1
|
Shi Y, Luo G, Zhen B, Liu Z, Chen S, Wang Z, Lu W, Hu H, Li X. Systematic All-Hydrocarbon Stapling Analysis for Cecropin A Generates a Potent and Stable Antimicrobial Peptide. J Med Chem 2025; 68:6372-6385. [PMID: 40062552 DOI: 10.1021/acs.jmedchem.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
As an evolutionarily conserved family of antimicrobial peptides (AMPs), cecropins play an important role in innate immunity. But their inevitable weaknesses, including poor proteolytic stability and unpredictable cytotoxicity, severely hindered their clinical applications. Considering their two-helical structure, all-hydrocarbon stapling was performed on cecropin A, successfully generating 27 (i, i + 4) stapled derivatives. By evaluating antimicrobial and hemolytic activities, CEC-2-9 with the C-terminus threonine and lysine being stapled was identified as the optimal one. It exerted significantly enhanced antibacterial potency with more severe bacterial membrane damage capacity. Compared to cecropin A, its increased helicity and hydrophobicity as well as the decreased net charge also enabled its improved stability and biocompatibility, facilitating its enhanced antibacterial and anti-inflammatory efficacy for the effective treatment of mice with peritonitis sepsis. These results have proven that the systematic all-hydrocarbon stapling of AMPs was a feasible approach for the future development of antibacterial therapeutics.
Collapse
Affiliation(s)
- Yejiao Shi
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Institute of Translational Medicine or School of Medicine, Shanghai University, Shanghai 200444, China
- Shanghai Integration and Innovation Center of Marine Medical Engineering, Shanghai 200444, China
| | - Gan Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Borui Zhen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhinan Liu
- Institute of Translational Medicine or School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sumeng Chen
- Institute of Translational Medicine or School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhe Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Honggang Hu
- Institute of Translational Medicine or School of Medicine, Shanghai University, Shanghai 200444, China
- Shanghai Integration and Innovation Center of Marine Medical Engineering, Shanghai 200444, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
Berglin M, Cavanagh JP, Caous JS, Thakkar BS, Vasquez JM, Stensen W, Lyvén B, Svendsen JS, Svenson J. Flexible and Biocompatible Antifouling Polyurethane Surfaces Incorporating Tethered Antimicrobial Peptides through Click Reactions. Macromol Biosci 2024; 24:e2300425. [PMID: 38009664 DOI: 10.1002/mabi.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Efficient, simple antibacterial materials to combat implant-associated infections are much in demand. Herein, the development of polyurethanes, both cross-linked thermoset and flexible and versatile thermoplastic, suitable for "click on demand" attachment of antibacterial compounds enabled via incorporation of an alkyne-containing diol monomer in the polymer backbone, is described. By employing different polyolic polytetrahydrofurans, isocyanates, and chain extenders, a robust and flexible material comparable to commercial thermoplastic polyurethane is prepared. A series of short synthetic antimicrobial peptides are designed, synthesized, and covalently attached in a single coupling step to generate a homogenous coating. The lead material is shown to be biocompatible and does not display any toxicity against either mouse fibroblasts or reconstructed human epidermis according to ISO and OECD guidelines. The repelling performance of the peptide-coated materials is illustrated against colonization and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis on coated plastic films and finally, on coated commercial central venous catheters employing LIVE/DEAD staining, confocal laser scanning microscopy, and bacterial counts. This study presents the successful development of a versatile and scalable polyurethane with the potential for use in the medical field to reduce the impact of bacterial biofilms.
