and in vitro. The intersecting combination of Trp zipper and surfactants possesses overwhelming superiority with respect to bacterial sweepers (therapeutic index [TI] = 52.89), nanostructures (micelles), and bacterial damage compared to RW-2 (central-bola) and RW-3 (end-bola). These findings confirm that the combination of double-layered Trp zipper and surfactants has potential for application as a combined motif for combating microbial infection and connects the vast gap between antimicrobial peptides and self-assembly, such as Jacob's ladder.
Collapse
Affiliation(s)
- Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yunhui Zhu
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Ling Li
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Zhenheng Lai
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
7
|
Li W, Separovic F, O'Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 2021; 50:4932-4973. [PMID: 33710195 DOI: 10.1039/d0cs01026j] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.
Collapse
Affiliation(s)
- Wenyi Li
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, VIC 3010, Australia and School of Chemistry, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
8
|
Santos-Filho NA, de Freitas LM, Santos CTD, Piccoli JP, Fontana CR, Fusco-Almeida AM, Cilli EM. Understanding the mechanism of action of peptide (p-BthTX-I) 2 derived from C-terminal region of phospholipase A2 (PLA 2)-like bothropstoxin-I on Gram-positive and Gram-negative bacteria. Toxicon 2021; 196:44-55. [PMID: 33781796 DOI: 10.1016/j.toxicon.2021.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Based on the antimicrobial activity of bothropstoxin-I (BthTX-I) and on the premise that a C-terminal peptide of Lys49 myotoxin can reproduce the antimicrobial activity of the parent protein, we aimed to study the mechanism of action of a peptide derived from the C-terminal region of the myotoxin BthTX-I [(p-BthTX-I)2, sequence: KKYRYHLKPFCKK, disulfide-linked dimer] against Gram-positive and Gram-negative bacteria. Fluorescence quenching technique showed that the carboxyfluorescein labeled-peptide [CF-(p-BthTX-I)2] when incubated with E. coli displayed a superior penetration activity than when incubated with S. aureus. Cell death induced by the peptide (p-BthTX-I)2 showed a loss of membrane integrity in E. coli and S. aureus; however, the mechanisms of cell death were different, characterized by the presence of necrosis-like and apoptosis-like deaths, respectively. Scanning electron microscopy studies in E. coli and S. aureus showed morphological changes in the cells, with superficial deformities, appearance of wrinkles and bubbles, and formation of vesicles. Our results demonstrate that the mechanism of action of the peptide (p-BthTX-I)2 is different in Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Knowledge of the mechanism of action of these peptides is important, since they are promising prototypes for new antimicrobial drugs.
Collapse
Affiliation(s)
- Norival Alves Santos-Filho
- Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil; Campus Experimental de Registro, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil.
| | - Laura Marise de Freitas
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil; Instituto de Química, Depto de Bioquímica, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Julia Pinto Piccoli
- Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Carla Raquel Fontana
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Eduardo Maffud Cilli
- Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
9
|
Domingues TM, Perez KR, Riske KA. Revealing the Mode of Action of Halictine Antimicrobial Peptides: A Comprehensive Study with Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5145-5155. [PMID: 32336099 DOI: 10.1021/acs.langmuir.0c00282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antimicrobial peptides are innate host defense molecules with the ability to kill pathogens. They have been widely studied for their membrane lytic activity and their potential to overcome the ever-increasing threat of antimicrobial resistance against conventional antibiotics. Here, we focus on two halictines, antimicrobial peptides first obtained from the venom of the eusocial bee Halictus sexcinctus. The peptides, HAL-1 and HAL-2, are cationic (with +3 and +4 charges, respectively) and amphipathic, have 12 amino acid residues, and exhibit high biological activity. For this study, the mechanism of action of HAL-1 and HAL-2 was studied in detail using large and giant unilamellar vesicles composed of pure palmitoyl oleoyl phosphatidyl choline (POPC) and a mixture of POPC and the anionic lipid palmitoyl oleoyl phosphatidyl glycerol (POPG) as biomimetic models of the membranes of eukaryotes and microorganisms, respectively. A set of complementary techniques was put forward: carboxyfluorescein leakage assay, phase contrast optical microscopy, ζ-potential, static and dynamic light scattering, fluorescence and circular dichroism spectroscopies, and isothermal titration calorimetry. The results show that both halictines are able to interact strongly with anionic membranes: The interaction is exothermic and accompanied by structuring of the peptides as an α-helix and deep insertion into the membrane causing substantial membrane permeabilization at very low peptide/lipid molar ratios. Extensive vesicle aggregation was detected only at a high peptide concentration. On the other hand, the interaction of the halictines with POPC is significantly milder. Yet, the peptides were able to permeabilize the POPC membranes to some extent. Comparing both peptides, HAL-1 showed a somewhat stronger effect on model membranes. Fits to the data revealed apparent binding constants on the order of 103-104 M-1 for anionic membranes and 1 order of magnitude lower for zwitterionic bilayers. When lytic activity results were compared at the same bound peptide/lipid ratio, the halictines exhibited a higher activity toward zwitterionic membranes. As novel peptides, small and with powerful activity, these halictines are potential candidates for becoming antimicrobial agents.
