1
|
Li Y, Ye Y, Zhu X, Wei Y, Li Y, Sun Z, Zhou K, Gao P, Yao Z, Lai Q. Transcriptional analysis reveals antioxidant, ion transport, and glycolysis mechanisms in Litopenaeus vannamei gills involved in the response to high alkali stress. Comp Biochem Physiol A Mol Integr Physiol 2025; 306:111868. [PMID: 40246270 DOI: 10.1016/j.cbpa.2025.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Saline-alkali aquacultural systems have an important role in improving the economic output of the aquacultural industry. However, the survival rate of shrimp in intensive aquacultural systems is affected by alkalinity fluctuations. This study explored the ion transport and molecular responses of the whiteleg shrimp Litopenaeus vannamei to short-term high alkaline stress (96 h). The results showed that survival rate decreased significantly with time, hemolymph osmotic pressure and oxygen consumption dropped sharply after peaking at 48 h, and ammonia excretion followed a non-monotonic pattern, with an initial decline followed by a subsequent increase. Analysis of key physiological indicators revealed that urea nitrogen continued to accumulate, antioxidant (SOD and CAT) and glycolytic (PFK and LDH) enzymes were significantly activated, but ion regulatory enzymes (Na+/K+-ATPase) were severely suppressed. Gill histopathology showed typical injuries (such as gill filament shrinkage, vacuolation, and hemocytopenia). Furthermore, transcriptome analysis confirmed that high alkali stress activated insulin signaling pathway and glycolysis-related genes (e.g., upregulating PFK and GLUT expression). These results indicate that the high alkalinity causes an ion imbalance, changes the ammonia transport process, and activates the glycolysis pathway. These conclusions provide a theoretical basis for the subsequent development for the saline-alkaline aquacultural of Litopenaeus vannamei.
Collapse
Affiliation(s)
- Yiming Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yuxing Wei
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Yan Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Kai Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Pengcheng Gao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Zongli Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
2
|
McLeod MJ, Holyoak T. Biochemical, structural, and kinetic characterization of PP i -dependent phosphoenolpyruvate carboxykinase from Propionibacterium freudenreichii. Proteins 2023; 91:1261-1275. [PMID: 37226637 DOI: 10.1002/prot.26513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.
Collapse
Affiliation(s)
- Matthew J McLeod
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
4
|
Xiang J, Wang K, Tang N. PCK1 dysregulation in cancer: Metabolic reprogramming, oncogenic activation, and therapeutic opportunities. Genes Dis 2022; 10:101-112. [PMID: 37013052 PMCID: PMC10066343 DOI: 10.1016/j.gendis.2022.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
The last few decades have witnessed an advancement in our understanding of multiple cancer cell pathways related to metabolic reprogramming. One of the most important cancer hallmarks, including aerobic glycolysis (the Warburg effect), the central carbon pathway, and multiple-branch metabolic pathway remodeling, enables tumor growth, progression, and metastasis. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key rate-limiting enzyme in gluconeogenesis, catalyzes the conversion of oxaloacetate to phosphoenolpyruvate. PCK1 expression in gluconeogenic tissues is tightly regulated during fasting. In tumor cells, PCK1 is regulated in a cell-autonomous manner rather than by hormones or nutrients in the extracellular environment. Interestingly, PCK1 has an anti-oncogenic role in gluconeogenic organs (the liver and kidneys), but a tumor-promoting role in cancers arising from non-gluconeogenic organs. Recent studies have revealed that PCK1 has metabolic and non-metabolic roles in multiple signaling networks linking metabolic and oncogenic pathways. Aberrant PCK1 expression results in the activation of oncogenic pathways, accompanied by metabolic reprogramming, to maintain tumorigenesis. In this review, we summarize the mechanisms underlying PCK1 expression and regulation, and clarify the crosstalk between aberrant PCK1 expression, metabolic rewiring, and signaling pathway activation. In addition, we highlight the clinical relevance of PCK1 and its value as a putative cancer therapeutic target.
Collapse
|
5
|
Novel missense variants in PCK1 gene cause cytosolic PEPCK deficiency with growth failure from inadequate caloric intake. J Hum Genet 2020; 66:321-325. [PMID: 32908218 DOI: 10.1038/s10038-020-00823-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Cytosolic PEPCK deficiency (PCKDC) is a rare autosomal recessive inborn error of metabolism, which can present with hypoglycemia, lactic acidosis, and liver failure. It is caused by biallelic pathogenic variants in the PCK1 gene. Only four PCK1 variants have been previously reported in seven patients with PCKDC, and their clinical course of this condition has not been well characterized. Here, we report a Hispanic male with novel biallelic PCK1 variants, p.(Gly430Asp) and p.(His496Gln), who had a unique clinical presentation. He presented with a new onset of growth failure, elevated blood lactate, transaminitis, and abnormal urine metabolites profile, but he has not had documented hypoglycemia. Growth restriction happened due to insufficient caloric intake, and it was improved with nutritional intervention. PCKDC is a manageable disorder and therefore appropriate nutritional and clinical suspicion from typical lab abnormalities which lead to molecular confirmation tests are essential to prevent poor clinical outcomes.
