1
|
NAD binding by human CD38 analyzed by Trp189 fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1189-1196. [PMID: 30472140 DOI: 10.1016/j.bbamcr.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022]
Abstract
The NAD-glycohydrolase/ADP-ribosyl cyclase CD38 catalyzes the metabolism of nicotinamide adenine dinucleotide (NAD) to the Ca2+ mobilizing second messengers ADP-ribose (ADPR), 2'-deoxy-ADPR, and cyclic ADP-ribose (cADPR). In the present study, we investigated binding and metabolism of NAD by a soluble fragment of human CD38, sCD38, and its catalytically inactive mutant by monitoring changes in endogenous tryptophan (Trp) fluorescence. Addition of NAD resulted in a concentration-dependent decrease in sCD38 fluorescence that is mainly caused by the Trp residue W189. Amplitude of the fluorescence decrease was fitted as one-site binding curve revealing a dissociation constant for NAD of 29 μM. A comparable dissociation constant was found with the catalytically inactive sCD38 mutant (KD 37 μM NAD) indicating that binding of NAD is not significantly affected by the mutation. The NAD-induced decrease in Trp fluorescence completely recovered in case of sCD38. Kinetics of recovery was slowed down with decreasing temperature and sCD38 concentration and increasing NAD concentration demonstrating that recovery in fluorescence is proportional to the enzymatic activity of sCD38. Accordingly, recovery in fluorescence was not observed with the catalytically inactive mutant. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
2
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
3
|
Egea PF, Muller-Steffner H, Kuhn I, Cakir-Kiefer C, Oppenheimer NJ, Stroud RM, Kellenberger E, Schuber F. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates. PLoS One 2012; 7:e34918. [PMID: 22529956 PMCID: PMC3329556 DOI: 10.1371/journal.pone.0034918] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/06/2012] [Indexed: 01/02/2023] Open
Abstract
Bovine CD38/NAD+glycohydrolase (bCD38) catalyses the hydrolysis of NAD+ into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2′-fluorinated analogs of NAD+. Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1′ of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2′-OH of the substrate NAD+. Based on our structural analysis and data on active site mutants, we propose a detailed analysis of the catalytic mechanism.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (PFE); (FS)
| | - Hélène Muller-Steffner
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Isabelle Kuhn
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Céline Cakir-Kiefer
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux, UR AFPA, Nancy Université, Vandoeuvre-les-Nancy, France
| | - Norman J. Oppenheimer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Francis Schuber
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (PFE); (FS)
| |
Collapse
|
4
|
Liu Q, Graeff R, Kriksunov IA, Lam CMC, Lee HC, Hao Q. Conformational Closure of the Catalytic Site of Human CD38 Induced by Calcium. Biochemistry 2008; 47:13966-13973. [DOI: 10.1021/bi801642q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qun Liu
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Richard Graeff
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Irina A. Kriksunov
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Connie M. C. Lam
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Hon Cheung Lee
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Quan Hao
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Alteration of enzymatic properties of cell-surface antigen CD38 by agonistic anti-CD38 antibodies that prolong B cell survival and induce activation. Int Immunopharmacol 2007; 8:59-70. [PMID: 18068101 DOI: 10.1016/j.intimp.2007.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/16/2007] [Accepted: 10/09/2007] [Indexed: 11/20/2022]
Abstract
Leukocyte cell-surface antigen CD38 is a single-transmembrane protein. CD38 ligation by anti-CD38 antibodies triggers the growth or apoptosis of immune cells. Although the extracellular domain of CD38 has multifunctional catalytic activities including NAD(+) glycohydrolase and cyclase, the CD38-mediated cell survival or death appears to be independent of its catalytic activity. It is proposed that a conformational change of CD38 triggers the signalling. The conformational change of CD38 could influence its catalytic activity. However, the agonistic anti-CD38 antibody that alters the catalytic activity of CD38 has not been reported so far. In the present study, we demonstrated that two agonistic anti-mouse CD38 mAbs (CS/2 and clone 90) change the catalytic activities of CD38. CS/2 was clearly more potent than clone 90 in prolonging B cell survival and activation. CS/2 inhibited the NAD(+) glycohydrolase activity of both the isolated extracellular domain of CD38 (FLAG-CD38) and cell-surface CD38. Kinetic analysis suggested a non-competitive inhibition. On the other hand, clone 90 stimulated the NAD(+) glycohydrolase activity of FLAG-CD38 and had little effect on the NAD(+) glycohydrolase activity of cell-surface CD38. CS/2 and clone 90 had no effect on the cyclase activity of FLAG-CD38 and inhibited the cyclase activity of cell-surface CD38. Accordingly, these agonistic antibodies probably induce the conformational changes of CD38 that are evident in the distinct alterations of the catalytic site. The antibodies will be useful tools to analyze the conformational change of CD38 in the process of triggering B cell survival and the activation signal.
Collapse
|