1
|
Huang-Zhu CA, Van Lehn RC. Influence of branched ligand architectures on nanoparticle interactions with lipid bilayers. NANOSCALE 2025; 17:1659-1672. [PMID: 39639763 DOI: 10.1039/d4nr03848g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Gold nanoparticles functionalized with organic cationic ligands have shown promise as biomedical agents, but their interactions with cellular membranes are not yet well-understood and design rules for ligands that promote desired cellular interactions are lacking. Past experimental studies have demonstrated that ligand lipophilicity, quantified by the ligand end group partition coefficient, can be used as a descriptor for predicting nano-bio interactions, but such a descriptor is incapable accounting for ligand architecture, such as chain branching. To probe the effects of ligand end group architecture on ligand-lipid interactions, we perform molecular dynamics simulations to investigate how ligand alkyl chain branching modulates the thermodynamics and mechanisms of nanoparticle adsorption to lipid membranes. We designed four pairs of 2 nm diameter gold nanoparticles where each pair had ligand end groups with similar lipophilicity but varying alkyl chain architecture (e.g., one long alkyl chain vs. two short chains) to isolate branching effects from lipophilicity. Free energy calculations and mechanistic insight revealed that alkyl end group branching can decrease free energy barriers for adsorption by disrupting ligand monolayer packing, increasing end group protrusions that lead to favorable ligand intercalation with minimal membrane disruption. Furthermore, increased end group branching promotes adsorption by increasing the exposure of nonpolar surface area to water, which results in a greater reduction of free energy upon exposure to the nonpolar core of the lipid bilayer. These results show that ligand chain architecture can modulate nano-bio interactions, limiting the exclusive use of lipophilicity as a descriptor to predict cellular uptake of surface-functionalized nanoparticles.
Collapse
Affiliation(s)
- Carlos A Huang-Zhu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
2
|
Penman R, Kariuki R, Shaw ZL, Dekiwadia C, Christofferson AJ, Bryant G, Vongsvivut J, Bryant SJ, Elbourne A. Gold nanoparticle adsorption alters the cell stiffness and cell wall bio-chemical landscape of Candida albicans fungal cells. J Colloid Interface Sci 2024; 654:390-404. [PMID: 37852025 DOI: 10.1016/j.jcis.2023.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
HYPOTHESIS Nanomaterials have been extensively investigated for a wide range of biomedical applications, including as antimicrobial agents, drug delivery vehicles, and diagnostic devices. The commonality between these biomedical applications is the necessity for the nanoparticle to interact with or pass through the cellular wall and membrane. Cell-nanomaterial interactions/uptake can occur in various ways, including adhering to the cell wall, forming aggregates on the surface, becoming absorbed within the cell wall itself, or transversing into the cell cytoplasm. These interactions are common to mammalian cells, bacteria, and yeast cells. This variety of interactions can cause changes to the integrity of the cell wall and the cell overall, but the precise mechanisms underpinning such interactions remain poorly understood. Here, we investigate the interaction between commonly investigated gold nanoparticles (AuNPs) and the cell wall/membrane of a model fungal cell to explore the general effects of interaction and uptake. EXPERIMENTS The interactions between 100 nm citrate-capped AuNPs and the cell wall of Candida albicans fungal cells were studied using a range of advanced microscopy techniques, including atomic force microscopy, confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, and synchrotron-FTIR micro-spectroscopy. FINDINGS In most cases, particles adhered on the cell surface, although instances of particles being up-taken into the cell cytoplasm and localised within the cell wall and membrane were also observed. There was a measurable increase in the stiffness of the fungal cell after AuNPs were introduced. Analysis of the synchrotron-FTIR data showed significant changes in spectral features associated with phospholipids and proteins after exposure to AuNPs.
Collapse
Affiliation(s)
- Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
3
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Kuru Cİ, Ulucan-Karnak F, Dayıoğlu B, Şahinler M, Şendemir A, Akgöl S. Affinity-Based Magnetic Nanoparticle Development for Cancer Stem Cell Isolation. Polymers (Basel) 2024; 16:196. [PMID: 38256995 PMCID: PMC10818538 DOI: 10.3390/polym16020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer is still the leading cause of death in the world despite the developing research and treatment opportunities. Failure of these treatments is generally associated with cancer stem cells (CSCs), which cause metastasis and are defined by their resistance to radio- and chemotherapy. Although known stem cell isolation methods are not sufficient for CSC isolation, they also bring a burden in terms of cost. The aim of this study is to develop a high-efficiency, low-cost, specific method for cancer stem cell isolation with magnetic functional nanoparticles. This study, unlike the stem cell isolation techniques (MACS, FACS) used today, was aimed to isolate cancer stem cells (separation of CD133+ cells) with nanoparticles with specific affinity and modification properties. For this purpose, affinity-based magnetic nanoparticles were synthesized and characterized by providing surface activity and chemical reactivity, as well as making surface modifications necessary for both lectin affinity and metal affinity interactions. In the other part of the study, synthesized and characterized functional polymeric magnetic nanoparticles were used for the isolation of CSC from the human osteosarcoma cancer cell line (SAOS-2) with a cancer stem cell subpopulation bearing the CD133 surface marker. The success and efficiency of separation after stem cell isolation were evaluated via the MACS and FACS methods. As a result, when the His-graft-mg-p(HEMA) nanoparticle was used at a concentration of 0.1 µg/mL for 106 and 108 cells, superior separation efficiency to commercial microbeads was obtained.
Collapse
Affiliation(s)
- Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Fulden Ulucan-Karnak
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Büşra Dayıoğlu
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Mert Şahinler
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Aylin Şendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| |
Collapse
|
5
|
Maneri AH, Varode SS, Maibam A, Ranjan P, Krishnamurty S, Joshi K. Quantum dot (Au n/Ag n, n = 3-8) capped single lipids: interactions and physicochemical properties. Phys Chem Chem Phys 2023; 25:22294-22303. [PMID: 37578075 DOI: 10.1039/d3cp01131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Realizing the potential of nano-hybrid biomaterials in various applications (nanoprobes to drug delivery), special attention has been devoted towards their synthesis and development. Nonetheless, several questions pertaining to the interface chemistry between the constituent entities (biomolecules and organic/inorganic part) of these hybrids, still remain unresolved. Keeping these unsolved issues in mind, the present theoretical investigation focuses on determining the electronic/physicochemical properties and interactions within gold and silver quantum dot-capped single lipid molecules. Quantum dots of varying sizes and shapes have been chosen and then coupled with lipid molecules (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt (DMPG)), at the choline/glycerol, carboxylate and phosphate site. It has been identified that Au Qds interact strongly as compared to Ag clusters. In addition to the type, the shape and size of the Qd also influences their attachment with lipids. Among various sites, the phosphate site provides a considerably stronger platform for the coupling of Qds. On the other hand, attachment at the choline site leads to significantly lower interaction energies. The trend noted in interaction energies coincides with the structure-electronic property analysis (interatomic bond distances, charge transfer, PO2- stretching frequencies), which further helps in deducing the nature of interactions. The molecular dynamics simulations performed on selected Qd-lipid complexes established that the Qd interacting with lipids at the phosphate site remains fairly stable at room temperature without undergoing fragmentation into individual components. On the other hand, at the choline site, the Qd-to-lipid coupling is unstable and therefore they experience disintegration at 300 K temperature. Additionally, a unique glycerol-to-phosphate site crossover is evidenced, which reaffirms that the phosphate site is selectively preferred by Qds for binding with lipid molecules.
Collapse
Affiliation(s)
- Asma H Maneri
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Shruti Suhas Varode
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- D. Y. Patil International University, Pune, India
| | - Ashakiran Maibam
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | | | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Krati Joshi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
| |
Collapse
|
6
|
Petretto E, Campomanes P, Vanni S. Development of a coarse-grained model for surface-functionalized gold nanoparticles: towards an accurate description of their aggregation behavior. SOFT MATTER 2023; 19:3290-3300. [PMID: 37092690 PMCID: PMC10170483 DOI: 10.1039/d3sm00094j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding the dispersion stability and aggregation propensity of self-assembled monolayer gold NPs at a molecular level is crucial to guide their rational design and to inform about the optimal surface functionalization for specific applications. To reach this goal, in silico modeling via coarse-grained (CG) molecular dynamics (MD) simulations is a fundamental tool to complement the information acquired from experimental studies since CG modeling allows to get a deep knowledge of the molecular interactions that take place at the nanoscale in this kind of systems. Unfortunately, current CG models of monolayer-protected AuNPs present several drawbacks that limit their accuracy in certain scenarios. We here develop a CG model that is fully compatible and extends the SPICA/SDK (Shinoda-DeVane-Klein) force field. Our model allows reproducing the behavior of AuNPs functionalized with hydrophobic as well as charged and more hydrophilic ligands. This model improves upon results obtained with previously derived CG force fields and successfully describes NPs aggregation and self-assembly in aqueous solution.