Collapse
Affiliation(s)
- Mattias Berglin
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, 413 90, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Josefin Seth Caous
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | | | - Jeddah Marie Vasquez
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Benny Lyvén
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - John-Sigurd Svendsen
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Johan Svenson
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| |
Collapse
|
3
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
4
|
van Gent ME, Schonkeren-Ravensbergen B, Achkif A, Beentjes D, Dolezal N, van Meijgaarden KE, Drijfhout JW, Nibbering PH. C-Terminal PEGylation Improves SAAP-148 Peptide's Immunomodulatory Activities. J Innate Immun 2023; 15:724-738. [PMID: 37725929 PMCID: PMC10601628 DOI: 10.1159/000534068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Synthetic antibacterial and anti-biofilm peptide (SAAP)-148 was developed to combat bacterial infections not effectively treatable with current antibiotics. SAAP-148 is highly effective against antimicrobial-resistant bacteria without inducing resistance; however, challenges for further development of SAAP-148 include its cytotoxicity and short circulation half-life. To circumvent these drawbacks, a library of SAAP-148 linked to polyethylene glycol (PEG) groups of various lengths was synthesized and screened for in vitro antibacterial activity and hemolytic activity. Results indicated that PEGylated SAAP-148 variants combine antibacterial activities with reduced hemolysis compared to SAAP-148. Interestingly, proinflammatory immunomodulatory activities of SAAP-148 were enhanced upon C-terminal PEGylation, with SAAP-148-PEG27 showing the most effect. SAAP-148-PEG27 enhanced SAAP-148's capacity to chemoattract human neutrophils and was able to more efficiently (re)direct M-CSF-induced monocyte-macrophage differentiation toward type 1 macrophages as opposed to SAAP-148. Furthermore, dendritic cells with a stronger mature expression profile were produced if monocytes were exposed to SAAP-148-PEG27 during monocyte-immature dendritic cell differentiation in comparison to SAAP-148. Parameters that influenced the immunomodulatory activities of the peptide-PEG conjugate include (i) the length of the PEG group, (ii) the position of PEG conjugation, and (iii) the peptide sequence. Together, these results indicate that SAAP-148-PEG27 is highly effective in redirecting monocyte-macrophage differentiation toward a proinflammatory phenotype and promoting monocyte-mature dendritic cell development. Therefore, SAAP-148-PEG27 may be a promising agent to modulate inadequate immune responses in case of tumors and chronically infected wounds.
Collapse
Affiliation(s)
- Miriam E. van Gent
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Asma Achkif
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Daan Beentjes
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Natasja Dolezal
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Cavallazzi Sebold B, Li J, Ni G, Fu Q, Li H, Liu X, Wang T. Going Beyond Host Defence Peptides: Horizons of Chemically Engineered Peptides for Multidrug-Resistant Bacteria. BioDrugs 2023; 37:607-623. [PMID: 37300748 PMCID: PMC10432368 DOI: 10.1007/s40259-023-00608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Multidrug-resistant (MDR) bacteria are considered a health threat worldwide, and this problem is set to increase over the decades. The ESKAPE, a group of six pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. is the major source of concern due to their high death incidence and nosocomial acquired infection. Host defence peptides (HDPs) are a class of ribosomally synthesised peptides that have shown promising results in combating MDR, including the ESKAPE group, in- and outside bacterial biofilms. However, their poor pharmacokinetics in physiological mediums may impede HDPs from becoming viable clinical candidates. To circumvent this problem, chemical engineering of HDPs has been seen as an emergent approach to not only improve their pharmacokinetics but also their efficacy against pathogens. In this review, we explore several chemical modifications of HDPs that have shown promising results, especially against ESKAPE pathogens, and provide an overview of the current findings with respect to each modification.
Collapse
Affiliation(s)
- Bernardo Cavallazzi Sebold
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Quanlan Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China.
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
6
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Membrane-Active Peptides and Their Potential Biomedical Application. Pharmaceutics 2023; 15:2091. [PMID: 37631305 PMCID: PMC10459175 DOI: 10.3390/pharmaceutics15082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Membrane-active peptides (MAPs) possess unique properties that make them valuable tools for studying membrane structure and function and promising candidates for therapeutic applications. This review paper provides an overview of the fundamental aspects of MAPs, focusing on their membrane interaction mechanisms and potential applications. MAPs exhibit various structural features, including amphipathic structures and specific amino acid residues, enabling selective interaction with multiple membranes. Their mechanisms of action involve disrupting lipid bilayers through different pathways, depending on peptide properties and membrane composition. The therapeutic potential of MAPs is significant. They have demonstrated antimicrobial activity against bacteria and fungi, making them promising alternatives to conventional antibiotics. MAPs can selectively target cancer cells and induce apoptosis, opening new avenues in cancer therapeutics. Additionally, MAPs serve as drug delivery vectors, facilitating the transport of therapeutic cargoes across cell membranes. They represent a fascinating class of biomolecules with significant potential in basic research and clinical applications. Understanding their mechanisms of action and designing peptides with enhanced selectivity and efficacy will further expand their utility in diverse fields. Exploring MAPs holds promise for developing novel therapeutic strategies against infections, cancer, and drug delivery challenges.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| |