Collapse
Affiliation(s)
- Tatiana M Domingues
- Departamento de Biofı́sica, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil
| | - Katia R Perez
- Departamento de Biofı́sica, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil
| | - Karin A Riske
- Departamento de Biofı́sica, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil
| |
Collapse
|
10
|
Stulz A, Breitsamer M, Winter G, Heerklotz H. Primary and Secondary Binding of Exenatide to Liposomes. Biophys J 2020; 118:600-611. [PMID: 31972156 PMCID: PMC7002983 DOI: 10.1016/j.bpj.2019.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
The interactions of exenatide, a Trp-containing peptide used as a drug to treat diabetes, with liposomes were studied by isothermal titration calorimetry (ITC), tryptophan (Trp) fluorescence, and microscale thermophoresis measurements. The results are not only important for better understanding the release of this specific drug from vesicular phospholipid gel formulations but describe a general scenario as described before for various systems. This study introduces a model to fit these data on the basis of primary and secondary peptide-lipid interactions. Finally, resolving apparent inconsistencies between different methods aids the design and critical interpretation of binding experiments in general. Our results show that the net cationic exenatide adsorbs electrostatically to liposomes containing anionic diacyl phosphatidylglycerol lipids (PG); however, the ITC data could not properly be fitted by any established model. The combination of electrostatic adsorption of exenatide to the membrane surface and its self-association (Kd = 46 μM) suggested the possibility of secondary binding of peptide to the first, primarily (i.e., lipid-) bound peptide layer. A global fit of the ITC data validated this model and suggested one peptide to bind primarily per five PG molecules with a Kd ≈ 0.2 μM for PC/PG 1:1 and 0.6 μM for PC/PG 7:3 liposomes. Secondary binding shows a weaker affinity and a less exothermic or even endothermic enthalpy change. Depending on the concentration of liposomes, secondary binding may also lead to liposomal aggregation as detected by dynamic light-scattering measurements. ITC quantifies primary and secondary binding separately, whereas microscale thermophoresis and Trp fluorescence represent a summary or average of both effects, possibly with the fluorescence data showing somewhat greater weighting of primary binding. Systems with secondary peptide-peptide association within the membrane are mathematically analogous to the adsorption discussed here.
Collapse
Affiliation(s)
- Anja Stulz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Michaela Breitsamer
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gerhard Winter
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Almeida MM, Perez KR, Faig A, Uhrich KE, Riske KA. Location of the Positive Charges in Cationic Amphiphiles Modulates Their Mechanism of Action against Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14117-14123. [PMID: 31589461 DOI: 10.1021/acs.langmuir.9b02606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic cationic amphiphiles (CAms) with physicochemical properties similar to antimicrobial peptides are promising molecules in the search for alternative antibiotics to which pathogens cannot easily develop resistance. Here, we investigate two types of CAms based on tartaric acid and containing two hydrophobic chains (of 7 or 11 carbons) and two positive charges, located either at the end of the acyl chains (bola-like, B7 and B11) or at the tartaric acid backbone (gemini-like, G7 and G11). The interaction of the CAms with biomimetic membrane models (anionic and neutral liposomes) was studied with zeta potential and dynamic light scattering measurements, isothermal titration calorimetry, and a fluorescent-based leakage assay. We show that the type of molecule determines the mechanism of action of the CAms. Gemini-like molecules (G7 and G11) interact mainly via electrostatics (exothermic process) and reside in the external vesicle leaflet, altering substantially the vesicle surface potential but not causing significant membrane lysis. On the other hand, the interaction of bola-like CAms (B7 and B11) is endothermic and thus entropy-driven, and these molecules reach both membrane leaflets and cause substantial membrane permeabilization, likely after clustering of anionic lipids. The lytic ability is clearly higher against anionic membranes as compared with neutral membranes. Within each class of molecule, longer alkyl chains (i.e., B11 and G11) exhibit higher affinity and lytic ability. Overall, the molecule B11 exhibits a high potential as antimicrobial agent, since it has a high membrane affinity and causes substantial membrane permeabilization.
