1
|
Zhao JQ, Feng BY, Ye ZL, Ma XY, Du JZ, Li JM, Wu WL, Gao JJ, Li SJ, Peng SY, Huai JS, Ge LH, Lu CB. Activation of D2-like dopamine receptors improves the neuronal network and cognitive function of PPT1KI mice. Acta Pharmacol Sin 2025; 46:338-352. [PMID: 39284877 PMCID: PMC11747101 DOI: 10.1038/s41401-024-01377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/08/2024] [Indexed: 01/22/2025]
Abstract
Palmitoyl-protein thioesterase 1 (PPT1) is a lysosomal depalmitoylation enzyme that mediates protein posttranslational modifications. Loss-of-function mutation of PPT1 causes a failure of the lysosomal degradation of palmitoylated proteins and results in a congenital disease characterized by progressive neuronal degeneration referred to as infantile neuronal ceroid lipofuscinosis (INCL). A mouse knock-in model of PPT1 (PPT1-KI) was established by introducing the R151X mutation into exon 5 of the PPT1 gene, which exhibited INCL-like pathological lesions. We previously reported that hippocampal γ oscillations were impaired in PPT1 mice. Hippocampal γ oscillations can be enhanced by selective activation of the dopamine D4 receptor (DR4), a dopamine D2-like receptor. In this study, we investigated the changes in DR expression and the effects of dopamine and various DR agonists on neural network activity, cognition and motor function in PPT1KI mice. Cognition and motor defects were evaluated via Y-maze, novel object recognition and rotarod tests. Extracellular field potentials were elicited in hippocampal slices, and neuronal network oscillations in the gamma frequency band (γ oscillations) were induced by perfusion with kainic acid (200 nM). PPT1KI mice displayed progressive impairments in γ oscillations and hippocampus-related memory, as well as abnormal expression profiles of dopamine receptors with preserved expression of DR1 and 3, increased membrane expression of DR4 and decreased DR2 levels. The immunocytochemistry analysis revealed the colocalization of PPT1 with DR4 or DR2 in the soma and large dendrites of both WT and PPT1KI mice. Immunoprecipitation confirmed the interaction between PPT1 and DR4 or DR2. The impaired γ oscillations and cognitive functions were largely restored by the application of exogenous dopamine, the selective DR2 agonist quinpirole or the DR4 agonist A412997. Furthermore, the administration of A412997 (0.5 mg/kg, i.p.) significantly upregulated the activity of CaMKII in the hippocampus of 5-month-old PPT1KI mice. Collectively, these results suggest that the activation of D2-like dopamine receptors improves cognition and network activity in PPT1KI mice and that specific DR subunits may be potential targets for the intervention of neurodegenerative disorders, such as INCL.
Collapse
Affiliation(s)
- Jun-Qiang Zhao
- First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435000, China
- School of Medical Imaging, Xinxiang Medical University, Xinxiang, 435000, China
| | - Bing-Yan Feng
- First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435000, China
| | - Zhen-Li Ye
- Henan International Joint Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 435000, China
| | - Xiao-Yin Ma
- Henan International Joint Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 435000, China
| | - Jing-Zhi Du
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 435000, China
| | - Jun-Mei Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 435000, China
| | - Wan-Liu Wu
- First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435000, China
| | - Jing-Jing Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 435000, China
| | - Song-Ji Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 435000, China
| | - Shi-Yong Peng
- Henan International Joint Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 435000, China
| | - Ji-Sen Huai
- Henan International Joint Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 435000, China
| | - Li-Hao Ge
- Henan International Joint Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 435000, China.
| | - Cheng-Biao Lu
- First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435000, China.
- Henan International Joint Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 435000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 435000, China.