Collapse
Affiliation(s)
- Emanuele Petretto
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
7
|
Franco-Ulloa S, Riccardi L, Rimembrana F, Grottin E, Pini M, De Vivo M. NanoModeler CG: A Tool for Modeling and Engineering Functional Nanoparticles at a Coarse-Grained Resolution. J Chem Theory Comput 2023; 19:1582-1591. [PMID: 36795071 PMCID: PMC10018737 DOI: 10.1021/acs.jctc.2c01029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Functionalized metal nanoparticles (NPs) are macromolecular assemblies with a tunable physicochemical profile that makes them interesting for biotechnology, materials science, and energy conversion. In this regard, molecular simulations offer a way to scrutinize the structural and dynamical features of monolayer-protected NPs and their interactions with relevant matrices. Previously, we developed NanoModeler, a webserver that automates the preparation of functionalized gold NPs for atomistic molecular dynamics (MD) simulations. Here, we present NanoModeler CG (www.nanomodeler.it), a new release of NanoModeler that now also allows the building and parametrizing of monolayer-protected metal NPs at a coarse-grained (CG) resolution. This new version extends our original methodology to NPs of eight different core shapes, conformed by up to 800,000 beads and coated by eight different monolayer morphologies. The resulting topologies are compatible with the Martini force field but are easily extendable to any other set of parameters parsed by the user. Finally, we demonstrate NanoModeler CG's capabilities by reproducing experimental structural features of alkylthiolated NPs and rationalizing the brush-to-mushroom phase transition of PEGylated anionic NPs. By automating the construction and parametrization of functionalized NPs, the NanoModeler series offers a standardized way to computationally model monolayer-protected nanosized systems.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy.,Expert Analytics, Møllergata 8, Oslo 0179, Norway
| | - Laura Riccardi
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Federico Rimembrana
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Edwin Grottin
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Mattia Pini
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| |
Collapse
|
8
|
Biological Response of Human Cancer Cells to Ionizing Radiation in Combination with Gold Nanoparticles. Cancers (Basel) 2022; 14:cancers14205086. [PMID: 36291870 PMCID: PMC9600885 DOI: 10.3390/cancers14205086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Various types of metallic nanoparticles and especially gold nanoparticles (AuNPs) have been utilized in radiation studies to enhance the radiosensitization of cancer cells while minimizing detrimental effects in normal tissue. The aim of our study was to investigate the biological responses of various human cancer cells to gold-nanoparticle-induced radiosensitization. This was accomplished by using different AuNPs and several techniques in order to provide valuable insights regarding the multiple adverse biological effects, following ionizing radiation (IR) in combination with AuNPs. Insightful methodologies such as transmission electron microscopy were employed to identify comprehensively the complexity of the biological damage occurrence. Our findings confirm that AuNP radiosensitization may occur due to extensive and/or complex DNA damage, cell death, or cellular senescence. This multiparameter study aims to further elucidate the biological mechanisms and at the same time provide new information regarding the use of AuNPs as radiosensitizers in cancer treatment. Abstract In the context of improving radiation therapy, high-atomic number (Z) metallic nanoparticles and, more importantly, gold-based nanostructures are developed as radiation enhancers/radiosensitizers. Due to the diversity of cell lines, nanoparticles, as well as radiation types or doses, the resulting biological effects may differ and remain obscure. In this multiparameter study, we aim to shed light on these effects and investigate them further by employing X-irradiation and three human cancer cell lines (PC3, A549, and U2OS cells) treated by multiple techniques. TEM experiments on PC3 cells showed that citrate-capped AuNPs were found to be located mostly in membranous structures/vesicles or autophagosomes, but also, in the case of PEG-capped AuNPs, inside the nucleus as well. The colony-forming capability of cancer cells radiosensitized by AuNPs decreased significantly and the DNA damage detected by cytogenetics, γH2AX immunostaining, and by single (γH2AX) or double (γH2AX and OGG1) immunolocalization via transmission electron microscopy (TEM) was in many cases higher and/or persistent after combination with AuNPs than upon individual exposure to ionizing radiation (IR). Moreover, different cell cycle distribution was evident in PC3 but not A549 cells after treatment with AuNPs and/or irradiation. Finally, cellular senescence was investigated by using a newly established staining procedure for lipofuscin, based on a Sudan Black-B analogue (GL13) which showed that based on the AuNPs’ concentration, an increased number of senescent cells might be observed after exposure to IR. Even though different cell lines or different types and concentrations of AuNPs may alter the levels of radiosensitization, our results imply that the complexity of damage might also be an important factor of AuNP-induced radiosensitization.
Collapse
|
9
|
Fernandez A, Krishna J, Anson F, Dinsmore AD, Thayumanavan S. Consequences of Noncovalent Interfacial Contacts between Nanoparticles and Giant Vesicles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/anie.202208616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ann Fernandez
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - Jithu Krishna
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - Francesca Anson
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - Anthony D. Dinsmore
- Department of Physics University of Massachusetts Amherst Amherst MA 01003 USA
| | - S. Thayumanavan
- Department of Chemistry Department of Biomedical Engineering Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst Amherst MA 01003 USA
| |
Collapse
|
10
|
Zhang T, Wang L, He X, Lu H, Gao L. Cytocompatibility of pH-sensitive, chitosan-coated Fe3O4 nanoparticles in gynecological cells. Front Med (Lausanne) 2022; 9:799145. [PMID: 35935778 PMCID: PMC9355084 DOI: 10.3389/fmed.2022.799145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Nanoparticles that contact human cells without damaging basic human tissues are becoming more widely used in medicine. Efficient delivery to the intracellular target cell or compartment through the cell membrane must be achieved with minimal cytotoxicity to healthy cells. Fe3O4 nanoparticles have been widely used in biomedical research for their magnetic, non-toxic, and biocompatible properties. However, the effects of Fe3O4 nanoparticles coated with chitosan (CS) on gynecological cells are unclear. In this study, the Fe3O4 nanoparticles were coated with CS to enhance their cytocompatibility and dispersion in water. These CS-Fe3O4 nanoparticles were taken up by gynecological cells and did not affect cell viability in vitro. They have greater cytocompatibility in acidic environments than normal Fe3O4 nanoparticles and have the potential for drug delivery into gynecological cells.
Collapse
Affiliation(s)
- Taohong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Lisha Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Xinyi He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Hailin Lu
- College of Mechanical and Electronic Engineering, Xi’an Polytechnic University, Xi’an, China
- *Correspondence: Hailin Lu,
| | - Li Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
- Li Gao,
| |
Collapse
|
11
|
Fernandez A, Krishna J, Anson F, Dinsmore AD, Thayumanavan S. Consequences of Noncovalent Interfacial Contacts between Nanoparticles and Giant Vesicles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ann Fernandez
- University of Massachusetts Amherst Chemistry UNITED STATES
| | - Jithu Krishna
- University of Massachusetts Amherst Chemistry UNITED STATES
| | | | | | - Sankaran Thayumanavan
- University of Massachusetts Amherst Department of Chemistry 710 N. Pleasant Street 01003 Amherst UNITED STATES
| |
Collapse
|
12
|
Canepa E, Relini A, Bochicchio D, Lavagna E, Mescola A. Amphiphilic Gold Nanoparticles: A Biomimetic Tool to Gain Mechanistic Insights into Peptide-Lipid Interactions. MEMBRANES 2022; 12:673. [PMID: 35877876 PMCID: PMC9324301 DOI: 10.3390/membranes12070673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Functional peptides are now widely used in a myriad of biomedical and clinical contexts, from cancer therapy and tumor targeting to the treatment of bacterial and viral infections. Underlying this diverse range of applications are the non-specific interactions that can occur between peptides and cell membranes, which, in many contexts, result in spontaneous internalization of the peptide within cells by avoiding energy-driven endocytosis. For this to occur, the amphipathicity and surface structural flexibility of the peptides play a crucial role and can be regulated by the presence of specific molecular residues that give rise to precise molecular events. Nevertheless, most of the mechanistic details regulating the encounter between peptides and the membranes of bacterial or animal cells are still poorly understood, thus greatly limiting the biomimetic potential of these therapeutic molecules. In this arena, finely engineered nanomaterials-such as small amphiphilic gold nanoparticles (AuNPs) protected by a mixed thiol monolayer-can provide a powerful tool for mimicking and investigating the physicochemical processes underlying peptide-lipid interactions. Within this perspective, we present here a critical review of membrane effects induced by both amphiphilic AuNPs and well-known amphiphilic peptide families, such as cell-penetrating peptides and antimicrobial peptides. Our discussion is focused particularly on the effects provoked on widely studied model cell membranes, such as supported lipid bilayers and lipid vesicles. Remarkable similarities in the peptide or nanoparticle membrane behavior are critically analyzed. Overall, our work provides an overview of the use of amphiphilic AuNPs as a highly promising tailor-made model to decipher the molecular events behind non-specific peptide-lipid interactions and highlights the main affinities observed both theoretically and experimentally. The knowledge resulting from this biomimetic approach could pave the way for the design of synthetic peptides with tailored functionalities for next-generation biomedical applications, such as highly efficient intracellular delivery systems.
