1
|
Zhang T, Jin Q, Ji J. Antimicrobial Peptides and Their Mimetics: Promising Candidates of Next-Generation Therapeutic Agents Combating Multidrug-Resistant Bacteria. Adv Biol (Weinh) 2025; 9:e2400461. [PMID: 39913150 DOI: 10.1002/adbi.202400461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/05/2025] [Indexed: 02/07/2025]
Abstract
The increasing morbidity and mortality caused by multidrug-resistant bacteria alerts human beings to the fact that conventional antibiotics are no longer reliable and effective alternatives are imperatively needed. Owing to wide range of sources, diverse structures, and unique mode of action, antimicrobial peptides have been highly anticipated and extensively studied in recent years. Besides, the integration of artificial intelligence helps researchers gain access to the vast unexplored chemical space, which opens more opportunities for the optimization and design of novel structures. Moreover, Due to advances in chemistry and synthetic biology, researchers have also begun to focus on the potential of chemical mimetics of antimicrobial peptides. In this review, a comprehensive discussion about natural and synthesized antimicrobial peptides as well as their chemical mimetics is made, so as to provide a comprehensive summary of this field and inspire follow-up research.
Collapse
Affiliation(s)
- Tianyi Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
2
|
Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y, Shi J. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther 2025; 10:74. [PMID: 40038239 DOI: 10.1038/s41392-024-02107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
The successful approval of peptide-based drugs can be attributed to a collaborative effort across multiple disciplines. The integration of novel drug design and synthesis techniques, display library technology, delivery systems, bioengineering advancements, and artificial intelligence have significantly expedited the development of groundbreaking peptide-based drugs, effectively addressing the obstacles associated with their character, such as the rapid clearance and degradation, necessitating subcutaneous injection leading to increasing patient discomfort, and ultimately advancing translational research efforts. Peptides are presently employed in the management and diagnosis of a diverse array of medical conditions, such as diabetes mellitus, weight loss, oncology, and rare diseases, and are additionally garnering interest in facilitating targeted drug delivery platforms and the advancement of peptide-based vaccines. This paper provides an overview of the present market and clinical trial progress of peptide-based therapeutics, delivery platforms, and vaccines. It examines the key areas of research in peptide-based drug development through a literature analysis and emphasizes the structural modification principles of peptide-based drugs, as well as the recent advancements in screening, design, and delivery technologies. The accelerated advancement in the development of novel peptide-based therapeutics, including peptide-drug complexes, new peptide-based vaccines, and innovative peptide-based diagnostic reagents, has the potential to promote the era of precise customization of disease therapeutic schedule.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wenjie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junyi Mao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yonghe Hu
- School of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Alexander PJ, Oyama LB, Olleik H, Godoy Santos F, O'Brien S, Cookson A, Cochrane SA, Gilmore BF, Maresca M, Huws SA. Microbiome-derived antimicrobial peptides show therapeutic activity against the critically important priority pathogen, Acinetobacter baumannii. NPJ Biofilms Microbiomes 2024; 10:92. [PMID: 39349945 PMCID: PMC11443000 DOI: 10.1038/s41522-024-00560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Acinetobacter baumannii is designated by the World Health Organisation as a critical priority pathogen. Previously we discovered antimicrobial peptides (AMPs), namely Lynronne-1, -2 and -3, with efficacy against bacterial pathogens, such as Staphylococcus aureus and Pseudomonas aeruginosa. Here we assessed Lynronne-1, -2 and -3 structure by circular dichroism and efficacy against clinical strains of A. baumannii. All Lynronne AMPs demonstrated alpha-helical secondary structures and had antimicrobial activity towards all tested strains of A. baumannii (Minimum Inhibitory Concentrations 2-128 μg/ml), whilst also having anti-biofilm activity. Lynronne-2 and -3 demonstrated additive effects with amoxicillin and erythromycin, and synergy with gentamicin. The AMPs demonstrated little toxicity towards mammalian cell lines or Galleria mellonella. Fluorescence-based assay data demonstrated that Lynronne-1 and -3 had higher membrane-destabilising action against A. baumannii in comparison with Lynronne-2, which was corroborated by transcriptomic analysis. For the first time, we demonstrate the therapeutic activity of Lynronne AMPs against A. baumannii.
Collapse
Affiliation(s)
- P J Alexander
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - L B Oyama
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - H Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - F Godoy Santos
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - S O'Brien
- School of Pharmacy, QUB, Medical Biology Centre, Belfast, UK
| | - A Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - S A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - B F Gilmore
- School of Pharmacy, QUB, Medical Biology Centre, Belfast, UK
| | - M Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - S A Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
4
|
Shariati A, Kashi M, Chegini Z, Hosseini SM. Antibiotics-free compounds for managing carbapenem-resistant bacteria; a narrative review. Front Pharmacol 2024; 15:1467086. [PMID: 39355778 PMCID: PMC11442292 DOI: 10.3389/fphar.2024.1467086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Carbapenem-resistant (CR) Gram-negative bacteria have become a significant public health problem in the last decade. In recent years, the prevalence of CR bacteria has increased. The resistance to carbapenems could result from different mechanisms such as loss of porin, penicillin-binding protein alteration, carbapenemase, efflux pump, and biofilm community. Additionally, genetic variations like insertion, deletion, mutation, and post-transcriptional modification of corresponding coding genes could decrease the susceptibility of bacteria to carbapenems. In this regard, scientists are looking for new approaches to inhibit CR bacteria. Using bacteriophages, natural products, nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed promising inhibitory effects against CR bacteria. Additionally, the mentioned compounds could destroy the biofilm community of CR bacteria. Using them in combination with conventional antibiotics increases the efficacy of antibiotics, decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics. Therefore, in the present review article, we have discussed different aspects of non-antibiotic approaches for managing and inhibiting the CR bacteria and various methods and procedures used as an alternative for carbapenems against these bacteria.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Kashi
- Student research committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Zhou Y, Yang Y, Zhao D, Yi M, Ma Z, Gao Z. Ribosomal protein L17 functions as an antimicrobial protein in amphioxus. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109791. [PMID: 39067494 DOI: 10.1016/j.fsi.2024.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Antimicrobial peptides (AMPs), characterized by their cationic nature and amphiphilic properties, play a pivotal role in inhibiting the biological activity of microbes. Currently, only a fraction of the antimicrobial potential within the ribosomal protein family has been explored, despite its extensive membership and resemblance to AMPs. Herein we demonstrated that amphioxus RPL17 (BjRPL17) exhibited not only upregulated expression upon bacterial stimulation but also possessed bactericidal capabilities against both Gram-negative and -positive bacteria through combined action mechanisms including interaction with cell surface molecules LPS, LTA, and PGN, disruption of cell membrane integrity, promotion of membrane depolarization, and induction of intracellular ROS production. Furthermore, a peptide derived from residues 127-141 of BjRPL17 (termed BjRPL17-1) showed antibacterial activity against Staphylococcus aureus and its methicillin-resistant strain via the same mechanism observed for the full-length protein. Additionally, the rpl17 gene was highly conserved in Metazoa, hinting it may play a universal role in the antibacterial defense system in different animals. Importantly, neither BjRPL17 nor peptide BjRPL17-1 exhibited toxicity towards mammalian cells thereby offering prospects for designing novel AMP agents based on these findings. Collectively, our results establish RPL17 as a novel member of AMPs with remarkable evolutionary conservation.