| |
Collapse
|
2
|
Schroeter CA, Gorlova A, Sicker M, Umriukhin A, Burova A, Shulgin B, Morozov S, Costa-Nunes JP, Strekalova T. Unveiling the Mechanisms of a Remission in Major Depressive Disorder (MDD)-like Syndrome: The Role of Hippocampal Palmitoyltransferase Expression and Stress Susceptibility. Biomolecules 2025; 15:67. [PMID: 39858460 PMCID: PMC11764023 DOI: 10.3390/biom15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome. Here, we sought to investigate how susceptibility (sucrose preference below 65%) or resilience (sucrose preference > 65%) to stress-induced anhedonia affects DHHC gene expression in the hippocampus of C57BL/6J mice during the phase of spontaneous recovery from anhedonia. Because MDD is a recurrent disorder, it is important to understand the molecular mechanisms underlying not only the symptomatic phase of the disease but also a state of temporary remission. Indeed, molecular changes associated with the application of pharmacotherapy at the remission stage are currently not well understood. Therefore, we used a mouse model of chronic stress to address these questions. The stress protocol consisted of rat exposure, social defeat, restraint stress, and tail suspension. Mice from the stress group were not treated, received imipramine via drinking water (7 mg/kg/day), or received intraperitoneal injections of dicholine succinate (DS; 25 mg/kg/day) starting 7 days prior to stress and continuing during a 14-day stress procedure. Controls were either untreated or treated with either of the two drugs. At the 1st after-stress week, sucrose preference, forced swim, novel cage, and fear-conditioning tests were carried out; the sucrose test and 5-day Morris water maze test followed by a sacrifice of mice on post-stress day 31 for all mice were performed. Transcriptome Illumina analysis of hippocampi was carried out. Using the RT-PCR, the hippocampal gene expression of Dhhc3, Dhhc7, Dhhc8, Dhhc13, Dhhc14, and Dhhc21 was studied. We found that chronic stress lowered sucrose preference in a subgroup of mice that also exhibited prolonged floating behavior, behavioral invigoration, and impaired contextual fear conditioning, while auditory conditioning was unaltered. At the remission phase, no changes in the sucrose test were found, and the acquisition of the Morris water maze was unchanged in all groups. In anhedonic, but not resilient animals, Dhhc8 expression was lowered, and the expression of Dhhc14 was increased. Antidepressant treatment with either drug partially preserved gene expression changes and behavioral abnormalities. Our data suggest that Dhhc8 and Dhhc14 are likely to be implicated in the mechanisms of depression at the remission stage, serving as targets for preventive therapy.
Collapse
Affiliation(s)
- Careen A. Schroeter
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Anna Gorlova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Sicker
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Aleksei Umriukhin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
| | - Alisa Burova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Boris Shulgin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
- Laboratory of Engineering Profile Physical and Chemical Methods of Analysis, Korkyt Ata Kyzylorda State University, Kyzylorda 120014, Kazakhstan
| | - Sergey Morozov
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Joao P. Costa-Nunes
- Faculdade de Medicina, Universidade de Lisboa, Campo Grande, 1649-028 Lisboa, Portugal;
| | - Tatyana Strekalova
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| |
Collapse
|
3
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
4
|
Mönnich D, Humphrys LJ, Höring C, Hoare BL, Forster L, Pockes S. Activation of Multiple G Protein Pathways to Characterize the Five Dopamine Receptor Subtypes Using Bioluminescence Technology. ACS Pharmacol Transl Sci 2024; 7:834-854. [PMID: 38481695 PMCID: PMC10928903 DOI: 10.1021/acsptsci.3c00339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 11/01/2024]
Abstract
G protein-coupled receptors show preference for G protein subtypes but can recruit multiple G proteins with various downstream signaling cascades. This functional selection can guide drug design. Dopamine receptors are both stimulatory (D1-like) and inhibitory (D2-like) with diffuse expression across the central nervous system. Functional selectivity of G protein subunits may help with dopamine receptor targeting and their downstream effects. Three bioluminescence-based assays were used to characterize G protein coupling and function with the five dopamine receptors. Most proximal to ligand binding was the miniG protein assay with split luciferase technology used to measure recruitment. For endogenous and selective ligands, the G-CASE bioluminescence resonance energy transfer (BRET) assay measured G protein activation and receptor selectivity. Downstream, the BRET-based CAMYEN assay quantified cyclic adenosine monophosphate (cAMP) changes. Several dopamine receptor agonists and antagonists were characterized for their G protein recruitment and cAMP effects. G protein selectivity with dopamine revealed potential Gq coupling at all five receptors, as well as the ability to activate subtypes with the "opposite" effects to canonical signaling. D1-like receptor agonist (+)-SKF-81297 and D2-like receptor agonist pramipexole showed selectivity at all receptors toward Gs or Gi/o/z activation, respectively. The five dopamine receptors show a wide range of potentials for G protein coupling and activation, reflected in their downstream cAMP signaling. Targeting these interactions can be achieved through drug design. This opens the door to pharmacological treatment with more selectivity options for inducing the correct physiological events.