Collapse
Affiliation(s)
- Ester Canepa
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Annalisa Relini
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Davide Bochicchio
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Enrico Lavagna
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
13
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
14
|
Co-Functionalization of Gold Nanoparticles with C7H2 and HuAL1 Peptides: Enhanced Antimicrobial and Antitumoral Activities. Pharmaceutics 2022; 14:pharmaceutics14071324. [PMID: 35890220 PMCID: PMC9317637 DOI: 10.3390/pharmaceutics14071324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
The functionalization of nanoparticles with therapeutic peptides has been pointed out as a promising strategy to improve the applications of these molecules in the field of health sciences. Peptides are highly bioactive but face several limitations such as low bioavailability due to the difficulty of overcoming the physiological barriers in the body and their degradation by enzymes. In this work, gold nanoparticles (AuNPs) were co-functionalized with two therapeutic peptides simultaneously. The peptides from the complementary determining region of monoclonal antibodies, composed of the amino acid sequences YISCYNGATSYNQKFK (C7H2) and RASQSVSSYLA (HuAL1) were chosen for having exhibited antitumor and antimicrobial activity before. The peptides-conjugated AuNPs were characterized regarding size, morphology, and metal concentration by using TEM, dynamic light scattering, and ICP-OES techniques. Then, peptides-conjugated AuNPs were evaluated regarding the antimicrobial activity against E. coli, P. aeruginosa, and C. albicans. The antitumoral activity was evaluated in vitro by cell viability assays with metastatic melanoma cell line (B16F10-Nex2) and the cytotoxicity was evaluated against human foreskin fibroblast (Hs68) cell line. Finally, in vivo assays were performed by using a syngeneic animal model of metastatic melanoma. Our findings have highlighted the potential application of the dual-peptide AuNPs in order to enhance the antitumor and antimicrobial activity of peptides.
Collapse
|
15
|
Chew AK, Pedersen JA, Van Lehn RC. Predicting the Physicochemical Properties and Biological Activities of Monolayer-Protected Gold Nanoparticles Using Simulation-Derived Descriptors. ACS NANO 2022; 16:6282-6292. [PMID: 35289596 DOI: 10.1021/acsnano.2c00301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gold nanoparticles are versatile materials for biological applications because their properties can be modulated by assembling ligands on their surface to form monolayers. However, the physicochemical properties and behaviors of monolayer-protected nanoparticles in biological environments are difficult to anticipate because they emerge from the interplay of ligand-ligand and ligand-solvent interactions that cannot be readily inferred from ligand chemical structure alone. In this work, we demonstrate that quantitative nanostructure-activity relationship (QNAR) models can employ descriptors calculated from molecular dynamics simulations to predict nanoparticle properties and cellular uptake. We performed atomistic molecular dynamics simulations of 154 monolayer-protected gold nanoparticles and calculated a small library of simulation-derived descriptors that capture nanoparticle structural and chemical properties in aqueous solution. We then parametrized QNAR models using interpretable regression algorithms to predict experimental measurements of nanoparticle octanol-water partition coefficients, zeta potentials, and cellular uptake obtained from a curated database. These models reveal that simulation-derived descriptors can accurately predict experimental trends and provide physical insight into what descriptors are most important for obtaining desired nanoparticle properties or behaviors in biological environments. Finally, we demonstrate model generalizability by predicting cell uptake trends for 12 nanoparticles not included in the original data set. These results demonstrate that QNAR models parametrized with simulation-derived descriptors are accurate, generalizable computational tools that could be used to guide the design of monolayer-protected gold nanoparticles for biological applications without laborious trial-and-error experimentation.
Collapse
Affiliation(s)
- Alex K Chew
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joel A Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Chiarpotti MV, Longo GS, Del Pópolo MG. Voltage-Induced Adsorption of Cationic Nanoparticles on Lipid Membranes. J Phys Chem B 2022; 126:2230-2240. [PMID: 35293749 DOI: 10.1021/acs.jpcb.1c10499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We evaluate the effects of an applied electric potential on the adsorption/desorption mechanism of cationic nanoparticles on lipid membranes. By applying a molecular theory that allows calculating nanoparticle adsorption isotherms and free-energy profiles, we identify the conditions under which the external voltage promotes the adsorption of nanoparticles coated with cell penetrating peptides. We consider symmetric and asymmetric membranes made of neutral and acidic lipids and cover a wide range of environmental conditions (external voltage, pH, salt, and nanoparticles concentration) relevant to both electrochemical experiments and biological systems. For neutral membranes at low concentration of salt, a moderate external voltage (<100 mV) induces spontaneous adsorption of nanoparticles. For membranes containing a small fraction of anionic lipids, the external potential has little effect on the interfacial concentration of nanoparticles, and the membrane surface charge dominates the adsorption behavior. In all cases, the membrane-particle effective interactions, and its dependence on the external bias, are strongly modulated by the concentration of salt. At 100 mM NaCl, the external potential has almost no effect on the adsorption free energy profiles. In general, we provide a theoretical framework to evaluate the conditions under which nanoparticles are thermodynamically adsorbed or kinetically restrained to the vicinity of the membrane, and to assess the impact of the nanoparticles on the interfacial electrostatic properties.
Collapse
Affiliation(s)
- María V Chiarpotti
- Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET & Facultad de Ciencias Exactas y Naturales, UNCUYO, Padre Contreras 1300, Mendoza, Argentina, C.P. 5500
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) UNLP-CONICET, Diagonal 113 & 64 S/N, La Plata, Argentina, C.P. B1904DPI
| | - Mario G Del Pópolo
- Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET & Facultad de Ciencias Exactas y Naturales, UNCUYO, Padre Contreras 1300, Mendoza, Argentina, C.P. 5500
| |
Collapse
|
17
|
Liu H, Pei Y. Atomistic Molecular Dynamics Simulation Study on the Interaction between Atomically Precise Thiolate-Protected Gold Nanoclusters and Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1653-1661. [PMID: 35080404 DOI: 10.1021/acs.langmuir.1c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interaction of atomically precise monolayer thiolate (SR) protected gold nanoclusters (Au NCs) with the phospholipid membranes has been studied by the all-atom molecular dynamics (AAMD) simulations. The effect of cluster size, type, and the surface charge density of protection ligand was studied. The simulation results show gold nanoclusters with different size and surface modifications have much different transmembrane behaviors. The Au25(SR)18 cluster was found to possess the best affinity to the phospholipid membranes among six atomically accurate clusters Au25(SR)18, Au36(SR)24, Au44(SR)28, Au68(SR)32, Au144(SR)60, and Au314(SR)96. Using the Au25 NC as a model, this work also found that the aggregation mode of the surface ligands and the surface charge density are the important factors affecting the interaction between the gold nanoclusters and the phospholipid membranes. Moreover, the balance of hydrophilic and hydrophobic ligands on the surface of Au NCs is beneficial to the high permeability.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| |
Collapse
|
18
|
Machado N, Bruininks BMH, Singh P, Dos Santos L, Dal Pizzol C, Dieamant GDC, Kruger O, Martin AA, Marrink SJ, Souza PCT, Favero PP. Complex nanoemulsion for vitamin delivery: droplet organization and interaction with skin membranes. NANOSCALE 2022; 14:506-514. [PMID: 34913938 DOI: 10.1039/d1nr04610a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lipid nanoemulsions are promising nanomaterials for drug delivery applications in food, pharmaceutical and cosmetic industries. Despite the noteworthy commercial interest, little is known about their supramolecular organization, especially about how such multicomponent formulations interact with cell membranes. In the present work, coarse-grained molecular dynamics simulations have been employed to study the self-assembly of a 15-component lipid nanoemulsion droplet containing vitamins A and E for skin delivery. Our results display aspects of the unique "onion-like" agglomeration between the chemical constituents in the different layers of the lipid nanodroplet. Vitamin E molecules are more concentrated in the center of the droplet together with other hydrophobic constituents such as the triglycerides with long tails. On the other hand, vitamin A occupies an intermediate layer between the core and the co-emulsifier surface of the nanodroplet, together with lecithin phospholipids. Coarse-grained molecular dynamics simulations were also performed to provide insight into the first steps involved in absorption and penetration of the nanodroplet through skin membrane models, representing an intracellular (hair follicle infundibulum) and intercellular pathway (stratum corneum) through the skin. Our data provide a first view on the complex organization of commercial nanoemulsion and its interaction with skin membranes. We expect our results to open the way towards the rational design of such nanomaterials.