Collapse
Affiliation(s)
- Yucong Zhou
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yifan Yang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Dongchu Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mengmeng Yi
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zengyu Ma
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Zhan Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
6
|
de la Lastra JMP, Wardell SJT, Pal T, de la Fuente-Nunez C, Pletzer D. From Data to Decisions: Leveraging Artificial Intelligence and Machine Learning in Combating Antimicrobial Resistance - a Comprehensive Review. J Med Syst 2024; 48:71. [PMID: 39088151 PMCID: PMC11294375 DOI: 10.1007/s10916-024-02089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
The emergence of drug-resistant bacteria poses a significant challenge to modern medicine. In response, Artificial Intelligence (AI) and Machine Learning (ML) algorithms have emerged as powerful tools for combating antimicrobial resistance (AMR). This review aims to explore the role of AI/ML in AMR management, with a focus on identifying pathogens, understanding resistance patterns, predicting treatment outcomes, and discovering new antibiotic agents. Recent advancements in AI/ML have enabled the efficient analysis of large datasets, facilitating the reliable prediction of AMR trends and treatment responses with minimal human intervention. ML algorithms can analyze genomic data to identify genetic markers associated with antibiotic resistance, enabling the development of targeted treatment strategies. Additionally, AI/ML techniques show promise in optimizing drug administration and developing alternatives to traditional antibiotics. By analyzing patient data and clinical outcomes, these technologies can assist healthcare providers in diagnosing infections, evaluating their severity, and selecting appropriate antimicrobial therapies. While integration of AI/ML in clinical settings is still in its infancy, advancements in data quality and algorithm development suggest that widespread clinical adoption is forthcoming. In conclusion, AI/ML holds significant promise for improving AMR management and treatment outcome.
Collapse
Affiliation(s)
- José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206, San Cristóbal de la Laguna, (Santa Cruz de Tenerife), Spain.
| | - Samuel J T Wardell
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Tarun Pal
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand.
| |
Collapse
|
7
|
Quigua-Orozco RM, Andrade IEP, Oshiro KGN, Rezende SB, Santos ADO, Pereira JAL, da Silva VG, Buccini DF, Porto WF, Macedo MLR, Cardoso MH, Franco OL. In silico optimization of analogs derived pro-adrenomedullin peptide to evaluate antimicrobial potential. Chem Biol Drug Des 2024; 104:e14588. [PMID: 39048531 DOI: 10.1111/cbdd.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Diverse computational approaches have been widely used to assist in designing antimicrobial peptides with enhanced activities. This tactic has also been used to address the need for new treatment alternatives to combat resistant bacterial infections. Herein, we have designed eight variants from a natural peptide, pro-adrenomedullin N-terminal 20 peptide (PAMP), using an in silico pattern insertion approach, the Joker algorithm. All the variants show an α-helical conformation, but with differences in the helix percentages according to circular dichroism (CD) results. We found that the C-terminal portion of PAMP may be relevant for its antimicrobial activities, as revealed by the molecular dynamics, CD, and antibacterial results. The analogs showed variable antibacterial potential, but most were not cytotoxic. Nevertheless, PAMP2 exhibited the most potent activities against human and animal-isolated bacteria, showing cytotoxicity only at a substantially higher concentration than its minimal inhibitory concentration (MIC). Our results suggest that the enhanced activity in the profile of PAMP2 may be related to their particular physicochemical properties, along with the adoption of an amphipathic α-helical arrangement with the conserved C-terminus portion. Finally, the peptides designed in this study can constitute scaffolds for the design of improved sequences.
Collapse
Affiliation(s)
- Raquel M Quigua-Orozco
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Isadora E P Andrade
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Alexandre Duarte O Santos
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Julia A L Pereira
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Viviane G da Silva
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Danieli F Buccini
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - William F Porto
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
8
|
Fleitas O, Fontes W, De Souza CM, Da Costa MC, Cardoso MH, Castro MS, Sousa MV, Ricart CAO, Ramada MHS, Duque HM, Porto WF, Silva ON, Franco OL. A proteomic perspective on the resistance response of Klebsiella pneumoniae to antimicrobial peptide PaDBS1R1. J Antimicrob Chemother 2024; 79:112-122. [PMID: 37966053 DOI: 10.1093/jac/dkad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The synthetic antimicrobial peptide, PaDBS1R1, has been reported as a powerful anti-Klebsiella pneumoniae antimicrobial. However, there is only scarce knowledge about whether K. pneumoniae could develop resistance against PaDBS1R1 and which resistance mechanisms could be involved. OBJECTIVES Identify via label-free shotgun proteomics the K. pneumoniae resistance mechanisms developed against PaDBS1R1. METHODS An adaptive laboratory evolution experiment was performed to obtain a PaDBS1R1-resistant K. pneumoniae lineage. Antimicrobial susceptibility was determined through microdilution assay. Modifications in protein abundances between the resistant and sensitive lineages were measured via label-free quantitative shotgun proteomics. Enriched Gene Ontology terms and KEGG pathways were identified through over-representation analysis. Data are available via ProteomeXchange with identifier PXD033020. RESULTS K. pneumoniae ATCC 13883 parental strain challenged with increased subinhibitory PaDBS1R1 concentrations allowed the PaDBS1R1-resistant K. pneumoniae lineage to emerge. Proteome comparisons between PaDBS1R1-resistant K. pneumoniae and PaDBS1R1-sensitive K. pneumoniae under PaDBS1R1-induced stress conditions enabled the identification and quantification of 1702 proteins, out of which 201 were differentially abundant proteins (DAPs). The profiled DAPs comprised 103 up-regulated proteins (adjusted P value < 0.05, fold change ≥ 2) and 98 down-regulated proteins (adjusted P value < 0.05, fold change ≤ 0.5). The enrichment analysis suggests that PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery could be relevant resistance mechanisms against PaDBS1R1. CONCLUSIONS Based on experimental evolution and a label-free quantitative shotgun proteomic approach, we showed that K. pneumoniae developed resistance against PaDBS1R1, whereas PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery appear to be relevant resistance mechanisms against PaDBS1R1.