Collapse
|
6
|
Kinetic and structural analysis of Escherichia coli phosphoenolpyruvate carboxykinase mutants. Biochim Biophys Acta Gen Subj 2020; 1864:129517. [DOI: 10.1016/j.bbagen.2020.129517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
|
7
|
Engel F, Ossipova E, Jakobsson PJ, Vockenhuber MP, Suess B. sRNA scr5239 Involved in Feedback Loop Regulation of Streptomyces coelicolor Central Metabolism. Front Microbiol 2020; 10:3121. [PMID: 32117084 PMCID: PMC7025569 DOI: 10.3389/fmicb.2019.03121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/24/2019] [Indexed: 12/26/2022] Open
Abstract
In contrast to transcriptional regulation, post-transcriptional regulation and the role of small non-coding RNAs (sRNAs) in streptomycetes are not well studied. Here, we focus on the highly conserved sRNA scr5239 in Streptomyces coelicolor. A proteomics approach revealed that the sRNA regulates several metabolic enzymes, among them phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the central carbon metabolism. The sRNA scr5239 represses pepck at the post-transcriptional level and thus modulates the intracellular level of phosphoenolpyruvate (PEP). The expression of scr5239 in turn is dependent on the global transcriptional regulator DasR, thus creating a feedback loop regulation of the central carbon metabolism. By post-transcriptional regulation of PEPCK and in all likelihood other targets, scr5239 adds an additional layer to the DasR regulatory network and provides a tool to control the metabolism dependent on the available carbon source.
Collapse
Affiliation(s)
- Franziska Engel
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
| | - Elena Ossipova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Michael-Paul Vockenhuber
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
- *Correspondence: Michael-Paul Vockenhuber,
| | - Beatrix Suess
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
- Beatrix Suess,
| |
Collapse
|
8
|
Ahmed NR, Manirafasha E, Pan X, Chen BY, Lu Y, Jing K. Exploring biostimulation of plant hormones and nitrate supplement to effectively enhance biomass growth and lutein production with thermo-tolerant Desmodesmus sp. F51. BIORESOURCE TECHNOLOGY 2019; 291:121883. [PMID: 31387052 DOI: 10.1016/j.biortech.2019.121883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
In this study, the interactive effect of plant hormone-salicylic acid and succinic acid on biomass growth, lutein content, and productivity of Desmodesmus sp. F51 were investigated. The results demonstrated that the synergistic action of salicylic acid and succinic acid could effectively enhance the assimilation of nitrate and significantly improve lutein production. The maximal lutein content 7.01 mg/g and productivity 5.11 mg/L/d could be obtained with a supplement of 100 µM salicylic acid and 2.5 mM succinic acid in batch culture. Furthermore, operation strategy of nitrate fed-batch coupled with supplementation for succinic acid and salicylic acid resulted in further enhancement of lutein content and productivity by 7.50 mg/g and 5.78 mg/L/d, respectively. The performance is better than most of the previously reported values.
Collapse
Affiliation(s)
- Nur Rashid Ahmed
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Emmanuel Manirafasha
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; University of Rwanda, College of Education, Kigali, Rwanda
| | - Xueshan Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Bor-Yann Chen
- Department of Chemical and Material Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Keju Jing
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
9
|
Chiba Y, Miyakawa T, Shimane Y, Takai K, Tanokura M, Nozaki T. Structural comparisons of phosphoenolpyruvate carboxykinases reveal the evolutionary trajectories of these phosphodiester energy conversion enzymes. J Biol Chem 2019; 294:19269-19278. [PMID: 31662435 DOI: 10.1074/jbc.ra119.010920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/24/2019] [Indexed: 11/06/2022] Open
Abstract
Inorganic pyrophosphate (PPi) consists of two phosphate molecules and can act as an energy and phosphate donor in cellular reactions, similar to ATP. Several kinases use PPi as a substrate, and these kinases have recently been suggested to have evolved from ATP-dependent functional homologs, which have significant amino acid sequence similarity to PPi-utilizing enzymes. In contrast, phosphoenolpyruvate carboxykinase (PEPCK) can be divided into three types according to the phosphate donor (ATP, GTP, or PPi), and the amino acid sequence similarity of these PEPCKs is too low to confirm that they share a common ancestor. Here we solved the crystal structure of a PPi-PEPCK homolog from the bacterium Actinomyces israelii at 2.6 Å resolution and compared it with previously reported structures from ATP- and GTP-specific PEPCKs to assess the degrees of similarities and divergences among these PEPCKs. These comparisons revealed that they share a tertiary structure with significant value and that amino acid residues directly contributing to substrate recognition, except for those that recognize purine moieties, are conserved. Furthermore, the order of secondary structural elements between PPi-, ATP-, and GTP-specific PEPCKs was strictly conserved. The structure-based comparisons of the three PEPCK types provide key insights into the structural basis of PPi specificity and suggest that all of these PEPCKs are derived from a common ancestor.