Collapse
Affiliation(s)
- Neila Machado
- Institute of Research and Development, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, 12244-000, São José dos Campos, São Paulo, Brazil
- UFABC Universidade Federal do ABC, Avenida dos Estados, 5001, 09210-580, Santo André, São Paulo, Brazil.
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Priyanka Singh
- Institute of Research and Development, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, 12244-000, São José dos Campos, São Paulo, Brazil
| | - Laurita Dos Santos
- Institute of Research and Development, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, 12244-000, São José dos Campos, São Paulo, Brazil
- Biomedical Engineering Innovation Center, Biomedical Vibrational Spectroscopy Group. Universidade Brasil UnBr, Rua Carolina Fonseca 235, 08230-030, Itaquera, São Paulo, Brazil.
| | - Carine Dal Pizzol
- Grupo Boticário, Av. Rui Barbosa, 4110, 83055-010, Parque da Fonte, São José dos Pinhais, Paraná, Brazil
| | - Gustavo de C Dieamant
- Grupo Boticário, Av. Rui Barbosa, 4110, 83055-010, Parque da Fonte, São José dos Pinhais, Paraná, Brazil
| | - Odivania Kruger
- Grupo Boticário, Av. Rui Barbosa, 4110, 83055-010, Parque da Fonte, São José dos Pinhais, Paraná, Brazil
| | - Airton A Martin
- Biomedical Engineering Innovation Center, Biomedical Vibrational Spectroscopy Group. Universidade Brasil UnBr, Rua Carolina Fonseca 235, 08230-030, Itaquera, São Paulo, Brazil.
- DermoProbes - Research, Innovation and Technological Development, Av. Cassiano Ricardo, 601, Sala 73-74, 12246-870, São José dos Campos, SP, Brazil
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France.
| | - Priscila P Favero
- Biomedical Engineering Innovation Center, Biomedical Vibrational Spectroscopy Group. Universidade Brasil UnBr, Rua Carolina Fonseca 235, 08230-030, Itaquera, São Paulo, Brazil.
| |
Collapse
|
19
|
Khandker SS, Shakil MS, Hossen MS. Gold Nanoparticles; Potential Nanotheranostic Agent in Breast Cancer: A Comprehensive Review with Systematic Search Strategy. Curr Drug Metab 2021; 21:579-598. [PMID: 32520684 DOI: 10.2174/1389200221666200610173724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Breast cancer is a heterogeneous disease typically prevalent among women and is the second-largest cause of death worldwide. Early diagnosis is the key to minimize the cancer-induced complication, however, the conventional diagnostic strategies have been sluggish, complex, and, to some extent, non-specific. Therapeutic tools are not so convenient and side effects of current therapies offer the development of novel theranostic tool to combat this deadly disease. OBJECTIVE This article aims to summarize the advances in the diagnosis and treatment of breast cancer with gold nanoparticles (GNP or AuNP). METHODS A systematic search was conducted in the three popular electronic online databases including PubMed, Google Scholar, and Web of Science, regarding GNP as breast cancer theranostics. RESULTS Published literature demonstrated that GNPs tuned with photosensitive moieties, nanomaterials, drugs, peptides, nucleotide, peptides, antibodies, aptamer, and other biomolecules improve the conventional diagnostic and therapeutic strategies of breast cancer management with minimum cytotoxic effect. GNP derived diagnosis system assures reproducibility, reliability, and accuracy cost-effectively. Additionally, surface-modified GNP displayed theranostic potential even in the metastatic stage of breast cancer. CONCLUSION Divergent strategies have shown the theranostic potential of surface tuned GNPs against breast cancer even in the metastatic stage with minimum cytotoxic effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Shahad Saif Khandker
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Salman Shakil
- Department of Pharmacology & Toxicology, University of Otago, 362 Leith St., North Dunedin, Dunedin 9016, New Zealand
| | - Md Sakib Hossen
- Department of Biochemistry, Primeasia University, Banani, Dhaka, Bangladesh
| |
Collapse
|
20
|
Raval J, Gongadze E, Benčina M, Junkar I, Rawat N, Mesarec L, Kralj-Iglič V, Góźdź W, Iglič A. Mechanical and Electrical Interaction of Biological Membranes with Nanoparticles and Nanostructured Surfaces. MEMBRANES 2021; 11:membranes11070533. [PMID: 34357183 PMCID: PMC8307671 DOI: 10.3390/membranes11070533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022]
Abstract
In this review paper, we theoretically explain the origin of electrostatic interactions between lipid bilayers and charged solid surfaces using a statistical mechanics approach, where the orientational degree of freedom of lipid head groups and the orientational ordering of the water dipoles are considered. Within the modified Langevin Poisson–Boltzmann model of an electric double layer, we derived an analytical expression for the osmotic pressure between the planar zwitterionic lipid bilayer and charged solid planar surface. We also show that the electrostatic interaction between the zwitterionic lipid head groups of the proximal leaflet and the negatively charged solid surface is accompanied with a more perpendicular average orientation of the lipid head-groups. We further highlight the important role of the surfaces’ nanostructured topography in their interactions with biological material. As an example of nanostructured surfaces, we describe the synthesis of TiO2 nanotubular and octahedral surfaces by using the electrochemical anodization method and hydrothermal method, respectively. The physical and chemical properties of these nanostructured surfaces are described in order to elucidate the influence of the surface topography and other physical properties on the behavior of human cells adhered to TiO2 nanostructured surfaces. In the last part of the paper, we theoretically explain the interplay of elastic and adhesive contributions to the adsorption of lipid vesicles on the solid surfaces. We show the numerically predicted shapes of adhered lipid vesicles corresponding to the minimum of the membrane free energy to describe the influence of the vesicle size, bending modulus, and adhesion strength on the adhesion of lipid vesicles on solid charged surfaces.
Collapse
Affiliation(s)
- Jeel Raval
- Group of Physical Chemistry of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (J.R.); (W.G.)
| | - Ekaterina Gongadze
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.G.); (N.R.); (L.M.)
| | - Metka Benčina
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.B.); (I.J.)
| | - Ita Junkar
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.B.); (I.J.)
| | - Niharika Rawat
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.G.); (N.R.); (L.M.)
| | - Luka Mesarec
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.G.); (N.R.); (L.M.)
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Wojciech Góźdź
- Group of Physical Chemistry of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (J.R.); (W.G.)
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.G.); (N.R.); (L.M.)
- Laboratory of Clinical Biophysics, Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-4768-825
| |
Collapse
|
21
|
Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q. Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomater Sci 2021; 9:5092-5115. [PMID: 34160488 DOI: 10.1039/d1bm00721a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current treatment strategies for cancer therapy have posed many problems in achieving high efficacy. Therefore, an urgent step is needed to develop innovative therapies that can win beyond satisfactory results against tumor. Ferroptosis that is a kind of non-apoptotic based programmed cell death has played a crucial role in eradicating tumors by reactive oxygen species and iron-dependent pathways. Research shows a remarkable potential of ferroptosis in eliminating aggressive malignancies resistant to traditional therapies. The combination of nanomedicine and ferroptosis has revealed a close relationship for the treatment of various cancer types with high efficacy. This review introduces the basics of nanomedicine-based ferroptosis first to emphasize the feasibility and properties of ferroptosis in cancer therapy. Then, the current research on the applications of nanomedicine for the ferroptosis-based anticancer therapy is highlighted. Finally, conclusions and future research directions in perspective of various challenges in developing nanomedicine-based ferroptosis into clinical therapeutics are discussed.