Collapse
|
7
|
Sahsuvar S, Kocagoz T, Gok O, Can O. In vitro efficacy of different PEGylation designs on cathelicidin-like peptide with high antibacterial and antifungal activity. Sci Rep 2023; 13:11213. [PMID: 37433952 PMCID: PMC10336128 DOI: 10.1038/s41598-023-38449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023] Open
Abstract
Recent reports on antibiotic resistance have highlighted the need to reduce the impact of this global health issue through urgent prevention and control. The World Health Organization currently considers antibiotic resistance as one of the most dangerous threats to global health. Therefore, Antimicrobial peptides (AMPs) are promising for the development of novel antibiotic molecules due to their high antimicrobial effects, non-inducing antimicrobial resistance (AMR) properties, and broad spectrum. Hence, in this study, we developed novel antimicrobial peptide/polymer conjugates to reduce the adverse effects of TN6 (RLLRLLLRLLR) peptide. We demonstrate how our constructs function in vitro in terms of antimicrobial activity, hemolytic activity, cytotoxicity, and protease resistance. Our findings show that our molecules are effective against different types of microorganisms such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant S. aureus, vancomycin-resistant Enteroccus faecium, and Candida albicans, which are known to be pathogenic and antibiotic-resistant. Our constructs generally showed low cytotoxicity relative to the peptide in HaCaT and 3T3 cells. Especially these structures are very successful in terms of hemotoxicity. In the bacteremia model with S. aureus, the naked peptide (TN6) was hemotoxic even at 1 µg/mL, while the hemotoxicity of the conjugates was considerably lower than the peptide. Remarkably in this model, the hemolytic activity of PepC-PEG-pepC conjugate decreased 15-fold from 2.36 to 31.12 µg/mL compared to the bacteria-free 60-min treatment. This is proof that in the case of bacteremia and sepsis, the conjugates specifically direct to bacterial cell membranes rather than red blood cells. In addition, the PepC-PEG-pepC conjugate is resistant to plasma proteases. Moreover, morphological and intracellular damage of the peptide/conjugates to Escherichia coli are demonstrated in SEM and TEM images. These results suggest our molecules can be considered potential next-generation broad-spectrum antibiotic molecule/drug candidates that might be used in clinical cases such as bacteremia and sepsis.
Collapse
Affiliation(s)
- Seray Sahsuvar
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Tanil Kocagoz
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozgul Gok
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
8
|
Yu W, Sun Y, Li W, Guo X, Liu X, Wu W, Yu W, Wang J, Shan A. Self-Assembly of Antimicrobial Peptide-Based Micelles Breaks the Limitation of Trypsin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:494-510. [PMID: 36577517 DOI: 10.1021/acsami.2c17941] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Targeting the limitation of antimicrobial peptides (AMPs) application in vivo, self-assembled AMPs library with specific nanostructures is expected to gradually overtake monomer AMPs libraries in the future. Peptide polymers are fascinating self-assembling nanoscale structures that have great advantage in biomedical applications because of their satisfactory biocompatibility and versatile properties. Herein, we describe a strategy for inducing the self-assembly of T9W into nanostructured antimicrobial micelles with evidently improved pharmacological properties, that is, PEGylation at the C-terminal of T9W (CT9W1000), an antibacterial biomaterial that self-assembles in aqueous media without exogenous excipients, has been developed. Compared with parental molecular, the CT9W1000 is more effective against Pseudomonas aeruginosa, and its antibacterial spectrum had also been broadened. Additionally, CT9W1000 micelles had higher stability under salt ion, serum, and acid-base environments. Importantly, the self-assembled structure is highly resistant to trypsin degradation, probably allowing T9W to be applied in clinical settings in the future. Mechanistically, by acting on membranes and through supplementary bactericidal mechanisms, CT9W1000 micelles contribute to the antibacterial process. Collectively, CT9W1000 micelles exhibited good biocompatibility in vitro and in vivo, resulting in highly effective treatment in a mouse acute lung injury model induced by P. aeruginosa PAO1 without drug resistance. These advances may profoundly accelerate the clinical transformation of T9W and promote the development of a combination of peptide-based antibiotics and PEGylated nanotechnology.
Collapse
Affiliation(s)
- Weikang Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xu Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuesheng Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wanpeng Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wanqi Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiajun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
9
|
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Dnyanesh Saindane
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Bhupendra G. Prajapati
- Dept. of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K.Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, India
| |
Collapse
|
10
|
Silva ARP, Guimarães M, Rabelo J, Belen L, Perecin C, Farias J, Picado Madalena Santos JH, Rangel-Yagui CO. Recent advances in the design of antimicrobial peptide conjugates. J Mater Chem B 2022; 10:3587-3600. [DOI: 10.1039/d1tb02757c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides (AMPs) are ubiquitous host defense peptides characterized by antibiotic activity and lower propensity for developing resistance compared to classic antibiotics. While several AMPs have shown activity against antibiotic-sensitive...
Collapse
|