Collapse
Affiliation(s)
- Yoko Chiba
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuhiro Shimane
- Super-Cutting-Edge Grand and Advanced Research Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Ken Takai
- Super-Cutting-Edge Grand and Advanced Research Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Shalaeva DN, Cherepanov DA, Galperin MY, Golovin AV, Mulkidjanian AY. Evolution of cation binding in the active sites of P-loop nucleoside triphosphatases in relation to the basic catalytic mechanism. eLife 2018; 7:e37373. [PMID: 30526846 PMCID: PMC6310460 DOI: 10.7554/elife.37373] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous P-loop fold nucleoside triphosphatases (NTPases) are typically activated by an arginine or lysine 'finger'. Some of the apparently ancestral NTPases are, instead, activated by potassium ions. To clarify the activation mechanism, we combined comparative structure analysis with molecular dynamics (MD) simulations of Mg-ATP and Mg-GTP complexes in water and in the presence of potassium, sodium, or ammonium ions. In all analyzed structures of diverse P-loop NTPases, the conserved P-loop motif keeps the triphosphate chain of bound NTPs (or their analogs) in an extended, catalytically prone conformation, similar to that imposed on NTPs in water by potassium or ammonium ions. MD simulations of potassium-dependent GTPase MnmE showed that linking of alpha- and gamma phosphates by the activating potassium ion led to the rotation of the gamma-phosphate group yielding an almost eclipsed, catalytically productive conformation of the triphosphate chain, which could represent the basic mechanism of hydrolysis by P-loop NTPases.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of PhysicsUniversity of OsnabrückOsnabrückGermany
- A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| | - Dmitry A Cherepanov
- A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Andrey V Golovin
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| | - Armen Y Mulkidjanian
- School of PhysicsUniversity of OsnabrückOsnabrückGermany
- A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
11
|
Tang HYH, Shin DS, Hura GL, Yang Y, Hu X, Lightstone FC, McGee MD, Padgett HS, Yannone SM, Tainer JA. Structural Control of Nonnative Ligand Binding in Engineered Mutants of Phosphoenolpyruvate Carboxykinase. Biochemistry 2018; 57:6688-6700. [PMID: 30376300 PMCID: PMC6642699 DOI: 10.1021/acs.biochem.8b00963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein engineering to alter recognition underlying ligand binding and activity has enormous potential. Here, ligand binding for Escherichia coli phosphoenolpyruvate carboxykinase (PEPCK), which converts oxaloacetate into CO2 and phosphoenolpyruvate as the first committed step in gluconeogenesis, was engineered to accommodate alternative ligands as an exemplary system with structural information. From our identification of bicarbonate binding in the PEPCK active site at the supposed CO2 binding site, we probed binding of nonnative ligands with three oxygen atoms arranged to resemble the bicarbonate geometry. Crystal structures of PEPCK and point mutants with bound nonnative ligands thiosulfate and methanesulfonate along with strained ATP and reoriented oxaloacetate intermediates and unexpected bicarbonate were determined and analyzed. The mutations successfully altered the bound ligand position and orientation and its specificity: mutated PEPCKs bound either thiosulfate or methanesulfonate but never both. Computational calculations predicted a methanesulfonate binding mutant and revealed that release of the active site ordered solvent exerts a strong influence on ligand binding. Besides nonnative ligand binding, one mutant altered the Mn2+ coordination sphere: instead of the canonical octahedral ligand arrangement, the mutant in question had an only five-coordinate arrangement. From this work, critical features of ligand binding, position, and metal ion cofactor geometry required for all downstream events can be engineered with small numbers of mutations to provide insights into fundamental underpinnings of protein-ligand recognition. Through structural and computational knowledge, the combination of designed and random mutations aids in the robust design of predetermined changes to ligand binding and activity to engineer protein function.