Collapse
Affiliation(s)
- Osmel Fleitas
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Wagner Fontes
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Universidade de Brasília, Brasília, Brazil
| | - Camila M De Souza
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Mylena C Da Costa
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Marlon H Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Mariana S Castro
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Universidade de Brasília, Brasília, Brazil
| | - Marcelo V Sousa
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Universidade de Brasília, Brasília, Brazil
| | - Carlos A O Ricart
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Universidade de Brasília, Brasília, Brazil
| | - Marcelo H S Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Harry M Duque
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Osmar N Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Evangélica de Anapólis, University City, 75083-515 Anápolis-GO, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
9
|
Serna N, López-Laguna H, Aceituno P, Rojas-Peña M, Parladé E, Voltà-Durán E, Martínez-Torró C, Sánchez JM, Di Somma A, Carratalá JV, Livieri AL, Ferrer-Miralles N, Vázquez E, Unzueta U, Roher N, Villaverde A. Efficient Delivery of Antimicrobial Peptides in an Innovative, Slow-Release Pharmacological Formulation. Pharmaceutics 2023; 15:2632. [PMID: 38004610 PMCID: PMC10674355 DOI: 10.3390/pharmaceutics15112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Both nanostructure and multivalency enhance the biological activities of antimicrobial peptides (AMPs), whose mechanism of action is cooperative. In addition, the efficacy of a particular AMP should benefit from a steady concentration at the local place of action and, therefore, from a slow release after a dynamic repository. In the context of emerging multi-resistant bacterial infections and the urgent need for novel and effective antimicrobial drugs, we tested these concepts through the engineering of four AMPs into supramolecular complexes as pharmacological entities. For that purpose, GWH1, T22, Pt5, and PaD, produced as GFP or human nidogen-based His-tagged fusion proteins, were engineered as self-assembling oligomeric nanoparticles ranging from 10 to 70 nm and further packaged into nanoparticle-leaking submicron granules. Since these materials slowly release functional nanoparticles during their time-sustained unpacking, they are suitable for use as drug depots in vivo. In this context, a particular AMP version (GWH1-NIDO-H6) was selected for in vivo validation in a zebrafish model of a complex bacterial infection. The GWH1-NIDO-H6-secreting protein granules are protective in zebrafish against infection by the multi-resistant bacterium Stenotrophomonas maltophilia, proving the potential of innovative formulations based on nanostructured and slowly released recombinant AMPs in the fight against bacterial infections.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Patricia Aceituno
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mauricio Rojas-Peña
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Julieta M. Sánchez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina
| | - Angela Di Somma
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
| | - Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Andrea L. Livieri
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| |
Collapse
|
10
|
Carratalá JV, Atienza-Garriga J, López-Laguna H, Vázquez E, Villaverde A, Sánchez JM, Ferrer-Miralles N. Enhanced recombinant protein capture, purity and yield from crude bacterial cell extracts by N-Lauroylsarcosine-assisted affinity chromatography. Microb Cell Fact 2023; 22:81. [PMID: 37098491 PMCID: PMC10131332 DOI: 10.1186/s12934-023-02081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Recombinant proteins cover a wide range of biomedical, biotechnological, and industrial needs. Although there are diverse available protocols for their purification from cell extracts or from culture media, many proteins of interest such as those containing cationic domains are difficult to purify, a fact that results in low yields of the final functional product. Unfortunately, this issue prevents the further development and industrial or clinical application of these otherwise interesting products. RESULTS Aiming at improving the purification of such difficult proteins, a novel procedure has been developed based on supplementing crude cell extracts with non-denaturing concentrations of the anionic detergent N-Lauroylsarcosine. The incorporation of this simple step in the downstream pipeline results in a substantial improvement of the protein capture by affinity chromatography, an increase of protein purity and an enhancement of the overall process yield, being the detergent not detectable in the final product. CONCLUSION By taking this approach, which represents a smart repurposing of N-Lauroylsarcosine applied to protein downstream, the biological activity of the protein is not affected. Being technologically simple, the N-Lauroylsarcosine-assisted protein purification might represent a critical improvement in recombinant protein production with wide applicability, thus smothering the incorporation of promising proteins into the protein market.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC., Av. Velez Sarsfield 1611, X 5016GCA, Córdoba, Argentina.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
11
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
12
|
Naiel MAE, Abd El-Hack ME, Patra AK. The Role of Antimicrobial Peptides (AMPs) in Aquaculture Farming. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:215-234. [DOI: 10.2174/9789815049015122010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Antimicrobial peptides (AMPs) are the vital constituents that stimulate the
innate immune defense system against pathogens and perform several biological
activities, which provide the first defensive line against infectious diseases. Owing to
their unique structure, they can be utilized as a therapeutic strategy for infectious
diseases in fishes. Several kinds of AMPs are reported in fishes with broad-spectrum
antimicrobial properties. Besides, the bacterial cells cannot develop resistance strains
against these cationic compounds with low molecular weight. Thus, AMPs may be
considered an alternative to antibiotics to prevent or control infectious diseases in
aquaculture. It is essential to provide sufficient knowledge about the mode of action of
AMPs against fish pathogenic agents and their future applications.
Collapse
Affiliation(s)
| | | | - Amlan Kumar Patra
- West Bengal University of Animal and Fishery Sciences,Department of Animal Nutrition,Kolkata,India
| |
Collapse
|
13
|
Cardoso MH, Chan LY, Cândido ES, Buccini DF, Rezende SB, Torres MDT, Oshiro KGN, Silva ÍC, Gonçalves S, Lu TK, Santos NC, de la Fuente-Nunez C, Craik DJ, Franco OL. An N-capping asparagine-lysine-proline (NKP) motif contributes to a hybrid flexible/stable multifunctional peptide scaffold. Chem Sci 2022; 13:9410-9424. [PMID: 36093022 PMCID: PMC9383710 DOI: 10.1039/d1sc06998e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
Structural diversity drives multiple biological activities and mechanisms of action in linear peptides. Here we describe an unusual N-capping asparagine-lysine-proline (NKP) motif that confers a hybrid multifunctional scaffold to a computationally designed peptide (PaDBS1R7). PaDBS1R7 has a shorter α-helix segment than other computationally designed peptides of similar sequence but with key residue substitutions. Although this motif acts as an α-helix breaker in PaDBS1R7, the Asn5 presents exclusive N-capping effects, forming a belt to establish hydrogen bonds for an amphipathic α-helix stabilization. The combination of these different structural profiles was described as a coil/N-cap/α-helix scaffold, which was also observed in diverse computational peptide mutants. Biological studies revealed that all peptides displayed antibacterial activities. However, only PaDBS1R7 displayed anticancer properties, eradicated Pseudomonas aeruginosa biofilms, decreased bacterial counts by 100-1000-fold in vivo, reduced lipopolysaccharide-induced macrophages stress, and stimulated fibroblast migration for wound healing. This study extends our understanding of an N-capping NKP motif to engineering hybrid multifunctional peptide drug candidates with potent anti-infective and immunomodulatory properties.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande - MS 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília SGAN 916 Módulo B, Asa Norte, Brasília - DF 70790160 Brazil
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro Asa Norte Brasília - DF 70910900 Brazil
- Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul Brazil
| | - Lai Y Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD, 4072 Australia
| | - Elizabete S Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande - MS 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília SGAN 916 Módulo B, Asa Norte, Brasília - DF 70790160 Brazil
| | - Danieli F Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande - MS 79117900 Brazil
| | - Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande - MS 79117900 Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, Penn Institute for Computational Science, University of Pennsylvania Philadelphia Pennsylvania USA
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande - MS 79117900 Brazil
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro Asa Norte Brasília - DF 70910900 Brazil
| | - Ítala C Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon Portugal
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Research Laboratory of Electronics, Department of Biological Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge - MA 02139 USA
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon Portugal
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, Penn Institute for Computational Science, University of Pennsylvania Philadelphia Pennsylvania USA
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD, 4072 Australia
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande - MS 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília SGAN 916 Módulo B, Asa Norte, Brasília - DF 70790160 Brazil
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro Asa Norte Brasília - DF 70910900 Brazil
| |
Collapse
|
14
|
Hurtado-Rios JJ, Carrasco-Navarro U, Almanza-Pérez JC, Ponce-Alquicira E. Ribosomes: The New Role of Ribosomal Proteins as Natural Antimicrobials. Int J Mol Sci 2022; 23:ijms23169123. [PMID: 36012387 PMCID: PMC9409020 DOI: 10.3390/ijms23169123] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
Moonlighting proteins are those capable of performing more than one biochemical or biophysical function within the same polypeptide chain. They have been a recent focus of research due to their potential applications in the health, pharmacological, and nutritional sciences. Among them, some ribosomal proteins involved in assembly and protein translation have also shown other functionalities, including inhibiting infectious bacteria, viruses, parasites, fungi, and tumor cells. Therefore, they may be considered antimicrobial peptides (AMPs). However, information regarding the mechanism of action of ribosomal proteins as AMPs is not yet fully understood. Researchers have suggested that the antimicrobial activity of ribosomal proteins may be associated with an increase in intracellular reactive oxidative species (ROS) in target cells, which, in turn, could affect membrane integrity and cause their inactivation and death. Moreover, the global overuse of antibiotics has resulted in an increase in pathogenic bacteria resistant to common antibiotics. Therefore, AMPs such as ribosomal proteins may have potential applications in the pharmaceutical and food industries in the place of antibiotics. This article provides an overview of the potential roles of ribosomes and AMP ribosomal proteins in conjunction with their potential applications.