Collapse
Affiliation(s)
- Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China.
| | | | | | | | | | | |
Collapse
|
22
|
Sousa AA, Schuck P, Hassan SA. Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters. NANOSCALE ADVANCES 2021; 3:2995-3027. [PMID: 34124577 PMCID: PMC8168927 DOI: 10.1039/d1na00086a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 05/03/2023]
Abstract
The use of nanoparticles (NPs) in biomedicine has made a gradual transition from proof-of-concept to clinical applications, with several NP types meeting regulatory approval or undergoing clinical trials. A new type of metallic nanostructures called ultrasmall nanoparticles (usNPs) and nanoclusters (NCs), while retaining essential properties of the larger (classical) NPs, have features common to bioactive proteins. This combination expands the potential use of usNPs and NCs to areas of diagnosis and therapy traditionally reserved for small-molecule medicine. Their distinctive physicochemical properties can lead to unique in vivo behaviors, including improved renal clearance and tumor distribution. Both the beneficial and potentially deleterious outcomes (cytotoxicity, inflammation) can, in principle, be controlled through a judicious choice of the nanocore shape and size, as well as the chemical ligands attached to the surface. At present, the ability to control the behavior of usNPs is limited, partly because advances are still needed in nanoengineering and chemical synthesis to manufacture and characterize ultrasmall nanostructures and partly because our understanding of their interactions in biological environments is incomplete. This review addresses the second limitation. We review experimental and computational methods currently available to understand molecular mechanisms, with particular attention to usNP-protein complexation, and highlight areas where further progress is needed. We discuss approaches that we find most promising to provide relevant molecular-level insight for designing usNPs with specific behaviors and pave the way to translational applications.
Collapse
Affiliation(s)
- Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo São Paulo SP 04044 Brazil
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering, NIH Bethesda MD 20892 USA
| | - Sergio A Hassan
- BCBB, National Institute of Allergy and Infectious Diseases, NIH Bethesda MD 20892 USA
| |
Collapse
|
23
|
Lochbaum CA, Chew AK, Zhang X, Rotello V, Van Lehn RC, Pedersen JA. Lipophilicity of Cationic Ligands Promotes Irreversible Adsorption of Nanoparticles to Lipid Bilayers. ACS NANO 2021; 15:6562-6572. [PMID: 33818061 PMCID: PMC9153949 DOI: 10.1021/acsnano.0c09732] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A mechanistic understanding of the influence of the surface properties of engineered nanomaterials on their interactions with cells is essential for designing materials for applications such as bioimaging and drug delivery as well as for assessing nanomaterial safety. Ligand-coated gold nanoparticles have been widely investigated because their highly tunable surface properties enable investigations into the effect of ligand functionalization on interactions with biological systems. Lipophilic ligands have been linked to adverse biological outcomes through membrane disruption, but the relationship between ligand lipophilicity and membrane interactions is not well understood. Here, we use a library of cationic ligands coated on 2 nm gold nanoparticles to probe the impact of ligand end group lipophilicity on interactions with supported phosphatidylcholine lipid bilayers as a model for cytoplasmic membranes. Nanoparticle adsorption to and desorption from the model membranes were investigated by quartz crystal microbalance with dissipation monitoring. We find that nanoparticle adsorption to model membranes increases with ligand lipophilicity. The effects of ligand structure on gold nanoparticle attachment were further analyzed using atomistic molecular dynamics simulations, which showed that the increase in ligand lipophilicity promotes ligand intercalation into the lipid bilayer. Together, the experimental and simulation results could be described by a two-state model that accounts for the initial attachment and subsequent conversion to a quasi-irreversibly bound state. We find that only nanoparticles coated with the most lipophilic ligands in our nanoparticle library undergo conversion to the quasi-irreversible state. We propose that the initial attachment is governed by interaction between the ligands and phospholipid tail groups, whereas conversion into the quasi-irreversibly bound state reflects ligand intercalation between phospholipid tail groups and eventual lipid extraction from the bilayer. The systematic variation of ligand lipophilicity enabled us to demonstrate that the lipophilicity of cationic ligands correlates with nanoparticle-bilayer adsorption and suggested that changing the nonpolar ligand R group promotes a mechanism of ligand intercalation into the bilayer associated with irreversible adsorption.
Collapse
Affiliation(s)
- Christian A. Lochbaum
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alex K. Chew
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts–Amherst, Amherst, Massachusetts 01003, United States
| | - Vincent Rotello
- Department of Chemistry, University of Massachusetts–Amherst, Amherst, Massachusetts 01003, United States
| | - Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Joel A. Pedersen
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Departments of Soil Science and Civil & Environmental Engineering, University of Wisconsin–Madison, 1525 Observatory Dive, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Johnston ST, Faria M, Crampin EJ. Understanding nano-engineered particle-cell interactions: biological insights from mathematical models. NANOSCALE ADVANCES 2021; 3:2139-2156. [PMID: 36133772 PMCID: PMC9417320 DOI: 10.1039/d0na00774a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/08/2021] [Indexed: 05/02/2023]
Abstract
Understanding the interactions between nano-engineered particles and cells is necessary for the rational design of particles for therapeutic, diagnostic and imaging purposes. In particular, the informed design of particles relies on the quantification of the relationship between the physicochemical properties of the particles and the rate at which cells interact with, and subsequently internalise, particles. Quantitative models, both mathematical and computational, provide a powerful tool for elucidating this relationship, as well as for understanding the mechanisms governing the intertwined processes of interaction and internalisation. Here we review the different types of mathematical and computational models that have been used to examine particle-cell interactions and particle internalisation. We detail the mathematical methodology for each type of model, the benefits and limitations associated with the different types of models, and highlight the advances in understanding gleaned from the application of these models to experimental observations of particle internalisation. We discuss the recent proposal and ongoing community adoption of standardised experimental reporting, and how this adoption is an important step toward unlocking the full potential of modelling approaches. Finally, we consider future directions in quantitative models of particle-cell interactions and highlight the need for hybrid experimental and theoretical investigations to address hitherto unanswered questions.
Collapse
Affiliation(s)
- Stuart T Johnston
- School of Mathematics and Statistics, University of Melbourne Parkville Victoria 3010 Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne Parkville Victoria 3010 Australia
- Systems Biology Laboratory, School of Mathematics and Statistics, Department of Biomedical Engineering, University of Melbourne Parkville Victoria 3010 Australia
| | - Matthew Faria
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne Parkville Victoria 3010 Australia
- Systems Biology Laboratory, School of Mathematics and Statistics, Department of Biomedical Engineering, University of Melbourne Parkville Victoria 3010 Australia
- Department of Biomedical Engineering, University of Melbourne Parkville Victoria 3010 Australia
| | - Edmund J Crampin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne Parkville Victoria 3010 Australia
- Systems Biology Laboratory, School of Mathematics and Statistics, Department of Biomedical Engineering, University of Melbourne Parkville Victoria 3010 Australia
- School of Medicine, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
25
|
Hossain SI, Gandhi NS, Hughes ZE, Saha SC. Computational Studies of Lipid-Wrapped Gold Nanoparticle Transport Through Model Lung Surfactant Monolayers. J Phys Chem B 2021; 125:1392-1401. [PMID: 33529013 DOI: 10.1021/acs.jpcb.0c09518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colloidal nanoparticles, such as gold nanoparticles (AuNPs), are promising materials for the delivery of hydrophilic drugs via the pulmonary route. The inhaled nanoparticle drug carriers primarily deposit in lung alveoli and interact with the alveolar surface known as lung surfactants. Therefore, it is vital to understand the interactions of nanocarriers with the surfactant layer. To understand the interactions at the molecular level, here we simulated model lung surfactant monolayers with phospholipid (PL)-wrapped AuNPs at the vacuum-water interface using coarse-grained molecular dynamics simulations. The PL-wrapped AuNPs quickly adsorbed into the surfactant layer, altered the structural properties of the monolayer, and at high concentrations initiated the compressed monolayer to collapse/buckle. Among the surfactant monolayer lipid components, cholesterol adsorbed to the AuNPs preferentially over PL species. The position of the adsorbed PL-AuNPs within the monolayer, and subsequent monolayer perturbation, vary depending on the monolayer phase, monolayer composition, and species of PL used as a ligand. Information provided by these molecular dynamic simulations helps to rationalize why some colloidal nanoparticles work better as nanocarriers than others and aid the design of new ones, to avoid biological toxicity and improve efficacy for pulmonary drug delivery.