Collapse
Affiliation(s)
- Henry Y. H. Tang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David S. Shin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Biochemistry and Chemistry, University of California, Santa Cruz, California 95064, United States
| | - Yue Yang
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Xiaoyu Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Felice C. Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | | | - Hal S. Padgett
- Novici Biotech LLC, Vacaville, California 95688, United States
| | - Steven M. Yannone
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John A. Tainer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
12
|
Robust demarcation of fourteen different species groups within the genus Streptococcus based on genome-based phylogenies and molecular signatures. INFECTION GENETICS AND EVOLUTION 2018; 66:130-151. [DOI: 10.1016/j.meegid.2018.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 11/21/2022]
|
13
|
Role of Mitochondria in Regulating Lutein and Chlorophyll Biosynthesis in Chlorella pyrenoidosa under Heterotrophic Conditions. Mar Drugs 2018; 16:md16100354. [PMID: 30274203 PMCID: PMC6213193 DOI: 10.3390/md16100354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/02/2022] Open
Abstract
The green alga Chlorella pyrenoidosa can accumulate lutein and chlorophyll under heterotrophic conditions. We propose that the mitochondrial respiratory electron transport chain (mRET) may be involved in this process. To verify this hypothesis, algal cells were treated with different mRET inhibitors. The biosynthesis of lutein and chlorophyll was found to be significantly stimulated by salicylhydroxamic acid (SHAM), whereas their contents substantially decreased after treatment with antimycin A and sodium azide (NaN3). Proteomic studies revealed profound protein alterations related to the redox and energy states, and a network was proposed: The up-regulation of peroxiredoxin reduces oxidized glutathione (GSSG) to reduced glutathione (GSH); phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the conversion of oxaloacetic acid to phosphoenolpyruvate, and after entering the methylerythritol phosphate (MEP) pathway, 4-hydroxy-3-methylbut-2-en-1yl diphosphate synthase reduces 2-C-methyl-d-erythritol-2,4-cyclodiphosphate (ME-Cpp) to 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP), which is closely related to the synthesis of lutein; and coproporphyrinogen III oxidase and ChlI play important roles in the chlorophyll biosynthetic pathway. These results supported that for the heterotrophic C. pyrenoidosa, the signaling, oriented from mRET, may regulate the nuclear genes encoding the enzymes involved in photosynthetic pigment biosynthesis.
Collapse
|
14
|
Ninokata R, Yamahira T, Onodera G, Kimura M. Nickel-Catalyzed CO2
Rearrangement of Enol Metal Carbonates for the Efficient Synthesis of β-Ketocarboxylic Acids. Angew Chem Int Ed Engl 2016; 56:208-211. [DOI: 10.1002/anie.201609338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Ryo Ninokata
- Graduate School of Engineering; Nagasaki University; Bunkyo-machi 1-14 Nagasaki 852-8521 Japan
| | - Tatsuya Yamahira
- Graduate School of Engineering; Nagasaki University; Bunkyo-machi 1-14 Nagasaki 852-8521 Japan
| | - Gen Onodera
- Graduate School of Engineering; Nagasaki University; Bunkyo-machi 1-14 Nagasaki 852-8521 Japan
| | - Masanari Kimura
- Graduate School of Engineering; Nagasaki University; Bunkyo-machi 1-14 Nagasaki 852-8521 Japan
| |
Collapse
|
15
|
Ninokata R, Yamahira T, Onodera G, Kimura M. Nickel‐Catalyzed CO
2
Rearrangement of Enol Metal Carbonates for the Efficient Synthesis of β‐Ketocarboxylic Acids. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ryo Ninokata
- Graduate School of Engineering Nagasaki University Bunkyo-machi 1-14 Nagasaki 852-8521 Japan
| | - Tatsuya Yamahira
- Graduate School of Engineering Nagasaki University Bunkyo-machi 1-14 Nagasaki 852-8521 Japan
| | - Gen Onodera
- Graduate School of Engineering Nagasaki University Bunkyo-machi 1-14 Nagasaki 852-8521 Japan
| | - Masanari Kimura
- Graduate School of Engineering Nagasaki University Bunkyo-machi 1-14 Nagasaki 852-8521 Japan
| |
Collapse
|
16
|
Gulyas G, Csosz E, Prokisch J, Javor A, Mezes M, Erdelyi M, Balogh K, Janaky T, Szabo Z, Simon A, Czegledi L. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver. J Anim Physiol Anim Nutr (Berl) 2016; 101:502-510. [DOI: 10.1111/jpn.12459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 11/24/2015] [Indexed: 01/25/2023]
Affiliation(s)
- G. Gulyas
- Department of Animal Science; University of Debrecen; Debrecen Hungary
| | - E. Csosz
- Department of Biochemistry and Molecular Biology; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - J. Prokisch
- Department of Animal Science; University of Debrecen; Debrecen Hungary
| | - A. Javor
- Department of Animal Science; University of Debrecen; Debrecen Hungary
| | - M. Mezes
- Department of Nutrition; Szent Istvan University; Godollo Hungary
| | - M. Erdelyi
- Department of Nutrition; Szent Istvan University; Godollo Hungary
| | - K. Balogh
- Department of Nutrition; Szent Istvan University; Godollo Hungary
| | - T. Janaky
- Department of Medical Chemistry; Faculty of Medicine; University of Szeged; Szeged Hungary
| | - Z. Szabo
- Department of Medical Chemistry; Faculty of Medicine; University of Szeged; Szeged Hungary
| | - A. Simon
- Department of Animal Science; University of Debrecen; Debrecen Hungary
| | - L. Czegledi
- Department of Animal Science; University of Debrecen; Debrecen Hungary