Collapse
Affiliation(s)
- Jessica J. Hurtado-Rios
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - Julio Cesar Almanza-Pérez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
15
|
Alves ESF, de Santos BDPO, Rodrigues LV, Freitas CDP, dos Santos LHS, Dias SC, Franco OL, Lião LM, de Magalhães MTQ. Synoeca‐MP: New insights into its mechanism of action by using NMR and molecular dynamics simulations approach. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Bruno de Paula Oliveira de Santos
- Pós‐graduação em Bioquímica e Imunologia Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
- Laboratório de Biofísica de Macromoléculas (LBM), Departamento de Bioquímica e Imunologia Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | | | | | | | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Pós‐graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília DF Brazil
- Pós‐Graduação em Biologia Animal Universidade de Brasília Brasília DF Brazil
| | - Octávio Luiz Franco
- Centro de Análises Bioquímicas e Proteômicas, Pós‐graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília DF Brazil
- S‐Inova Biotech Pós‐graduação em Biotecnologia Universidade Católica Dom Bosco Campo Grande MS Brazil
| | - Luciano Morais Lião
- Laboratório de RMN, Instituto de Química Universidade Federal de Goiás Goiânia GO Brazil
| | - Mariana Torquato Quezado de Magalhães
- Pós‐graduação em Bioquímica e Imunologia Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
- Laboratório de Biofísica de Macromoléculas (LBM), Departamento de Bioquímica e Imunologia Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| |
Collapse
|
16
|
Ma X, Zhu X, Qu S, Cai L, Ma G, Fan G, Sun X. Fabrication of copper nanoparticle composite nanogel for high-efficiency management of Pseudomonas syringae pv. tabaci on tobacco. PEST MANAGEMENT SCIENCE 2022; 78:2074-2085. [PMID: 35142039 DOI: 10.1002/ps.6833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Copper nanoparticles (CuNPs) can release copper ions (Cu2+ ) to control bacterial diseases on crops. However, the high concentration of the CuNPs applied in disease controlling can highly limit their application. In this work, by in situ reducing CuNPs in alginate nanogels and coated with cetyl trimethyl ammonium chloride (CTAC), a CuNP composite nanogel was fabricated as a new nanopesticide with low copper content. RESULTS Data showed that the CTAC coating would affect the antibacterial activity and leaf surface adhesion of the nanogel, while CuNP content could also influence the membrane damage ability of the gel. The nanogel could depress the growth of bacteria by rupturing its membrane and show a minimum inhibitory concentration (MIC) as low as 500 μg mL-1 , which only contain 58 μg mL-1 CuNP, and achieve a 64% of therapeutic efficiency (with 1000 μg mL-1 nanogel) in in vivo experiments, higher than that of commercial bactericide thiodiazole copper. Furthermore, the application of the nanogel can also perform a growth-promoting effect on the plant, which may be due to the supplement of copper element provided by CuNP. CONCLUSION The CuNP composite nanogel fabricated in this work performed high leaf disease controllability and safety compared to the commercial bactericide thiodiazole copper. We hope this nanogel can provide a potential high-efficiency nano-bactericide that can be used in the leaf bacterial disease control.
Collapse
Affiliation(s)
- Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Xin Zhu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Saijiao Qu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lin Cai
- College of Plant Protection, Southwest University, Chongqing, China
| | - Guanhua Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Guangjin Fan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Barbosa JC, Gonçalves S, Makowski M, Silva ÍC, Caetano T, Schneider T, Mösker E, Süssmuth RD, Santos NC, Mendo S. Insights into the mode of action of the two-peptide lantibiotic lichenicidin. Colloids Surf B Biointerfaces 2022; 211:112308. [PMID: 34973602 DOI: 10.1016/j.colsurfb.2021.112308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Lantibiotics are promising candidates to address the worldwide problem of antibiotic resistance. They belong to a class of natural compounds exhibiting strong activity against clinically relevant Gram-positive bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Lichenicidin is a class II two-peptide lantibiotic. The presence of the two mature peptides, Bliα and Bliβ, is necessary for full activity against target bacteria. This work aims at clarifying the synergistic activity of both peptides in their interaction with the target membranes. The effect of lichenicidin was tested against S. aureus cells and large unilamellar vesicles. Lichenicidin increases the net surface charge of S. aureus, as shown by zeta-potential measurements, without reaching electroneutralization. In addition, lichenicidin causes cell surface perturbations that culminate in the leakage of its internal contents, as observed by atomic force microscopy. Bliα seems to have low affinity for S. aureus, however, it contributes to increase the affinity of Bliβ, because together they present higher affinity than separately. In contrast, Bliα seems to provide an anchoring site for lichenicidin in lipid II-containing membranes. Interestingly, Bliβ alone can induce high levels of membrane leakage, but this effect appears to be faster in the presence of Bliα. Based on this information, we propose a mechanism of action of lichenicidin.
Collapse
Affiliation(s)
- Joana C Barbosa
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, Portugal.
| | - Marcin Makowski
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, Portugal.
| | - Ítala C Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, Portugal.
| | - Tânia Caetano
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany.
| | - Eva Mösker
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany.
| | | | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, Portugal.
| | - Sónia Mendo
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
18
|
Landon C, Zhu Y, Mustafi M, Madinier JB, Lelièvre D, Aucagne V, Delmas AF, Weisshaar JC. Real-Time Fluorescence Microscopy on Living E. coli Sheds New Light on the Antibacterial Effects of the King Penguin β-Defensin AvBD103b. Int J Mol Sci 2022; 23:ijms23042057. [PMID: 35216173 PMCID: PMC8880245 DOI: 10.3390/ijms23042057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
(1) Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. Among AMPs, the disulfide-rich β-defensin AvBD103b, whose antibacterial activities are not inhibited by salts contrary to most other β-defensins, is particularly appealing. Information about the mechanisms of action is mandatory for the development and approval of new drugs. However, data for non-membrane-disruptive AMPs such as β-defensins are scarce, thus they still remain poorly understood. (2) We used single-cell fluorescence imaging to monitor the effects of a β-defensin (namely AvBD103b) in real time, on living E. coli, and at the physiological concentration of salts. (3) We obtained key parameters to dissect the mechanism of action. The cascade of events, inferred from our precise timing of membrane permeabilization effects, associated with the timing of bacterial growth arrest, differs significantly from the other antimicrobial compounds that we previously studied in the same physiological conditions. Moreover, the AvBD103b mechanism does not involve significant stereo-selective interaction with any chiral partner, at any step of the process. (4) The results are consistent with the suggestion that after penetrating the outer membrane and the cytoplasmic membrane, AvBD103b interacts non-specifically with a variety of polyanionic targets, leading indirectly to cell death.