Collapse
Affiliation(s)
- Sheikh I Hossain
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, 81 Broadway, Ultimo, New South Wales 2007, Australia
| | - Neha S Gandhi
- School of Chemistry and Physics, Faculty of Science and Centre for Genomics and Personalised Health, Queensland University of Technology, 2 George Street, GP.O. Box 2434, Brisbane, Queensland 4000, Australia
| | - Zak E Hughes
- School of Chemistry and Biosciences, The University of Bradford, Bradford BD7 1DP, U.K
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, 81 Broadway, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
26
|
Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S, Li R. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. NANOSCALE 2021; 13:2266-2285. [PMID: 33480938 DOI: 10.1039/d0nr08478f] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although ferroptosis is an iron-dependent cell death mechanism involved in the development of some severe diseases (e.g., Parkinsonian syndrome, stroke and tumours), the combination of nanotechnology with ferroptosis for the treatment of these diseases has attracted substantial research interest. However, it is challenging to differentiate nanoparticle-induced ferroptosis from other types of cell deaths (e.g., apoptosis, pyroptosis, and necrosis), elucidate the detailed mechanisms and identify the key property of nanoparticles responsible for ferroptotic cell deaths. Therefore, a summary of these aspects from current research on nano-ferroptosis is important and timely. In this review, we endeavour to summarize some convincing techniques that can be employed to specifically examine ferroptotic cell deaths. Then, we discuss the molecular initiating events of nanosized ferroptosis inducers and the cascade signals in cells, and therefore elaborate the ferroptosis mechanisms. Besides, the key physicochemical properties of nano-inducers are also discussed to acquire a fundamental understanding of nano-structure-activity relationships (nano-SARs) involved in ferroptosis, which may facilitate the design of nanomaterials to deliberately tune ferroptosis. Finally, future perspectives on the fundamental understanding of nanoparticle-induced ferroptosis and its applications are provided.
Collapse
Affiliation(s)
- Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiaoming Cai
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
27
|
Janic B, Brown SL, Neff R, Liu F, Mao G, Chen Y, Jackson L, Chetty IJ, Movsas B, Wen N. Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol Ther 2021; 22:124-135. [PMID: 33459132 PMCID: PMC7928016 DOI: 10.1080/15384047.2020.1861923] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been shown to enhance cancer radiotherapy (RT) gain by localizing the absorption of radiation energy in the tumor while sparing surrounding normal tissue from radiation toxicity. Previously, we showed that AuNPs enhanced RT induced DNA damage and cytotoxicity in MCF7 breast cancer cells. Interestingly, we found that cancer cells exhibited a size-dependent AuNPs intracellular localization (4 nm preferentially in the cytoplasm and 14 nm in the nucleus). We extended those studies to an in vivo model and examined the AuNPs effects on RT cytotoxicity, survival and immunomodulation of tumor microenvironment (TME) in human triple negative breast cancer (TNBC) xenograft mouse model. We also explored the significance of nanoparticle size in these AuNPs’ effects. Mice treated with RT and RT plus 4 nm or 14 nm AuNPs showed a significant tumor growth delay, compared to untreated animals, while dual RT plus AuNPs treatment exhibited additive effect compared to either RT or AuNPs treatment alone. Survival log-rank test showed significant RT enhancement with 14 nm AuNP alone; however, 4 nm AuNPs did not exhibit RT enhancement. Both sizes of AuNPs enhanced RT induced immunogenic cell death (ICD) that was coupled with significant macrophage infiltration in mice pretreated with 14 nm AuNPs. These results showing significant AuNP size-dependent RT enhancement, as evident by both tumor growth delay and overall survival, reveal additional underlying immunological mechanisms and provide a platform for studying RT multimodal approaches for TNBC that may be combined with immunotherapies, enhancing their effect.
Collapse
Affiliation(s)
| | - Stephen L Brown
- Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ryan Neff
- University of Notre Dame, South Bend, Indiana, USA
| | - Fangchao Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, USA
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, USA.,School of Chemical Engineering, Unsw Sydney, Kensington, Australia
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, USA
| | - Latoya Jackson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, USA
| | - Indrin J Chetty
- Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Benjamin Movsas
- Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ning Wen
- Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
28
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Lazaratos M, Karathanou K, Mainas E, Chatzigoulas A, Pippa N, Demetzos C, Cournia Z. Coating of magnetic nanoparticles affects their interactions with model cell membranes. Biochim Biophys Acta Gen Subj 2020; 1864:129671. [DOI: 10.1016/j.bbagen.2020.129671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 05/24/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
|
30
|
Genova J, Chamati H, Petrov M. Study of SOPC with embedded pristine and amide-functionalized single wall carbon nanotubes by DSC and FTIR spectroscopy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Jiao F, Sang J, Liu Z, Liu W, Liang W. Effect of concentration of PEG coated gold nanoparticle on lung surfactant studied with coarse-grained molecular dynamics simulations. Biophys Chem 2020; 266:106457. [PMID: 32890945 DOI: 10.1016/j.bpc.2020.106457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022]
Abstract
The surface modification of nanoparticles can not only change the physical and chemical properties of particles, such as the hydrophilic and hydrophobic properties and surface charges of nanoparticles to a certain extent, but also bring new functions to nanoparticles, such as membrane permeability and targeting. Inhaled nanoparticles (NPs) are experienced by the first biological barrier inside the alveolus known as lung surfactant (LS), consisting of phospholipids and proteins in the form of the monolayer at the air-water interface. Inhaled NPs can reach deep into the lungs and interfere with the biophysical properties of the lung components. The interaction mechanisms of bare gold nanoparticles (AuNPs) with the LS monolayer are not well understood. Coarse-grained molecular dynamics simulations were carried out to have a study on the interactions of PEG coated AuNPs with LS monolayers. It was observed that the interactions of AuNPs and LS components make the monolayer structure deform and change the biophysical properties of LS monolayer. The results also indicate that AuNPs with high concentrations hinder the lowering of the LS surface tension and reduce lateral mobility of lipids. Overall, the simulation results can provide guidance for the design of ligand protected NPs as drug carriers and can identify the nanoparticles potential side effect on lung surfactant.
Collapse
Affiliation(s)
- Fengxuan Jiao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jianbing Sang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Zhaoyang Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wei Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Liang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
32
|
Azman N'A, Bekale L, Nguyen TX, Kah JCY. Polyelectrolyte stiffness on gold nanorods mediates cell membrane damage. NANOSCALE 2020; 12:14021-14036. [PMID: 32579657 DOI: 10.1039/d0nr03288c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Charge and surface chemistry of gold nanorods (AuNRs) are often considered the predictive factors for cell membrane damage. Unfortunately, extensive research on AuNR passivated with polyelectrolyte (PE) ligand shell (AuNR-PE) has hitherto left a vital knowledge gap between the mechanical stability of the ligand shell and the cytotoxicity of AuNR-PEs. Here, the agreement between unbiased coarse-grained molecular dynamics (CGMD) simulation and empirical outcomes on hemolysis of red blood cells by AuNR-PEs demonstrates for the first time, a direct impact of the mechanical stability of the PE shell passivating the AuNRs on the lipid membrane rupture. Such mechanical stability is ultimately modulated by the rigidity of the PE components. The CGMD simulation results also reveal the mechanism where the PE chain adsorbs near the surface of the lipid bilayer without penetrating the hydrophobic core of the bilayer, which allows the hydrophobic AuNR core to be in direct contact with the hydrophobic interior of the lipid bilayer, thereby perforating the lipid membrane to induce membrane damage.
Collapse
Affiliation(s)
- Nurul 'Ain Azman
- Department of Biomedical Engineering, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
33
|
Ou L, Corradi V, Tieleman DP, Liang Q. Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry. J Phys Chem B 2020; 124:4466-4475. [DOI: 10.1021/acs.jpcb.9b11989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luping Ou
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
34
|
The ability of gold nanoclusters as a new nanocarrier for D-penicillamine anticancer drug: a computational chemistry study. Struct Chem 2019. [DOI: 10.1007/s11224-019-01462-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Mendozza M, Caselli L, Salvatore A, Montis C, Berti D. Nanoparticles and organized lipid assemblies: from interaction to design of hybrid soft devices. SOFT MATTER 2019; 15:8951-8970. [PMID: 31680131 DOI: 10.1039/c9sm01601e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This contribution reviews the state of art on hybrid soft matter assemblies composed of inorganic nanoparticles (NP) and lamellar or non-lamellar lipid bilayers. After a short outline of the relevant energetic contributions, we address the interaction of NPs with synthetic lamellar bilayers, meant as cell membrane mimics. We then review the design of hybrid nanostructured materials composed of lipid bilayers and some classes of inorganic NPs, with particular emphasis on the effects on the amphiphilic phase diagram and on the additional properties contributed by the NPs. Then, we present the latest developments on the use of lipid bilayers as coating agents for inorganic NPs. Finally, we remark on the main achievements of the last years and our vision for the development of the field.