| |
Collapse
|
17
|
Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. EcoSal Plus 2015; 4. [PMID: 26443778 DOI: 10.1128/ecosalplus.10.2.1] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biochemical network reconstructions have become popular tools in systems biology. Metabolicnetwork reconstructions are biochemically, genetically, and genomically (BiGG) structured databases of biochemical reactions and metabolites. They contain information such as exact reaction stoichiometry, reaction reversibility, and the relationships between genes, proteins, and reactions. Network reconstructions have been used extensively to study the phenotypic behavior of wild-type and mutant stains under a variety of conditions, linking genotypes with phenotypes. Such phenotypic simulations have allowed for the prediction of growth after genetic manipulations, prediction of growth phenotypes after adaptive evolution, and prediction of essential genes. Additionally, because network reconstructions are organism specific, they can be used to understand differences between organisms of species in a functional context.There are different types of reconstructions representing various types of biological networks (metabolic, regulatory, transcription/translation). This chapter serves as an introduction to metabolic and regulatory network reconstructions and models and gives a complete description of the core Escherichia coli metabolic model. This model can be analyzed in any computational format (such as MATLAB or Mathematica) based on the information given in this chapter. The core E. coli model is a small-scale model that can be used for educational purposes. It is meant to be used by senior undergraduate and first-year graduate students learning about constraint-based modeling and systems biology. This model has enough reactions and pathways to enable interesting and insightful calculations, but it is also simple enough that the results of such calculations can be understoodeasily.
Collapse
|
18
|
Sosa MH, Giordana L, Nowicki C. Exploring biochemical and functional features of Leishmania major phosphoenolpyruvate carboxykinase. Arch Biochem Biophys 2015; 583:120-9. [PMID: 26271440 DOI: 10.1016/j.abb.2015.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
This work reports the first functional characterization of leishmanial PEPCK. The recombinant Leishmania major enzyme (Lmj_PEPCK) exhibits equivalent kcat values for the phosphoenolpyruvate (PEP) and oxaloacetate (OAA) forming reactions. The apparent Km towards OAA is 10-fold lower than that for PEP, while the Km values for ADP and ATP are equivalent. Mutagenesis studies showed that D241, D242 and H205 of Lmj_PEPCK like the homologous residues of all known PEPCKs are implicated in metal ions binding. In contrast, the replacement of R43 for Q nearly abolishes Lmj_PEPCK activity. Moreover, the Y180F variant exhibits unchanged Km values for PEP, Mn(2+), and [Formula: see text] , being the kcat for PEP- but not that for OAA-forming reaction more notably decreased. Instead, the Y180A mutant displays an increase in the Km value towards Mn(2+). Therefore in Lmj_PEPCK, Y180 seems to exert different functions to those of the analogous residue in ATP- and GTP-dependant enzymes. Besides, the guanidinium group of R43 appears to play an essential but yet unknown role. These findings promote the need for further structural studies to disclose whether Y180 and R43 participate in the catalytic mechanism or/and in the transitions between the open and the catalytically competent (closed) forms of Lmj_PEPCK.
Collapse
Affiliation(s)
- Máximo Hernán Sosa
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Lucila Giordana
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Cristina Nowicki
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
20
|
Copper response of Proteus hauseri based on proteomic and genetic expression and cell morphology analyses. Appl Biochem Biotechnol 2014; 173:1057-72. [PMID: 24752937 DOI: 10.1007/s12010-014-0892-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/25/2014] [Indexed: 01/23/2023]
Abstract
The copper response of Proteus hauseri ZMd44 was determined using one-dimensional (1D) gel electrophoresis coupled with MALDI-TOF-TOF mass spectrometry for a similarity analysis of proteins isolated from P. hauseri ZMd44 cultured in CuSO4-bearing LB medium. Candidate proteins identified as a copper-transporting P-type ATPase (CTPP), phosphoenolpyruvate carboxykinase (PEPCK), flagellin (Fla), and outer membrane proteins (Omps) were the major copper-associated proteins in P. hauseri. In a comparative analysis of subcellular (i.e., periplasmic, intracellular, and inner membranes) and cellular debris, proteomics analysis revealed a distinct differential expression of proteins in P. hauseri with and without copper ion exposure. These findings were consistent with the transcription level dynamics determined using quantitative real-time PCR. Based on a genetic cluster analysis of copper-associated proteins from P. hauseri, Fla and one of the Omps showed greater diversity in their protein sequences compared to those of other Proteus species. Transmission electron microscopy (TEM) and the observed growth on LB agar plates showed that the swarming motility of cells was significantly suppressed and inhibited upon Cu(II) exposure. Thus, copper stress could have important therapeutic significance due to the loss of swarming motility capacity in P. hauseri, which causes urinary tract infections.