Collapse
Affiliation(s)
- Céline Landon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
- Correspondence:
| | - Yanyu Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Dominique Lelièvre
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Vincent Aucagne
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Agnes F. Delmas
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| |
Collapse
|
19
|
de Souza CM, da Silva ÁP, Júnior NGO, Martínez OF, Franco OL. Peptides as a therapeutic strategy against Klebsiella pneumoniae. Trends Pharmacol Sci 2022; 43:335-348. [DOI: 10.1016/j.tips.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
|
20
|
Luong HX, Ngan HD, Thi Phuong HB, Quoc TN, Tung TT. Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211583. [PMID: 35116161 PMCID: PMC8790363 DOI: 10.1098/rsos.211583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
In the last century, conventional antibiotics have played a significant role in global healthcare. Antibiotics support the body in controlling bacterial infection and simultaneously increase the tendency of drug resistance. Consequently, there is a severe concern regarding the regression of the antibiotic era. Despite the use of antibiotics, host defence systems are vital in fighting infectious diseases. In fact, the expression of ribosomal antimicrobial peptides (AMPs) has been crucial in the evolution of innate host defences and has been irreplaceable to date. Therefore, this valuable source is considered to have great potential in tackling the antimicrobial resistance (AMR) crisis. Furthermore, the possibility of bacterial resistance to AMPs has been intensively investigated. Here, we summarize all aspects related to the multiple applications of ribosomal AMPs and their derivatives in combating AMR.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| | | | | | - Thang Nguyen Quoc
- Nuclear Medicine Unit, Vinmec Healthcare System, Hanoi 10000, Vietnam
| | - Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| |
Collapse
|
21
|
Hu Y, Li H, Qu R, He T, Tang X, Chen W, Li L, Bai H, Li C, Wang W, Fu G, Luo G, Xia X, Zhang J. Lysine Stapling Screening Provides Stable and Low Toxic Cationic Antimicrobial Peptides Combating Multidrug-Resistant Bacteria In Vitro and In Vivo. J Med Chem 2021; 65:579-591. [PMID: 34968054 DOI: 10.1021/acs.jmedchem.1c01754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cationic antimicrobial peptides (CAMPs) are promising for treatment of multidrug-resistant (MDR) bacteria-caused infections. However, clinical application of CAMPs has been hampered mostly due to their poor proteolytic stability and hemolytic toxicity. Recently, lysine-stapled CAMPs developed by us had been proved to increase peptide stability in vitro without induction of hemolysis. Herein, the applicability of the lysine stapling strategy was further explored by using five natural or artificial CAMPs as model peptides. Lysine stapling screening was implemented to provide 13 cyclic analogues in total. Biological screening of these cyclic analogues showed that CAMPs with a better amphiphilic structure were inclined to exhibit improved antimicrobial activity, protease stability, and biocompatibility after lysine-stapling. One of the stapled analogues of BF15-a1 was found to have extended half-life in plasma, enhanced antimicrobial activity against clinically isolated MDR ESKAPE pathogens, and remained highly effective in combating MRSA infection in a mouse model.
Collapse
Affiliation(s)
- Yuchen Hu
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Hong Li
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Rui Qu
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Tong He
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xiaomin Tang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Hao Bai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Wei Wang
- Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Gang Fu
- Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Guangli Luo
- Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Xuefeng Xia
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
22
|
Zouhir A, Semmar N. Structure-activity trend analysis between amino-acids and minimal inhibitory concentration of antimicrobial peptides. Chem Biol Drug Des 2021; 99:438-455. [PMID: 34965022 DOI: 10.1111/cbdd.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/03/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) provide large structural libraries of molecules with high variability of constitutional amino-acids (AAs). Highlighting structural organization and structure-activity trends in such molecular systems provide key information on structural associations and functional conditions that could usefully help for drug design. This work presents link analyses between minimal inhibitory concentration (MIC) and different types of constitutional AAs of anti-Pseudomonas aeruginosa AMPs. This scope was based on a dataset of 328 published molecules. Regulation levels of AAs in AMPs were statistically ordinated by correspondence analysis helping for classification of the 328 AMPs into nine structurally homogeneous peptide clusters (PCs 1-9) characterized by high/low relative occurrences of different AAs. Within each PC, negative trends between MIC and AAs were highlighted by iterated multiple linear regression models built by bootstrap processes (bagging). MIC-decrease was linked to different AAs that varied with PCs: alcohol type AAs (Thr, Ser) in Cys-rich and low Arg PCs (PCs 1-3); basic AAs (Lys, Arg) in Pro-rich and low Val PCs (PCs 4-8); Trp (heterocyclic AA) in Arg-rich PCs (PCs 6, 7, 9). Aliphatic AAs (more particularly Gly) showed MIC-reduction effects in different PCs essentially under interactive forms.
Collapse
Affiliation(s)
- Abdelmajid Zouhir
- University of Tunis El Manar, Institut Supérieur des Sciences Biologiques Appliquées de Tunis
| | - Nabil Semmar
- University of Tunis El Manar, Laboratory of BioInformatics, bioMathematics and bioStatistics (BIMS), Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
23
|
Tian T, Xie W, Liu L, Fan S, Zhang H, Qin Z, Yang C. Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34955061 DOI: 10.1080/10408398.2021.2019673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Last several years, a rapid increase in drug resistance to traditional antibiotics has driven the emergence and development of antimicrobial peptides (AMPs). AMPs have also gained considerable attention from scientists due to their high potency in combatting infectious pathogens. A subset of analogues and their derivatives with specific targets have been successfully designed based on natural peptide patterns. In this review, scientific knowledge on the mechanisms of action related to biological activity and structure-activity relationship (SAR) of AMPs are summarized, and the biological applications in several important fields are critically discussed. SAR shows that the positive charge, secondary structure, special amino acid residues, hydrophobicity, and helicity of AMPs are closely related to their biological activities. The combination of nanotechnology, bioinformatics, and genetic engineering can accelerate to achieve the application of AMPs as effective, safe, economical, and nonresistant antimicrobial agents in medicine, the food and feed industries, and agriculture in coming years. Given the intense interest in AMPs, further investigations are needed in the future to evaluate the specific structure and function that make their use favorable in several industries. This review may provide a comprehensive reference for future studies on chemical modifications, mechanistic exploration, and applications of AMPs.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, China
| | - Luxuan Liu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Chao Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China.,State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied research in Medicine and Health, University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
24
|
Almeida CV, de Oliveira CFR, Dos Santos EL, Dos Santos HF, Júnior EC, Marchetto R, da Cruz LA, Ferreira AMT, Gomes VM, Taveira GB, Costa BO, Franco OL, Cardoso MH, Macedo MLR. Differential interactions of the antimicrobial peptide, RQ18, with phospholipids and cholesterol modulate its selectivity for microorganism membranes. Biochim Biophys Acta Gen Subj 2021; 1865:129937. [PMID: 34052310 DOI: 10.1016/j.bbagen.2021.129937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus. METHODS A physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18. This peptide was assayed against Gram-positive and Gram-negative bacteria, yeasts, and mammalian cells to determine its selectivity index. The secondary structure and the mechanism of action of RQ18 were investigated using circular dichroism, large unilamellar vesicles, and molecular dynamic simulations. RESULTS RQ18 was not cytotoxic to human lung fibroblasts, peripheral blood mononuclear cells, red blood cells, or Vero cells at MIC values, exhibiting a high selectivity index. Circular dichroism analysis and molecular dynamic simulations revealed that RQ18 presents varying structural profiles in aqueous solution, TFE/water mixtures, SDS micelles, and lipid bilayers. The peptide was virtually unable to release carboxyfluorescein from large unilamellar vesicles composed of POPC/cholesterol, model that mimics the eukaryotic membrane, indicating that vesicles' net charges and the presence of cholesterol may be related with RQ18 selectivity for bacterial and fungal cell surfaces. CONCLUSIONS RQ18 was characterized as a membrane-active peptide with dual antibacterial and antifungal activities, without compromising mammalian cells viability, thus reinforcing its therapeutic application. GENERAL SIGNIFICANCE These results provide further insight into the complex process of AMPs interaction with biological membranes, in special with systems that mimic prokaryotic and eukaryotic cell surfaces.