Collapse
Affiliation(s)
- Marco Mendozza
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Annalisa Salvatore
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
36
|
Das M, Dahal U, Mesele O, Liang D, Cui Q. Molecular Dynamics Simulation of Interaction between Functionalized Nanoparticles with Lipid Membranes: Analysis of Coarse-Grained Models. J Phys Chem B 2019; 123:10547-10561. [DOI: 10.1021/acs.jpcb.9b08259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mitradip Das
- School of Chemical Sciences, National Institute of Science Education and Research, Khordha, Odisha, India, 752050
- Homi Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai, Maharashtra, India, 400094
| | - Udaya Dahal
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Oluwaseun Mesele
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Dongyue Liang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
37
|
Hossain SI, Gandhi NS, Hughes ZE, Gu Y, Saha SC. Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1458-1467. [DOI: 10.1016/j.bbamem.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/03/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
|
38
|
Multivalent Binding of a Ligand-Coated Particle: Role of Shape, Size, and Ligand Heterogeneity. Biophys J 2019; 114:1830-1846. [PMID: 29694862 DOI: 10.1016/j.bpj.2018.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/18/2023] Open
Abstract
We utilize a multiscale modeling framework to study the effect of shape, size, and ligand composition on the efficacy of binding of a ligand-coated particle to a substrate functionalized with the target receptors. First, we show how molecular dynamics along with steered molecular dynamics calculations can be used to accurately parameterize the molecular-binding free energy and the effective spring constant for a receptor-ligand pair. We demonstrate this for two ligands that bind to the α5β1-domain of integrin. Next, we show how these effective potentials can be used to build computational models at the meso- and continuum-scales. These models incorporate the molecular nature of the receptor-ligand interactions and yet provide an inexpensive route to study the multivalent interaction of receptors and ligands through the construction of Bell potentials customized to the molecular identities. We quantify the binding efficacy of the ligand-coated-particle in terms of its multivalency, binding free-energy landscape, and the losses in the configurational entropies. We show that 1) the binding avidity for particle sizes less than 350 nm is set by the competition between the enthalpic and entropic contributions, whereas that for sizes above 350 nm is dominated by the enthalpy of binding; 2) anisotropic particles display higher levels of multivalent binding compared to those of spherical particles; and 3) variations in ligand composition can alter binding avidity without altering the average multivalency. The methods and results presented here have wide applications in the rational design of functionalized carriers and also in understanding cell adhesion.
Collapse
|
39
|
Khandelwal P, Singh DK, Poddar P. Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201900083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| | - Dheeraj K. Singh
- Department of PhysicsInstitute of Infrastructure Technology Research & Management Ahmedabad - 380026 India
| | - Pankaj Poddar
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| |
Collapse
|
40
|
Biochemical Changes in Human Cells Exposed to Low Concentrations of Gold Nanoparticles Detected by Raman Microspectroscopy. SENSORS 2019; 19:s19102418. [PMID: 31137864 PMCID: PMC6566781 DOI: 10.3390/s19102418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
Abstract
The toxicological implications of nanoparticles deserve accurate scientific investigation for the protection of human health. Although toxic effects involve specific organs, the events that cause them have their origin from biochemical modifications of some cellular constituents. Therefore, a first analysis to evaluate the effects due to the action of nanoparticles is achieved by investigation of in vitro cells, which allows the identification of the cellular modifications caused by nanoparticles (NPs) even at much lower doses than the lethal ones. This work evaluated the Raman microspectroscopy capability to monitor biochemical changes occurring in human cells as a consequence of exposure to a suspension of gold nanoparticles with a non-cytotoxic concentration. Human keratinocyte cells were used as a model cell line, because they are mainly involved in environmental exposure. A trypan blue assay revealed that the investigated concentration, 650 ng/mL, is non-cytotoxic (about 5% of cells died after 48 h exposure). Specific Raman spectral markers to represent the cell response to nanoparticle exposure were found (at 1450 and 2865 cm-1) in the cytoplasm spectra, with the aid of ratiometric and principal component analysis.
Collapse
|
41
|
Marson D, Guida F, Şologan M, Boccardo S, Pengo P, Perissinotto F, Iacuzzi V, Pellizzoni E, Polizzi S, Casalis L, Pasquato L, Pacor S, Tossi A, Posocco P. Mixed Fluorinated/Hydrogenated Self-Assembled Monolayer-Protected Gold Nanoparticles: In Silico and In Vitro Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900323. [PMID: 30941901 DOI: 10.1002/smll.201900323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Indexed: 05/23/2023]
Abstract
Gold nanoparticles (AuNPs) covered with mixtures of immiscible ligands present potentially anisotropic surfaces that can modulate their interactions at complex nano-bio interfaces. Mixed, self-assembled, monolayer (SAM)-protected AuNPs, prepared with incompatible hydrocarbon and fluorocarbon amphiphilic ligands, are used here to probe the molecular basis of surface phase separation and disclose the role of fluorinated ligands on the interaction with lipid model membranes and cells, by integrating in silico and experimental approaches. These results indicate that the presence of fluorinated amphiphilic ligands enhances the membrane binding ability and cellular uptake of gold nanoparticles with respect to those coated only with hydrogenated amphiphilic ligands. For mixed monolayers, computational results suggest that ligand phase separation occurs on the gold surface, and the resulting anisotropy affects the number of contacts and adhesion energies with a membrane bilayer. This reflects in a diverse membrane interaction for NPs with different surface morphologies, as determined by surface plasmon resonance, as well as differential effects on cells, as observed by flow cytometry and confocal microscopy. Overall, limited changes in monolayer features can significantly affect NP surface interfacial properties, which, in turn, affect the interaction of SAM-AuNPs with cellular membranes and subsequent effects on cells.
Collapse
Affiliation(s)
- Domenico Marson
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Filomena Guida
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Maria Şologan
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127, Trieste, Italy
| | - Silvia Boccardo
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127, Trieste, Italy
| | - Fabio Perissinotto
- NanoInnovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Basovizza, Italy
| | - Valentina Iacuzzi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elena Pellizzoni
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Stefano Polizzi
- Department of Molecular Science and Nanosystems, Ca' Foscari University, 30172, Venezia, Italy
- Centro di Microscopia Elettronica "G. Stevanato,", 30172, Venezia-Mestre, Italy
| | - Loredana Casalis
- NanoInnovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Basovizza, Italy
| | - Lucia Pasquato
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127, Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
42
|
Simonelli F, Rossi G, Monticelli L. Role of Ligand Conformation on Nanoparticle-Protein Interactions. J Phys Chem B 2019; 123:1764-1769. [PMID: 30698447 PMCID: PMC6469838 DOI: 10.1021/acs.jpcb.8b11204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Engineered
biomedical nanoparticles (NPs) administered via intravenous
routes are prone to associate to serum proteins. The protein corona
can mask the NP surface functionalization and hamper the delivery
of the NP to its biological target. The design of corona-free NPs
relies on our understanding of the chemical-physical features of the
NP surface driving the interaction with serum proteins. Here, we address,
by computational means, the interaction between human serum albumin
(HSA) and a prototypical monolayer-protected Au nanoparticle. We show
that both the chemical composition (charge, hydrophobicity) and the
conformational preferences of the ligands decorating the NP surface
affect the NP propensity to bind HSA.
Collapse
Affiliation(s)
- Federica Simonelli
- Physics Department , University of Genoa , Via Dodecaneso 33 , 16146 Genoa , Italy
| | - Giulia Rossi
- Physics Department , University of Genoa , Via Dodecaneso 33 , 16146 Genoa , Italy
| | - Luca Monticelli
- MMSB, UMR 5086 CNRS, Universitè de Lyon , 7, Passage du Vercors , 69007 Lyon , France
| |
Collapse
|
43
|
Kanwa N, Patnaik A, De SK, Ahamed M, Chakraborty A. Effect of Surface Ligand and Temperature on Lipid Vesicle-Gold Nanoparticle Interaction: A Spectroscopic Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1008-1020. [PMID: 30601000 DOI: 10.1021/acs.langmuir.8b03673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We herein investigate the interactions of differently functionalized anionic and cationic gold nanoparticles (AuNPs) with zwitterionic phosphocholine (PC) as well as inverse phosphocholine (iPC) lipid bilayers via spectroscopic measures. In this study, we used PC lipids with varying phase-transition temperatures, i.e., DMPC ( Tm = 24 °C), DOPC ( Tm = -20 °C), and iPC lipid DOCP ( Tm = -20 °C) to study their interactions with AuNPs functionalized with anionic ligands citrate, 3-mercaptopropionic acid, glutathione, and cationic ligand cysteamine. We studied the interactions by steady-state and time-resolved spectroscopic studies using membrane-sensitive probes 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and 8-anilino-1 naphthalenesulfonate (ANS), as well as by confocal laser scanning microscopy (CLSM) imaging and dynamic light scattering (DLS) measurements. We observe that AuNPs bring in stability to the lipid vesicle, and the extent of interaction differs with the different surface ligands on the AuNPs. We observe that AuNPs functionalized with citrate effectively increase the phase-transition temperature of the vesicles by interacting with them. Our study reveals that the extent of interaction depends on the bulkiness of the ligands attached to the AuNPs. The bulkier ligands exert less van der Waals force, resulting in a weaker interaction. Moreover, we find that the interactions are more strongly pronounced when the vesicles are near the phase-transition temperature of the lipid. The CLSM imaging and DLS measurements demonstrate the surface modifications in the vesicles as a result of these interactions.