Collapse
|
21
|
Minato Y, Fassio SR, Wolfe AJ, Häse CC. Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae. MICROBIOLOGY-SGM 2013; 159:792-802. [PMID: 23429745 DOI: 10.1099/mic.0.064865-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ToxT is the central regulatory protein involved in activation of the main virulence genes in Vibrio cholerae. We have identified transposon insertions in central metabolism genes, whose disruption increases toxT transcription. These disrupted genes encode the primary respiration-linked sodium pump (NADH:ubiquinone oxidoreductase or NQR) and certain tricarboxylic acid (TCA) cycle enzymes. Observations made following stimulation of respiration in the nqr mutant or chemical inhibition of NQR activity in the TCA cycle mutants led to the hypothesis that NQR affects toxT transcription via the TCA cycle. That toxT transcription increased when the growth medium was supplemented with citrate, but decreased with oxaloacetate, focused our attention on the TCA cycle substrate acetyl-CoA and its non-TCA cycle metabolism. Indeed, both the nqr and the TCA cycle mutants increased acetate excretion. A similar correlation between acetate excretion and toxT transcription was observed in a tolC mutant and upon amino acid (NRES) supplementation. As acetate and its tendency to decrease pH exerted no strong effect on toxT transcription, and because disruption of the major acetate excretion pathway increased toxT transcription, we propose that toxT transcription is regulated by either acetyl-CoA or some close derivative.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Sara R Fassio
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Claudia C Häse
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
22
|
Drummond ML, Wilson AK, Cundari TR. Nature of protein-CO2 interactions as elucidated via molecular dynamics. J Phys Chem B 2012; 116:11578-93. [PMID: 22882078 DOI: 10.1021/jp304770h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rising global temperatures require innovative measures to reduce atmospheric concentrations of CO(2). The most successful carbon capture technology on Earth is the enzymatic capture of CO(2) and its sequestration in the form of glucose. Efforts to improve upon or mimic this naturally occurring process will require a rich understanding of protein-CO(2) interactions. Toward that end, extensive all-atom molecular dynamics (MD) simulations were performed on the CO(2)-utilizing enzyme phosphoenolpyruvate carboxykinase (PEPCK). Preliminary simulations were performed using implicit and explicit solvent models, which yielded similar results: arginine, lysine, tyrosine, and asparagine enhance the ability of a protein to bind carbon dioxide. Extensive explicit solvent simulations were performed for both wild-type PEPCK and five single-point PEPCK mutants, revealing three prevalent channels by which CO(2) enters (or exits) the active site cleft, as well as a fourth channel (observed only once), the existence of which can be rationalized in terms of the position of a key Arg residue. The strongest CO(2) binding sites in these simulations consist of appropriately positioned hydrogen bond donors and acceptors. Interactions between CO(2) and both Mn(2+) and Mg(2+) present in PEPCK are minimal due to the stable protein- and solvent-based coordination environments of these cations. His 232, suggested by X-ray crystallography as being a potential important CO(2) binding site, is indeed found to be particularly "CO(2)-philic" in these simulations. Finally, a recent mechanism, proposed on the basis of X-ray crystallography, for PEPCK active site lid closure is discussed in light of the MD trajectories. Overall, the results of this work will prove useful not only to scientists investigating PEPCK, but also to groups seeking to develop an environmentally benign, protein-based carbon capture, sequestration, and utilization system.
Collapse
Affiliation(s)
- Michael L Drummond
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76201, USA.
| | | | | |
Collapse
|
23
|
Lassila JK, Zalatan JG, Herschlag D. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Annu Rev Biochem 2011; 80:669-702. [PMID: 21513457 DOI: 10.1146/annurev-biochem-060409-092741] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field.
Collapse
Affiliation(s)
- Jonathan K Lassila
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
24
|
Skultety L, Hajduch M, Flores-Ramirez G, Miernyk JA, Ciampor F, Toman R, Sekeyova Z. Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever. J Proteomics 2011; 74:1974-84. [PMID: 21616182 DOI: 10.1016/j.jprot.2011.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/20/2011] [Accepted: 05/09/2011] [Indexed: 01/06/2023]
Abstract
Coxiella burnetii, a category B biological warfare agent, causes multiple outbreaks of the zoonotic disease Q fever world-wide, each year. The virulent phase I and avirulent phase II variants of the Nine Mile RSA 493 and 439 strains of C. burnetii were propagated in embryonated hen eggs and then purified by centrifugation through Renografin gradients. Total protein fractions were isolated from each phase and subjected to analysis by one-dimensional electrophoresis plus tandem mass spectrometry. A total of 235 and 215 non-redundant proteins were unambiguously identified from the phase I and II cells, respectively. Many of these proteins had not been previously reported in proteomic studies of C. burnetii. The newly identified proteins should provide additional insight into the pathogenesis of Q fever. Several of the identified proteins are involved in the biosynthesis and metabolism of components of the extracellular matrix. Forty-four of the proteins have been annotated as having distinct roles in the pathogenesis or survival of C. burnetii within the harsh phagolysosomal environment. We propose that nine enzymes specifically involved with lipopolysaccharide biosynthesis and metabolism, and that are distinctively present in phase I cells, are virulence-associated proteins.