Collapse
Affiliation(s)
- Claudiane V Almeida
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Caio F R de Oliveira
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil; Oncolytic Anticancer Drugs, Dourados, Mato Grosso do Sul, Brazil
| | - Edson L Dos Santos
- Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Helder F Dos Santos
- Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Edson C Júnior
- Instituto de Química, Departamento de Bioquímica e Química Tecnológica, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Reinaldo Marchetto
- Instituto de Química, Departamento de Bioquímica e Química Tecnológica, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Leticia A da Cruz
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Alda Maria T Ferreira
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Valdirene M Gomes
- Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gabriel B Taveira
- Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Bruna O Costa
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marlon H Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Maria Lígia R Macedo
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
25
|
Felício MR, Silveira GGOS, Oshiro KGN, Meneguetti BT, Franco OL, Santos NC, Gonçalves S. Polyalanine peptide variations may have different mechanisms of action against multidrug-resistant bacterial pathogens. J Antimicrob Chemother 2021; 76:1174-1186. [PMID: 33501992 DOI: 10.1093/jac/dkaa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The number of bacterial pathogens resistant to the currently available antibiotics has dramatically increased, with antimicrobial peptides (AMPs) being among the most promising potential new drugs. In this study, the applicability and mechanisms of action of Pa-MAP 2 and Pa-MAP 1.9, two AMPs synthetically designed based on a natural AMP template, were evaluated. METHODS Pa-MAP 2 and Pa-MAP 1.9 were tested against a clinically isolated multidrug-resistant (MDR) Escherichia coli strain. Biophysical approaches were used to evaluate the preference of both peptides for specific lipid membranes, and bacterial surface changes imaged by atomic force microscopy (AFM). The efficacy of both peptides was assessed both in vitro and in vivo. RESULTS Experimental results showed that both peptides have antimicrobial activity against the E. coli MDR strain. Zeta potential and surface plasmon resonance assays showed that they interact extensively with negatively charged membranes, changing from a random coil structure, when free in solution, to an α-helical structure after membrane interaction. The antibacterial efficacy was evaluated in vitro, by several techniques, and in vivo, using a wound infection model, showing a concentration-dependent antibacterial effect. Different membrane properties were evaluated to understand the mechanism underlying peptide action, showing that both promote destabilization of the bacterial surface, as imaged by AFM, and change properties such as membrane surface and dipole potential. CONCLUSIONS Despite their similarity, data indicate that the mechanisms of action of the peptides are different, with Pa-MAP 1.9 being more effective than Pa-MAP 2. These results highlight their potential use as antimicrobial agents against MDR bacteria.
Collapse
Affiliation(s)
- Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gislaine G O S Silveira
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Beatriz T Meneguetti
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
26
|
Srichaiyapol O, Thammawithan S, Siritongsuk P, Nasompag S, Daduang S, Klaynongsruang S, Kulchat S, Patramanon R. Tannic Acid-Stabilized Silver Nanoparticles Used in Biomedical Application as an Effective Antimelioidosis and Prolonged Efflux Pump Inhibitor against Melioidosis Causative Pathogen. Molecules 2021; 26:1004. [PMID: 33672903 PMCID: PMC7918740 DOI: 10.3390/molecules26041004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
Burkholderia pseudomallei is the causative pathogen of melioidosis and this bacterium is resistant to several antibiotics. Silver nanoparticles (AgNPs) are an interesting agent to develop to solve this bacterial resistance. Here, we characterize and assess the antimelioidosis activity of AgNPs against these pathogenic bacteria. AgNPs were characterized and displayed a maximum absorption band at 420 nm with a spherical shape, being well-monodispersed and having high stability in solution. The average size of AgNPs is 7.99 ± 1.46 nm. The antibacterial efficacy of AgNPs was evaluated by broth microdilution. The bactericidal effect of AgNPs was further assessed by time-kill kinetics assay. Moreover, the effect of AgNPs on the inhibition of the established biofilm was investigated by the crystal violet method. In parallel, a study of the resistance induction development of B. pseudomallei towards AgNPs with efflux pump inhibiting effect was performed. We first found that AgNPs had strong antibacterial activity against both susceptible and ceftazidime-resistant (CAZ-resistant) strains, as well as being efficiently active against B. pseudomallei CAZ-resistant strains with a fast-killing mode via a bactericidal effect within 30 min. These AgNPs did not only kill planktonic bacteria in broth conditions, but also in established biofilm. Our findings first documented that the resistance development was not induced in B. pseudomallei toward AgNPs in the 30th passage. We found that AgNPs still showed an effective efflux pump inhibiting effect against these bacteria after prolonged exposure to AgNPs at sublethal concentrations. Thus, AgNPs have valuable properties for being a potent antimicrobial agent to solve the antibiotic resistance problem in pathogens.
Collapse
Affiliation(s)
- Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (O.S.); (S.T.); (P.S.); (S.K.)
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (O.S.); (S.T.); (P.S.); (S.K.)
| | - Pawinee Siritongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (O.S.); (S.T.); (P.S.); (S.K.)