Collapse
Affiliation(s)
- Marcio M Almeida
- Departament of Biophysics , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Katia R Perez
- Departament of Biophysics , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Allison Faig
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Karin A Riske
- Departament of Biophysics , Universidade Federal de São Paulo , São Paulo , Brazil
| |
Collapse
|
12
|
Lorenzon EN, Piccoli JP, Santos-Filho NA, Cilli EM. Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity. Protein Pept Lett 2019; 26:98-107. [PMID: 30605048 PMCID: PMC6416459 DOI: 10.2174/0929866526666190102125304] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 01/10/2023]
Abstract
Antimicrobial resistance is a global health problem with strong social and economic impacts. The development of new antimicrobial agents is considered an urgent challenge. In this regard, Antimicrobial Peptides (AMPs) appear to be novel candidates to overcome this problem. The mechanism of action of AMPs involves intracellular targets and membrane disruption. Although the exact mechanism of action of AMPs remains controversial, most AMPs act through membrane disruption of the target cell. Several strategies have been used to improve AMP activity, such as peptide dimerization. In this review, we focus on AMP dimerization, showing many examples of dimerized peptides and their effects on biological activity. Although more studies are necessary to elucidate the relationship between peptide properties and the dimerization effect on antimicrobial activity, dimerization constitutes a promising strategy to improve the effectiveness of AMPs.
Collapse
Affiliation(s)
- Esteban N Lorenzon
- Unidade Academica Especial da Saude, Universidade Federal de Jatai, Jatai-GO, Brazil
| | - Julia P Piccoli
- Instituto de Quimica, UNESP- Universidade Estadual Paulista, Araraquara-SP, Brazil
| | - Norival A Santos-Filho
- UNESP- Universidade Estadual Paulista, Campus Experimental de Registro, Registro, Sao Paulo, Brazil
| | - Eduardo M Cilli
- Instituto de Quimica, UNESP- Universidade Estadual Paulista, Araraquara-SP, Brazil
| |
Collapse
|
13
|
Antimicrobial activity and mechanism of action of a novel peptide present in the ecdysis process of centipede Scolopendra subspinipes subspinipes. Sci Rep 2019; 9:13631. [PMID: 31541146 PMCID: PMC6754450 DOI: 10.1038/s41598-019-50061-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
One of the most important cellular events in arthropods is the moulting of the cuticle (ecdysis). This process allows them to grow until they reach sexual maturity. Nevertheless, during this stage, the animals are highly exposed to pathogens. Consequently, it can be assumed that arthropods counter with an efficient anti-infective strategy that facilitates their survival during ecdysis. Herein, we characterized a novel antimicrobial peptide called Pinipesin, present in the exuviae extract of the centipede Scolopendra subspinipes subspinipes. The antimicrobial activity of Pinipesin was tested. The haemolytic activity of the peptide was evaluated and its possible mechanism of action was investigated. Identification was carried out by mass spectrometry analysis. Pinipesin displayed potent antimicrobial effects against different microorganisms and showed low haemolytic effects against human erythrocytes at high concentrations. It has a monoisotopic mass of 1213.57 Da, its sequence exhibited high similarity with some cuticular proteins, and it might act intracellularly by interfering with protein synthesis. Our data suggest that Pinipesin might be part of a prophylactic immune response during the ecdysis process of centipedes. Therefore, it is a promising candidate for the development of non-conventional antibiotics that could help fight infectious diseases and represents an exciting discovery for this taxon.