Collapse
Affiliation(s)
- Ludovit Skultety
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang D, Li Q, Li W, Xing J, Su Z. Improvement of succinate production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
An R, Sreevatsan S, Grewal PS. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. BMC Genomics 2009; 10:433. [PMID: 19754939 PMCID: PMC2760582 DOI: 10.1186/1471-2164-10-433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 09/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photorhabdus and Xenorhabdus are Gram-negative, phylogenetically related, enterobacteria, forming mutualism with the entomopathogenic nematodes Heterorhabditis and Steinernema, respectively. The mutualistic bacteria living in the intestines of the nematode infective juveniles are pathogenic to the insect upon release by the nematodes into the insect hemolymph. Such a switch needs activation of genes that promote bacterial virulence. We studied in vivo gene expression in Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the white grub Rhizotrogus majalis using selective capture of transcribed sequences technique. RESULTS A total of 40 genes in P. temperata and 39 in X. koppenhoeferi were found to be upregulated in R. majalis hemolymph at 24 h post infection. Genomic presence or upregulation of these genes specific in either one of the bacterium was confirmed by the assay of comparative hybridization, and the changes of randomly selected genes were further validated by quantitative real-time PCR. The identified genes could be broadly divided into seven functional groups including cell surface structure, regulation, virulence and secretion, stress response, intracellular metabolism, nutrient scavenging, and unknown. The two bacteria shared more genes in stress response category than any other functional group. More than 60% of the identified genes were uniquely induced in either bacterium suggesting vastly different molecular mechanisms of pathogenicity to the same insect host. In P. temperata lysR gene encoding transcriptional activator was induced, while genes yijC and rseA encoding transcriptional repressors were induced in X. koppenhoeferi. Lipopolysaccharide synthesis gene lpsE was induced in X. koppenhoeferi but not in P. temperata. Except tcaC and hemolysin related genes, other virulence genes were different between the two bacteria. Genes involved in TCA cycle were induced in P. temperata whereas those involved in glyoxylate pathway were induced in X. koppenhoeferi, suggesting differences in metabolism between the two bacteria in the same insect host. Upregulation of genes encoding different types of nutrient uptake systems further emphasized the differences in nutritional requirements of the two bacteria in the same insect host. Photorhabdus temperata displayed upregulation of genes encoding siderophore-dependent iron uptake system, but X. koppenhoeferi upregulated genes encoding siderophore-independent ion uptake system. Photorhabdus temperata induced genes for amino acid acquisition but X. koppenhoeferi upregulated malF gene, encoding a maltose uptake system. Further analyses identified possible mechanistic associations between the identified gene products in metabolic pathways, providing an interactive model of pathogenesis for each bacterium species. CONCLUSION This study identifies set of genes induced in P. temperata and X. koppenhoeferi upon infection of R. majalis, and highlights differences in molecular features used by these two closely related bacteria to promote their pathogenicity in the same insect host.
Collapse
Affiliation(s)
- Ruisheng An
- Department of Entomology, The Ohio State University, Wooster, OH 44691, USA.
| | | | | |
Collapse
|
27
|
Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, Tao SC, Qian J, Zhao Y, Boeke JD, Berger SL, Zhu H. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 2009; 136:1073-84. [PMID: 19303850 DOI: 10.1016/j.cell.2009.01.033] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/07/2008] [Accepted: 01/07/2009] [Indexed: 11/29/2022]
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) conduct many critical functions through nonhistone substrates in metazoans, but only chromatin-associated nonhistone substrates are known in Saccharomyces cerevisiae. Using yeast proteome microarrays, we identified and validated many nonchromatin substrates of the essential nucleosome acetyltransferase of H4 (NuA4) complex. Among these, acetylation sites (Lys19 and 514) of phosphoenolpyruvate carboxykinase (Pck1p) were determined by tandem mass spectrometry. Acetylation at Lys514 was crucial for enzymatic activity and the ability of yeast cells to grow on nonfermentable carbon sources. Furthermore, Sir2p deacetylated Pck1p both in vitro and in vivo. Loss of Pck1p activity blocked the extension of yeast chronological life span caused by water starvation. In human hepatocellular carcinoma (HepG2) cells, human Pck1 acetylation and glucose production were dependent on TIP60, the human homolog of ESA1. Our findings demonstrate a regulatory function for the NuA4 complex in glucose metabolism and life span by acetylating a critical metabolic enzyme.