| | - Sawinee Nasompag
- Research Instrument Center, Khon Kaen University, Khon Kaen 40002, Thailand;
- Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand;
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (O.S.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (O.S.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
27
|
Serna N, Carratalá JV, Parladé E, Sánchez-Chardi A, Aviñó A, Unzueta U, Mangues R, Eritja R, Ferrer-Miralles N, Vazquez E, Villaverde A. Developing Protein-Antitumoral Drug Nanoconjugates as Bifunctional Antimicrobial Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57746-57756. [PMID: 33325705 DOI: 10.1021/acsami.0c18317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel concept about bifunctional antimicrobial drugs, based on self-assembling protein nanoparticles, has been evaluated here over two biofilm-forming pathogens, namely Pseudomonas aeruginosa and Staphylococcus aureus. Two structurally different antimicrobial peptides (GWH1 and PaDBS1R1) were engineered to form regular nanoparticles of around 35 nm, to which the small molecular weight drug Floxuridine was covalently conjugated. Both the assembled peptides and the chemical, a conventional cytotoxic drug used in oncotherapy, showed potent antimicrobial activities that were enhanced by the combination of both molecules in single pharmacological entities. Therefore, the resulting prototypes show promises as innovative nanomedicines, being potential alternatives to conventional antibiotics. The biological performance and easy fabrication of these materials fully support the design of protein-based hybrid constructs for combined molecular therapies, expected to have broad applicability beyond antimicrobial medicines. In addition, the approach taken here validates the functional exploration and repurposing of antitumoral drugs, which at low concentrations perform well as unexpected biofilm-inhibiting agents.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Anna Aviñó
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, 08034 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ramón Eritja
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, 08034 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
28
|
Changes in the Ultrastructure of Staphylococcus aureus Treated with Cationic Peptides and Chlorhexidine. Microorganisms 2020; 8:microorganisms8121991. [PMID: 33327493 PMCID: PMC7764955 DOI: 10.3390/microorganisms8121991] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023] Open
Abstract
Antimicrobial peptides, including synthetic ones, are becoming increasingly important as a promising tool to fight multidrug-resistant bacteria. We examined the effect of cationic peptides H2N-Arg9-Phe2-C(O)NH2 and H2N-(Lys-Phe-Phe)3-Lys-C(O)NH2 on Staphylococcus aureus, which remains one of the most harmful pathogens. Antiseptic chlorhexidine served as reference preparation. We studied viability of S. aureus and examined its ultrastructure under treatment with 100 µM of R9F2 or (KFF)3K peptides or chlorhexidine using transmission electron microscopy of ultrathin sections. Bacterial cells were sampled as kinetic series starting from 1 min up to 4 h of treatment with preparations. Both peptides caused clearly visible damage of bacteria cell membrane within 1 min. Incubation of S. aureus with R9F2 or (KFF)3K peptides led to cell wall thinning, loss of cytoplasm structure, formation of mesosome-derived multimembrane structures and "decorated fibers" derived from DNA chains. The effect of R9F2 peptides on S. aureus was more severe than the effect of (KFF)3K peptides. Chlorhexidine heavily damaged the bacteria cell wall, in particular in areas of septa formation, while cytoplasm kept its structure within the observation time. Our study showed that cell membrane damage is critical for S. aureus viability; however, we believe that cell wall disorders should also be taken into account when analyzing the effects of the mechanisms of action of antimicrobial peptides (AMPs).
Collapse
|
29
|
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 2020; 260:118407. [PMID: 32931796 PMCID: PMC7486823 DOI: 10.1016/j.lfs.2020.118407] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The severe infection is becoming a significant health problem which threaten the lives of patients and the safety and economy of society. In the way of finding new strategy, antimicrobial peptides (AMPs) - an important part of host defense family, emerged with tremendous potential. Up to date, huge numbers of AMPs has been investigated from both natural and synthetic sources showing not only the ability to kill microbial pathogens but also propose other benefits such as wound healing, anti-tumor, immune modulation. In this review, we describe the involvements of AMPs in biological systems and discuss the opportunity in developing AMPs for clinical applications. In the detail, their properties in antibacterial activity is followed by their application in some infection diseases and cancer. The key discussions are the approaches to improve biological activities of AMPs either by modifying chemical structure or incorporating into delivery systems. The new applications and perspectives for the future of AMPs would open the new era of their development.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tung Truong Thanh
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
30
|
Mahlapuu M, Björn C, Ekblom J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol 2020; 40:978-992. [PMID: 32781848 DOI: 10.1080/07388551.2020.1796576] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rapid development of microbial resistance to conventional antibiotics has accelerated efforts to find anti-infectives with a novel mode-of-action, which are less prone to bacterial resistance. Intense nonclinical and clinical research is today ongoing to evaluate antimicrobial peptides (AMPs) as potential next-generation antibiotics. Currently, multiple AMPs are assessed in late-stage clinical trials, not only as novel anti-infective drugs, but also as innovative product candidates for immunomodulation, promotion of wound healing, and prevention of post-operative scars. The efforts to translate AMP-based research findings into pharmaceutical product candidates are expected to accelerate in coming years due to technological advancements in multiple areas, including an improved understanding of the mechanism-of-action of AMPs, smart formulation strategies, and advanced chemical synthesis protocols. At the same time, it is recognized that cytotoxicity, low metabolic stability due to sensitivity to proteolytic degradation, and limited oral bioavailability are some of the key weaknesses of AMPs. Furthermore, the pricing and reimbursement environment for new antimicrobial products remains as a major barrier to the commercialization of AMPs.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Promore Pharma AB, Karolinska Institutet Science Park, Solna, Sweden
| | | | - Jonas Ekblom
- Promore Pharma AB, Karolinska Institutet Science Park, Solna, Sweden
| |
Collapse
|
31
|
Porto WF, Irazazabal LN, Humblot V, Haney EF, Ribeiro SM, Hancock REW, Ladram A, Franco OL. EcDBS1R6: A novel cationic antimicrobial peptide derived from a signal peptide sequence. Biochim Biophys Acta Gen Subj 2020; 1864:129633. [PMID: 32416198 DOI: 10.1016/j.bbagen.2020.129633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bacterial infections represent a major worldwide health problem the antimicrobial peptides (AMPs) have been considered as potential alternative agents for treating these infections. Here we demonstrated the antimicrobial activity of EcDBS1R6, a peptide derived from a signal peptide sequence of Escherichia coli that we previously turned into an AMP by making changes through the Joker algorithm. METHODS Antimicrobial activity was measured by broth microdilution method. Membrane integrity was measured using fluorescent probes and through scanning electron microscopy imaging. A sliding window of truncated peptides was used to determine the EcDBS1R6 active core. Molecular dynamics in TFE/water environment was used to assess the EcDBS1R6 structure. RESULTS Signal peptides are known to naturally interact with membranes; however, the modifications introduced by Joker transformed this peptide into a membrane-active agent capable of killing bacteria. The C-terminus was unable to fold into an α-helix whereas its fragments showed poor or no antimicrobial activity, suggesting that the EcDBS1R6 antibacterial core was located at the helical N-terminus, corresponding to the signal peptide portion of the parent peptide. CONCLUSION The strategy of transforming signal peptides into AMPs appears to be promising and could be used to produce novel antimicrobial agents. GENERAL SIGNIFICANCE The process of transforming an inactive signal peptide into an antimicrobial peptide could open a new venue for creating new AMPs derived from signal peptides.