Collapse
Affiliation(s)
- Denise Mönnich
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Carina Höring
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Bradley L. Hoare
- Florey
Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lisa Forster
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Kim KM. Unveiling the Differences in Signaling and Regulatory Mechanisms between Dopamine D2 and D3 Receptors and Their Impact on Behavioral Sensitization. Int J Mol Sci 2023; 24:ijms24076742. [PMID: 37047716 PMCID: PMC10095578 DOI: 10.3390/ijms24076742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Dopamine receptors are classified into five subtypes, with D2R and D3R playing a crucial role in regulating mood, motivation, reward, and movement. Whereas D2R are distributed widely across the brain, including regions responsible for motor functions, D3R are primarily found in specific areas related to cognitive and emotional functions, such as the nucleus accumbens, limbic system, and prefrontal cortex. Despite their high sequence homology and similar signaling pathways, D2R and D3R have distinct regulatory properties involving desensitization, endocytosis, posttranslational modification, and interactions with other cellular components. In vivo, D3R is closely associated with behavioral sensitization, which leads to increased dopaminergic responses. Behavioral sensitization is believed to result from D3R desensitization, which removes the inhibitory effect of D3R on related behaviors. Whereas D2R maintains continuous signal transduction through agonist-induced receptor phosphorylation, arrestin recruitment, and endocytosis, which recycle and resensitize desensitized receptors, D3R rarely undergoes agonist-induced endocytosis and instead is desensitized after repeated agonist exposure. In addition, D3R undergoes more extensive posttranslational modifications, such as glycosylation and palmitoylation, which are needed for its desensitization. Overall, a series of biochemical settings more closely related to D3R could be linked to D3R-mediated behavioral sensitization.
Collapse
Affiliation(s)
- Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| |
Collapse
|
6
|
Newman AH, Xi ZX, Heidbreder C. Current Perspectives on Selective Dopamine D 3 Receptor Antagonists/Partial Agonists as Pharmacotherapeutics for Opioid and Psychostimulant Use Disorders. Curr Top Behav Neurosci 2023; 60:157-201. [PMID: 35543868 PMCID: PMC9652482 DOI: 10.1007/7854_2022_347] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over three decades of evidence indicate that dopamine (DA) D3 receptors (D3R) are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders (SUD). The expectation that a selective D3R antagonist/partial agonist would be efficacious for the treatment of SUD is based on the following key observations. First, D3R are distributed in strategic areas belonging to the mesolimbic DA system such as the ventral striatum, midbrain, and ventral pallidum, which have been associated with behaviors controlled by the presentation of drug-associated cues. Second, repeated exposure to drugs of abuse produces neuroadaptations in the D3R system. Third, the synthesis and characterization of highly potent and selective D3R antagonists/partial agonists have further strengthened the role of the D3R in SUD. Based on extensive preclinical and preliminary clinical evidence, the D3R shows promise as a target for the development of pharmacotherapies for SUD as reflected by their potential to (1) regulate the motivation to self-administer drugs and (2) disrupt the responsiveness to drug-associated stimuli that play a key role in reinstatement of drug-seeking behavior triggered by re-exposure to the drug itself, drug-associated environmental cues, or stress. The availability of PET ligands to assess clinically relevant receptor occupancy by selective D3R antagonists/partial agonists, the definition of reliable dosing, and the prospect of using human laboratory models may further guide the design of clinical proof of concept studies. Pivotal clinical trials for more rapid progression of this target toward regulatory approval are urgently required. Finally, the discovery that highly selective D3R antagonists, such as R-VK4-116 and R-VK4-40, do not adversely affect peripheral biometrics or cardiovascular effects alone or in the presence of oxycodone or cocaine suggests that this class of drugs has great potential in safely treating psychostimulant and/or opioid use disorders.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD, USA.