Collapse
Affiliation(s)
- Yu-yi Lin
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dharmarajan L, Case CL, Dunten P, Mukhopadhyay B. Tyr235 of human cytosolic phosphoenolpyruvate carboxykinase influences catalysis through an anion-quadrupole interaction with phosphoenolpyruvate carboxylate. FEBS J 2009; 275:5810-9. [PMID: 19021757 DOI: 10.1111/j.1742-4658.2008.06702.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyr235 of GTP-dependent phosphoenolpyruvate (PEP) carboxykinase is a fully invariant residue. The aromatic ring of this residue establishes an energetically favorable weak anion-quadrupole interaction with PEP carboxylate. The role of Tyr235 in catalysis was investigated via kinetic analysis of site-directed mutagenesis-derived variants. The Y235F change lowered the apparent K(m) for PEP by about six-fold, raised the apparent K(m) for Mn(2+) by about 70-fold, and decreased oxaloacetate (OAA)-forming activity by about 10-fold. These effects were due to an enhanced anion-quadrupole interaction between the aromatic side chain at position 235, which now lacked a hydroxyl group, and PEP carboxylate, which probably increased the distance between PEP and Mn(2+) and consequently affected the phosphoryl transfer step and overall catalysis. For the Y235A and Y235S changes, an elimination of the favorable edge-on interaction increased the apparent K(m) for PEP by four- and six-fold, respectively, and the apparent K(m) for Mn(2+) by eight- and six-fold, respectively. The pyruvate kinase-like activity, representing the PEP dephosphorylation step of the OAA-forming reaction, was affected by the substitutions in a similar way to the complete reaction. These observations indicate that the aromatic ring of Tyr235 helps to position PEP in the active site and the hydroxyl group allows an optimal PEP-Mn(2+) distance for efficient phosphoryl transfer and overall catalysis. The Y235A and Y235S changes drastically reduced the PEP-forming and OAA decarboxylase activities, probably due to the elimination of the stabilizing interaction between Tyr235 and the respective products, PEP and pyruvate.
Collapse
Affiliation(s)
- Lakshmi Dharmarajan
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
29
|
Lee SJ, Song H, Lee SY. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 2006; 72:1939-48. [PMID: 16517641 PMCID: PMC1393240 DOI: 10.1128/aem.72.3.1939-1948.2006] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.
Collapse
Affiliation(s)
- Sang Jun Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
30
|
Kim C, Mobashery S. Phosphoryl transfer by aminoglycoside 3'-phosphotransferases and manifestation of antibiotic resistance. Bioorg Chem 2004; 33:149-58. [PMID: 15888308 DOI: 10.1016/j.bioorg.2004.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/04/2004] [Accepted: 11/05/2004] [Indexed: 11/17/2022]
Abstract
Transfer of the gamma-phosphoryl group from ATP to aminoglycoside antibiotics by aminoglycoside 3'-phosphotransferases is one of the most important reactions for manifestation of bacterial resistance to this class of antibiotics. This review article surveys the latest structural and mechanistic findings with these enzymes.
Collapse
Affiliation(s)
- Choonkeun Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
31
|
Sauer U, Eikmanns BJ. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 2004; 29:765-94. [PMID: 16102602 DOI: 10.1016/j.femsre.2004.11.002] [Citation(s) in RCA: 379] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/27/2004] [Accepted: 11/01/2004] [Indexed: 11/16/2022] Open
Abstract
In many organisms, metabolite interconversion at the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node involves a structurally entangled set of reactions that interconnects the major pathways of carbon metabolism and thus, is responsible for the distribution of the carbon flux among catabolism, anabolism and energy supply of the cell. While sugar catabolism proceeds mainly via oxidative or non-oxidative decarboxylation of pyruvate to acetyl-CoA, anaplerosis and the initial steps of gluconeogenesis are accomplished by C3- (PEP- and/or pyruvate-) carboxylation and C4- (oxaloacetate- and/or malate-) decarboxylation, respectively. In contrast to the relatively uniform central metabolic pathways in bacteria, the set of enzymes at the PEP-pyruvate-oxaloacetate node represents a surprising diversity of reactions. Variable combinations are used in different bacteria and the question of the significance of all these reactions for growth and for biotechnological fermentation processes arises. This review summarizes what is known about the enzymes and the metabolic fluxes at the PEP-pyruvate-oxaloacetate node in bacteria, with a particular focus on the C3-carboxylation and C4-decarboxylation reactions in Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. We discuss the activities of the enzymes, their regulation and their specific contribution to growth under a given condition or to biotechnological metabolite production. The present knowledge unequivocally reveals the PEP-pyruvate-oxaloacetate nodes of bacteria to be a fascinating target of metabolic engineering in order to achieve optimized metabolite production.
Collapse
Affiliation(s)
- Uwe Sauer
- Institute of Biotechnology, ETH Zürich, Switzerland
| | | |
Collapse
|