Collapse
Affiliation(s)
- William F Porto
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Porto Reports, Brasília, DF, Brazil
| | - Luz N Irazazabal
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Molecular Pathology Post-graduate Program, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Vincent Humblot
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75252 Paris, France
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suzana M Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252 Paris, France
| | - Octavio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Molecular Pathology Post-graduate Program, University of Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
32
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
33
|
Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN, Cândido ES, Franco OL. Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? Front Microbiol 2020; 10:3097. [PMID: 32038544 PMCID: PMC6987251 DOI: 10.3389/fmicb.2019.03097] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs), especially antibacterial peptides, have been widely investigated as potential alternatives to antibiotic-based therapies. Indeed, naturally occurring and synthetic AMPs have shown promising results against a series of clinically relevant bacteria. Even so, this class of antimicrobials has continuously failed clinical trials at some point, highlighting the importance of AMP optimization. In this context, the computer-aided design of AMPs has put together crucial information on chemical parameters and bioactivities in AMP sequences, thus providing modes of prediction to evaluate the antibacterial potential of a candidate sequence before synthesis. Quantitative structure-activity relationship (QSAR) computational models, for instance, have greatly contributed to AMP sequence optimization aimed at improved biological activities. In addition to machine-learning methods, the de novo design, linguistic model, pattern insertion methods, and genetic algorithms, have shown the potential to boost the automated design of AMPs. However, how successful have these approaches been in generating effective antibacterial drug candidates? Bearing this in mind, this review will focus on the main computational strategies that have generated AMPs with promising activities against pathogenic bacteria, as well as anti-infective potential in different animal models, including sepsis and cutaneous infections. Moreover, we will point out recent studies on the computer-aided design of antibiofilm peptides. As expected from automated design strategies, diverse candidate sequences with different structural arrangements have been generated and deposited in databases. We will, therefore, also discuss the structural diversity that has been engendered.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Raquel Q Orozco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Instituto de Ciências Biológicas, Departamento de Biologia, Programa de Pós-Graduação em Ciências Biológicas (Imunologia/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Elizabete S Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Instituto de Ciências Biológicas, Departamento de Biologia, Programa de Pós-Graduação em Ciências Biológicas (Imunologia/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
34
|
Miao X, Zhou T, Zhang J, Xu J, Guo X, Hu H, Zhang X, Hu M, Li J, Yang W, Xie J, Xu Z, Mou L. Enhanced cell selectivity of hybrid peptides with potential antimicrobial activity and immunomodulatory effect. Biochim Biophys Acta Gen Subj 2020; 1864:129532. [PMID: 31953126 DOI: 10.1016/j.bbagen.2020.129532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hybridization is a useful strategy to bond the advantages of different peptides into novel constructions. We designed a series of AMPs based on the structures of a synthetic AMP KFA3 and a naturally-occurred host defense peptide substance P (SP) to obtain peptides retaining the high antibacterial activity of KFA3 and the immunomodulatory activity and low cytotoxicity of SP. METHODS Two repeats of KFA and different C terminal fragments of SP were hybridized, generating a series of novel AMPs (KFSP1-8). The antibacterial activities, host cell toxicity and immunomodulation were measured. The antibacterial mechanisms were investigated. RESULTS Hybrid peptides KFSP1-4 exerted substantial antibacterial activities against Gram-negative bacteria of standard strains and clinical drug-resistant isolates including E.coli, A.baumannii and P.aeruginosa, while showing little toxicity towards host cells. Compared with KFA3, moderate reduction in α-helix content and the interruption in α-helix continuality were indicated in CD spectra analysis and secondary-structure simulation in these peptides. Membrane permeabilization combined with time-kill studies and FITC-labeled imaging, indicated a selective membrane interaction of KFSP1 with bacteria cell membranes. By specially activating NK1 receptor, the hybrid peptides kept the ability of SP to induce intracellular calcium release and ERK1/2 phosphorylation, but unable to stimulate NF-κB phosphorylation. KFSP1 facilitated the survival of mouse macrophage RAW264.7, directly interacting with LPS and inhibiting the LPS-induced NF-κB phosphorylation and TNF-α expression. CONCLUSION Hybridization is a useful strategy to bond the advantages of different peptides. KFSP1 and its analogs are worth of advanced efforts to explore their potential applications as novel antimicrobial agents.
Collapse
Affiliation(s)
- Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Tianxiong Zhou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Jingjie Xu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Xiaomin Guo
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Hui Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Xiaowei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Mingning Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Jingyi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Lingyun Mou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
35
|
Silveira FMR, Baptista ATA, Dutra TV, de Abreu Filho BA, Gomes RG, Bergamasco R. Application of Moringa oleifera Lam. fractionated proteins for inactivation of Escherichia coli from water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:265-273. [PMID: 32333659 DOI: 10.2166/wst.2020.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical products traditionally used in the disinfection of water bodies often pose human health risks. For this reason, studies on natural coagulants such as Moringa oleifera Lam. represent an alternative for the inactivation of pathogenic microorganisms, among which is Escherichia coli. This study evaluated the effect of different concentrations of coagulants obtained from Moringa seed extracts and their protein fractions in the inactivation of E. coli during the coagulation/flocculation process. The coagulants studied were the aqueous extract, saline extract and protein fractions albumin and globulin, highlighting that the protein fractions were more effective on inactivating E. coli. The protein fraction globulin at a concentration of 10.0 mg L-1 showed bactericidal effects against E. coli within 18 min, whereas the albumin showed a bacteriostatic effect within 48 min because it isolated colonies in the sediment sample.
Collapse
Affiliation(s)
| | | | - Tatiane V Dutra
- Department of Basic Health Sciences, State University of Maringá, Paraná, Brazil
| | | | - Raquel G Gomes
- Department of Food Engineering, State University of Maringá, Paraná, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringá, Paraná, Brazil and Colombo Avenue 5790, University of Maringá, Brazil E-mail:
| |
Collapse
|
36
|
Oshiro KGN, Cândido ES, Chan LY, Torres MDT, Monges BED, Rodrigues SG, Porto WF, Ribeiro SM, Henriques ST, Lu TK, de la Fuente-Nunez C, Craik DJ, Franco OL, Cardoso MH. Computer-Aided Design of Mastoparan-like Peptides Enables the Generation of Nontoxic Variants with Extended Antibacterial Properties. J Med Chem 2019; 62:8140-8151. [DOI: 10.1021/acs.jmedchem.9b00915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karen G. N. Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Elizabete S. Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Lai Y. Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marcelo D. T. Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210170, Brazil
| | - Bruna E. D. Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Silvia G. Rodrigues
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - William F. Porto
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Porto Reports, Brasília, DF 70790160, Brazil
| | - Suzana M. Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS 79825070, Brazil
| | - Sónia T. Henriques
- Faculty of Health, School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Octávio L. Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Marlon H. Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
37
|
Martins AS, Carvalho FA, Faustino AF, Martins IC, Santos NC. West Nile Virus Capsid Protein Interacts With Biologically Relevant Host Lipid Systems. Front Cell Infect Microbiol 2019; 9:8. [PMID: 30788291 PMCID: PMC6372508 DOI: 10.3389/fcimb.2019.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 01/27/2023] Open
Abstract
West Nile and dengue viruses are closely related flaviviruses, originating mosquito-borne viral infections for which there are no effective and specific treatments. Their capsid proteins sequence and structure are particularly similar, forming highly superimposable α-helical homodimers. Measuring protein-ligand interactions at the single-molecule level yields detailed information of biological and biomedical relevance. In this work, such an approach was successfully applied on the characterization of the West Nile virus capsid protein interaction with host lipid systems, namely intracellular lipid droplets (an essential step for dengue virus replication) and blood plasma lipoproteins. Dynamic light scattering measurements show that West Nile virus capsid protein binds very low-density lipoproteins, but not low-density lipoproteins, and this interaction is dependent of potassium ions. Zeta potential experiments show that the interaction with lipid droplets is also dependent of potassium ions as well as surface proteins. The forces involved on the binding of the capsid protein with lipid droplets and lipoproteins were determined using atomic force microscopy-based force spectroscopy, proving that these interactions are K+-dependent rather than a general dependence of ionic strength. The capsid protein interaction with host lipid systems may be targeted in future therapeutic strategies against different flaviviruses. The biophysical and nanotechnology approaches employed in this study may be applied to characterize the interactions of other important proteins from different viruses, in order to understand their life cycles, as well as to find new strategies to inhibit them.
Collapse
Affiliation(s)
- Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - André F Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|