| | - Zheng-Xiong Xi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
7
|
Yang Z, Xu H, Wang J, Chen W, Zhao M. Single-Molecule Fluorescence Techniques for Membrane Protein Dynamics Analysis. APPLIED SPECTROSCOPY 2021; 75:491-505. [PMID: 33825543 DOI: 10.1177/00037028211009973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorescence-based single-molecule techniques, mainly including fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence resonance energy transfer (smFRET), are able to analyze the conformational dynamics and diversity of biological macromolecules. They have been applied to analysis of the dynamics of membrane proteins, such as membrane receptors and membrane transport proteins, due to their superior ability in resolving spatio-temporal heterogeneity and the demand of trace amounts of analytes. In this review, we first introduced the basic principle involved in FCS and smFRET. Then we summarized the labeling and immobilization strategies of membrane protein molecules, the confocal-based and TIRF-based instrumental configuration, and the data processing methods. The applications to membrane protein dynamics analysis are described in detail with the focus on how to select suitable fluorophores, labeling sites, experimental setup, and analysis methods. In the last part, the remaining challenges to be addressed and further development in this field are also briefly discussed.
Collapse
Affiliation(s)
- Ziyu Yang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Haiqi Xu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| |
Collapse
|
8
|
Increased novelty-induced locomotion, sensitivity to amphetamine, and extracellular dopamine in striatum of Zdhhc15-deficient mice. Transl Psychiatry 2021; 11:65. [PMID: 33462194 PMCID: PMC7813841 DOI: 10.1038/s41398-020-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Novelty-seeking behaviors and impulsivity are personality traits associated with several psychiatric illnesses including attention deficits hyperactivity disorders. The underlying neural mechanisms remain poorly understood. We produced and characterized a line of knockout mice for zdhhc15, which encodes a neural palmitoyltransferase. Genetic defects of zdhhc15 were implicated in intellectual disability and behavioral anomalies in humans. Zdhhc15-KO mice showed normal spatial learning and working memory but exhibited a significant increase in novelty-induced locomotion in open field. Striatal dopamine content was reduced but extracellular dopamine levels were increased during the habituation phase to a novel environment. Administration of amphetamine and methylphenidate resulted in a significant increase in locomotion and extracellular dopamine levels in the ventral striatum of mutant mice compared to controls. Number and projections of dopaminergic neurons in the nigrostriatal and mesolimbic pathways were normal. No significant change in the basal palmitoylation of known ZDHHC15 substrates including DAT was detected in striatum of zdhhc15 KO mice using an acyl-biotin exchange assay. These results support that a transient, reversible, and novelty-induced elevation of extracellular dopamine in ventral striatum contributes to novelty-seeking behaviors in rodents and implicate ZDHHC15-mediated palmitoylation as a novel regulatory mechanism of dopamine in the striatum.
Collapse
|
9
|
Adachi N, Hess DT, Kaku M, Ueda C, Numa C, Saito N. Differential S-palmitoylation of the human and rodent β 3-adrenergic receptors. J Biol Chem 2018; 294:2569-2578. [PMID: 30541923 DOI: 10.1074/jbc.ra118.004978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
With few reported exceptions, G protein-coupled receptors (GPCRs) are modified by Cys palmitoylation (S-palmitoylation). In multiple GPCRs, S-palmitoylation targets a canonical site within the C-terminal cytoplasmic tail adjacent to the C terminus of the seventh transmembrane domain, but modification of additional sites is exemplified by the β-adrenergic receptors (βARs). The β1AR is S-palmitoylated at a second, more distal site within the C-terminal tail, and the β2AR is modified at a second site within the third intracellular loop, neither of which is conserved in other βAR isoforms. The functional roles of S-palmitoylation of disparate sites are incompletely characterized for any GPCR family. Here, we describe S-palmitoylation of the β3AR. We compared mouse and human β3ARs and found that both were S-palmitoylated at the canonical site within the C-terminal tail, Cys-358 and Cys-361/363 in mouse and human β3ARs, respectively. Surprisingly, the human β3AR was S-palmitoylated at two additional sites, Cys-153 and Cys-292 within the second and third intracellular loops, respectively. Cys-153 is apparently unique to the human β3AR, and Cys-292 is conserved primarily in primates. Mutational substitution of C-tail Cys in human but not mouse β3ARs resulted in diminished ligand-induced cAMP production. Substitution of Cys-153, Cys-292, or Cys-361/363 within the human β3AR diminished membrane-receptor abundance, but only Cys-361/363 substitution diminished membrane-receptor half-life. Thus, S-palmitoylation of different sites differentially regulates the human β3AR, and differential S-palmitoylation distinguishes human and rodent β3ARs, potentially contributing to species-specific differences in the clinical efficacy of β3AR-directed pharmacological approaches to disease.