Collapse
|
14
|
Sharma VK, Qian S. Effect of an Antimicrobial Peptide on Lateral Segregation of Lipids: A Structure and Dynamics Study by Neutron Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4152-4160. [PMID: 30720281 DOI: 10.1021/acs.langmuir.8b04158] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides are one of the most promising classes of antibiotic agents for drug-resistant bacteria. Although the mechanisms of their action are not fully understood, many of them are found to interact with the target bacterial membrane, causing different degrees of perturbations. In this work, we directly observed that a short peptide disturbs membranes by inducing lateral segregation of lipids without forming pores or destroying membranes. Aurein 1.2 (aurein) is a 13-amino acid antimicrobial peptide discovered in the frog Litoria genus that exhibits high antibiotic efficacy. Being cationic and amphiphilic, it binds spontaneously to a membrane surface with or without charged lipids. With a small-angle neutron scattering contrast matching technique that is sensitive to lateral heterogeneity in membrane, we found that aurein induces significant lateral segregation in an initially uniform lipid bilayer composed of zwitterionic lipid and anionic lipid. More intriguingly, the lateral segregation was similar to the domain formed below the order-disorder phase-transition temperature. To our knowledge, this is the first direct observation of lateral segregation caused by a peptide. With quasi-elastic neutron scattering, we indeed found that the lipid lateral motion in the fluid phase was reduced even at low aurein concentrations. The reduced lateral mobility makes the membrane prone to additional stresses and defects that change membrane properties and impede membrane-related biological processes. Our results provide insights into how a short peptide kills bacteria at low concentrations without forming pores or destroying membranes. With a better understanding of the interaction, more effective and economically antimicrobial peptides may be designed.
Collapse
Affiliation(s)
- Veerendra K Sharma
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - Shuo Qian
- Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| |
Collapse
|
15
|
Binding of norharmane with RNA reveals two thermodynamically different binding modes with opposing heat capacity changes. J Colloid Interface Sci 2019; 538:587-596. [DOI: 10.1016/j.jcis.2018.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 02/01/2023]
|
16
|
Lorenzón EN, Nobre TM, Caseli L, Cilli EM, da Hora GC, Soares TA, Oliveira ON. The “pre-assembled state” of magainin 2 lysine-linked dimer determines its enhanced antimicrobial activity. Colloids Surf B Biointerfaces 2018; 167:432-440. [DOI: 10.1016/j.colsurfb.2018.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
|
17
|
Zhu S, Sani M, Separovic F. Interaction of cationic antimicrobial peptides from Australian frogs with lipid membranes. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shiying Zhu
- School of ChemistryBio21 Institute, University of MelbourneMelbourne VIC3010 Australia
| | - Marc‐Antoine Sani
- School of ChemistryBio21 Institute, University of MelbourneMelbourne VIC3010 Australia
| | - Frances Separovic
- School of ChemistryBio21 Institute, University of MelbourneMelbourne VIC3010 Australia
| |
Collapse
|
18
|
Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:347-356. [DOI: 10.1016/j.bbamem.2017.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022]
|
19
|
Abstract
Aurein 1.2 is a potent antimicrobial peptide secreted by frog Litoria aurea. As a short membrane-active peptide with only 13 amino acids in sequence, it has been found to be residing on the surface of lipid bilayer and permeabilizing bacterial membranes at high concentration. However, the detail at the molecular level is largely unknown. In this study, we investigated the action of Aurein 1.2 in charged lipid bilayers composed of DMPC/DMPG. Oriented Circular Dichroism results showed that the peptide was on the surface of lipid bilayer regardless of the charged lipid ratio. Only at a very high peptide-to-lipid ratio (~1/10), the peptide became perpendicular to the bilayer, however no pore was detected by neutron in-plane scattering. To further understand how it interacted with charged lipid bilayers, we employed Small Angle Neutron Scattering to probe lipid distribution across bilayer leaflets in lipid vesicles. The results showed that Aurein 1.2 interacted strongly with negatively charged DMPG, causing strong asymmetry in lipid bilayer. At high concentration, while the vesicles were intact, we found additional structure feature on the bilayer. Our study provides a glimpse into how Aurein 1.2 disturbs anionic lipid-containing membranes without pore formation.
Collapse
|