Collapse
Affiliation(s)
- Nishu Kanwa
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Ananya Patnaik
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Soumya Kanti De
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Mirajuddin Ahamed
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Anjan Chakraborty
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| |
Collapse
|
44
|
Salis B, Pugliese G, Pellegrino T, Diaspro A, Dante S. Polymer Coating and Lipid Phases Regulate Semiconductor Nanorods' Interaction with Neuronal Membranes: A Modeling Approach. ACS Chem Neurosci 2019; 10:618-627. [PMID: 30339349 DOI: 10.1021/acschemneuro.8b00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The interplay between nanoparticles (NPs) and cell membranes is extremely important with regard to using NPs in biology applications. With the aim of unraveling the dominating factors on the molecular scale, we have studied the interaction between polymer-coated semiconductor nanorods (NRs) made of cadmium selenium/cadmium sulfur and model lipid membranes. The zeta potential (ζ) of the NRs was tuned from having a negative value (-24 mV) to having a positive one (+11 mV) by changing the amine content in the polymer coating. Supported lipid bilayers (SLBs) and lipid monolayers (LMs) were used as model membranes. Lipid mixtures containing anionic or cationic lipids were employed in order to change the membrane ζ from -77 to +49 mV; lipids with saturated hydrophobic chains were used to create phase-separated gel domains. NR adsorption to the SLBs was monitored by quartz crystal microbalance with dissipation monitoring; interactions with LMs with the same lipid composition were measured by surface pressure-area isotherms. The results showed that the NRs only interact with the model membrane if the mutual Δζ is higher than 70 mV; at the air-water interface, positively charged NRs remove lipids from the anionic lipid mixtures, and the negative ones penetrate the space between the polar heads in the cationic mixtures. However, the presence of gel domains in the membrane inhibits this interaction. The results of the Derjaguin-Landau-Verwey-Overbeek model frame indicate that the interaction occurs not only due to electrostatic and van der Waals forces, but also due to steric and/or hydration forces.
Collapse
Affiliation(s)
- Barbara Salis
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova 16145, Italy
- Nanoscopy&NIC@IIT, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Giammarino Pugliese
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia, Genova 16146, Italy
| | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia, Genova 16146, Italy
| | - Alberto Diaspro
- Nanoscopy&NIC@IIT, Istituto Italiano di Tecnologia, Genova 16163, Italy
- Dipartimento di Fisica, Università di Genova, Genova 16163, Italy
| | - Silvia Dante
- Nanoscopy&NIC@IIT, Istituto Italiano di Tecnologia, Genova 16163, Italy
| |
Collapse
|
45
|
Nakamura H, Sezawa K, Hata M, Ohsaki S, Watano S. Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential. Phys Chem Chem Phys 2019; 21:18830-18838. [DOI: 10.1039/c9cp02935d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles directly translocate across a cell membrane by a locally enhanced membrane potential at the NP/cell-membrane contact interface.
Collapse
Affiliation(s)
- Hideya Nakamura
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Kyohei Sezawa
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Masataka Hata
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Satoru Watano
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| |
Collapse
|
46
|
Clustering and separation of hydrophobic nanoparticles in lipid bilayer explained by membrane mechanics. Sci Rep 2018; 8:10810. [PMID: 30018296 PMCID: PMC6050295 DOI: 10.1038/s41598-018-28965-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 01/05/2023] Open
Abstract
Small hydrophobic gold nanoparticles with diameter lower than the membrane thickness can form clusters or uniformly distribute within the hydrophobic core of the bilayer. The coexistence of two stable phases (clustered and dispersed) indicates the energy barrier between nanoparticles. We calculated the distance dependence of the membrane-mediated interaction between two adjacent nanoparticles. In our model we consider two deformation modes: the monolayer bending and the hydroxycarbon chain stretching. Existence of an energy barrier between the clustered and the separated state of nanoparticles was predicted. Variation analysis of the membrane mechanical parameters revealed that the energy barrier between two membrane embedded nanoparticles is mainly the consequence of the bending deformation and not change of the thickness of the bilayer in the vicinity of nanoparticles. It is shown, that the forces between the nanoparticles embedded in the biological membrane could be either attractive or repulsive, depending on the mutual distance between them.
Collapse
|
47
|
Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:749-771. [PMID: 28865004 PMCID: PMC5693983 DOI: 10.1007/s00249-017-1250-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/20/2017] [Accepted: 08/22/2017] [Indexed: 10/27/2022]
Abstract
Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.
Collapse
|
48
|
Pohjolainen E, Malola S, Groenhof G, Häkkinen H. Exploring Strategies for Labeling Viruses with Gold Nanoclusters through Non-equilibrium Molecular Dynamics Simulations. Bioconjug Chem 2017; 28:2327-2339. [DOI: 10.1021/acs.bioconjchem.7b00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emmi Pohjolainen
- Department of Physics and ‡Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland FI-40014
| | - Sami Malola
- Department of Physics and ‡Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland FI-40014
| | - Gerrit Groenhof
- Department of Physics and ‡Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland FI-40014
| | - Hannu Häkkinen
- Department of Physics and ‡Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland FI-40014
| |
Collapse
|
49
|
Sharma H, Dormidontova EE. Lipid Nanodisc-Templated Self-Assembly of Gold Nanoparticles into Strings and Rings. ACS NANO 2017; 11:3651-3661. [PMID: 28291322 DOI: 10.1021/acsnano.6b08043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit strong fluorescent and electromagnetic properties, which can be enhanced upon clustering and used in therapeutic, imaging, and sensing applications. A combination of gold nanoparticles with lipid nanodiscs can be attractive for AuNP self-assembly and useful in biomedical applications. Using molecular dynamics simulations we show that lipid nanodiscs can serve as templates for AuNP clustering into rings and string-like structures. We demonstrate that equilibrium encapsulation of 1 nm hydrophobically modified AuNPs into lipid nanodiscs composed of a mixture of dipalmitoylphosphatidylcholine (DPPC) and dihexanoylphosphatidylcholine (DHPC) lipids occurs at the rim and results in formation of a ring of gold. The interior of the nanodisc is inaccessible to AuNPs due to the DPPC liquid crystalline order. With temperature increase the lipid order diminishes, initiating the nanodisc transformation into a vesicle, upon which encapsulated AuNPs cluster into a close-packed string or nanoring, thereby stalling the vesiculation process at a "round vase" or cup-like stage depending on the AuNP concentration. In contrast, encapsulation of AuNPs by an equilibrium lipid vesicle results in its deformation with randomly clustered AuNPs, in agreement with experimental observations. We characterize the AuNP cluster size and surface-to-surface pair distribution, both of which impact the AuNP luminescent properties. We investigate the effect of alkane tether length on the nanodisc stability and AuNP clustering inside the nanodiscs and vesicles. Our results show that lipid nanodiscs can enhance gold cluster formation, which can be further exploited in imaging applications.
Collapse
Affiliation(s)
- Hari Sharma
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Elena E Dormidontova
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
50
|
Angelikopoulos P, Sarkisov L, Cournia Z, Gkeka P. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes. NANOSCALE 2017; 9:1040-1048. [PMID: 27740657 DOI: 10.1039/c6nr05853a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ligand-functionalized nanoparticles (NPs) are a promising platform for imaging and drug delivery applications. A number of recent molecular simulation and theoretical studies explored how these NPs interact with model lipid membranes. However, interactions between ligand-coated NPs leading to possible cooperative effects and association have not been investigated. In this coarse-grained molecular dynamics study, we focus on a specific case of several anionic, ligand-coated NPs embedded in a lipid membrane. Several new effects are observed. Specifically, in the presence of cholesterol in the membrane, NPs tend to form linear clusters, or chains. Analysis of the driving forces for this association reveals an important role of the recently discovered orderphobic effect, although we acknowledge that a combination of factors must be at play. At the same time, we argue that the specific linear shape of the clusters is a result of a subtle balance between the forces that stabilize a NP in the membrane and the forces that drive the NP-NP association processes. These effects, observed for the first time in the NP-membrane systems, have also direct correspondence to similar effects in protein-membrane systems and these links between the two realms should be explored further.
Collapse
Affiliation(s)
| | - Lev Sarkisov
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| | - Paraskevi Gkeka
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|