Collapse
Affiliation(s)
- Naoko Adachi
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| | - Douglas T Hess
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Mika Kaku
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| | - Chie Ueda
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| | - Chisato Numa
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| | - Naoaki Saito
- From the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan and
| |
Collapse
|
10
|
Zaręba-Kozioł M, Figiel I, Bartkowiak-Kaczmarek A, Włodarczyk J. Insights Into Protein S-Palmitoylation in Synaptic Plasticity and Neurological Disorders: Potential and Limitations of Methods for Detection and Analysis. Front Mol Neurosci 2018; 11:175. [PMID: 29910712 PMCID: PMC5992399 DOI: 10.3389/fnmol.2018.00175] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
S-palmitoylation (S-PALM) is a lipid modification that involves the linkage of a fatty acid chain to cysteine residues of the substrate protein. This common posttranslational modification (PTM) is unique among other lipid modifications because of its reversibility. Hence, like phosphorylation or ubiquitination, it can act as a switch that modulates various important physiological pathways within the cell. Numerous studies revealed that S-PALM plays a crucial role in protein trafficking and function throughout the nervous system. Notably, the dynamic turnover of palmitate on proteins at the synapse may provide a key mechanism for rapidly changing synaptic strength. Indeed, palmitate cycling on postsynaptic density-95 (PSD-95), the major postsynaptic density protein at excitatory synapses, regulates the number of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and thus affects synaptic transmission. Accumulating evidence suggests a relationship between impairments in S-PALM and severe neurological disorders. Therefore, determining the precise levels of S-PALM may be essential for understanding the ways in which this PTM is regulated in the brain and controls synaptic dynamics. Protein S-PALM can be characterized using metabolic labeling methods and biochemical tools. Both approaches are discussed herein in the context of specific methods and their advantages and disadvantages. This review clearly shows progress in the field, which has led to the development of new, more sensitive techniques that enable the detection of palmitoylated proteins and allow predictions of potential palmitate binding sites. Unfortunately, one significant limitation of these approaches continues to be the inability to use them in living cells.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast 2018; 2018:5701348. [PMID: 29849559 PMCID: PMC5903346 DOI: 10.1155/2018/5701348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.
Collapse
|
12
|
Prieto GA. Abnormalities of Dopamine D 3 Receptor Signaling in the Diseased Brain. J Cent Nerv Syst Dis 2017; 9:1179573517726335. [PMID: 28855798 PMCID: PMC5562332 DOI: 10.1177/1179573517726335] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023] Open
Abstract
Dopamine D3 receptors (D3R) modulate neuronal activity in several brain regions including cortex, striatum, cerebellum, and hippocampus. A growing body of evidence suggests that aberrant D3R signaling contributes to multiple brain diseases, such as Parkinson’s disease, essential tremor, schizophrenia, and addiction. In line with these findings, D3R has emerged as a potential target in the treatment of neurological disorders. However, the mechanisms underlying neuronal D3R signaling are poorly understood, either in healthy or diseased brain. Here, I review the molecular mechanisms involved in D3R signaling via monomeric D3R and heteromeric receptor complexes (e.g., D3R-D1R, D3R-D2R, D3R-A2aR, and D3R-D3nf). I focus on D3R signaling pathways that, according to recent reports, contribute to pathological brain states. In particular, I describe evidence on both quantitative (e.g., increased number or affinity) and qualitative (e.g., switched signaling) changes in D3R that has been associated with brain dysfunction. I conclude with a description of basic mechanisms that modulate D3R signaling such as desensitization, as disruption of these mechanisms may underlie pathological changes in D3R signaling. Because several lines of evidence support the idea that imbalances in D3R signaling alter neural function, a better understanding of downstream D3R pathways is likely to reveal novel therapeutic strategies toward dopamine-related brain disorders.
Collapse
Affiliation(s)
- G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
13
|
Zhang X, Kim KM. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis. Biomol Ther (Seoul) 2017; 25:26-43. [PMID: 28035080 PMCID: PMC5207461 DOI: 10.4062/biomolther.2016.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
14
|
Zhang X, Kim KM. Palmitoylation of the carboxyl-terminal tail of dopamine D4 receptor is required for surface expression, endocytosis, and signaling. Biochem Biophys Res Commun 2016; 479:398-403. [DOI: 10.1016/j.bbrc.2016.09.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 02/01/2023]
|