1
|
Kerbs A, Burgardt A, Veldmann KH, Schäffer T, Lee JH, Wendisch VF. Fermentative production of halogenated tryptophan derivatives with Corynebacterium glutamicum overexpressing tryptophanase or decarboxylase genes. Chembiochem 2022; 23:e202200007. [PMID: 35224830 PMCID: PMC9315010 DOI: 10.1002/cbic.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Indexed: 11/24/2022]
Abstract
The aromatic amino acid l‐tryptophan serves as a precursor for many valuable compounds such as neuromodulators, indoleamines and indole alkaloids. In this work, tryptophan biosynthesis was extended by halogenation followed by decarboxylation to the respective tryptamines or cleavage to the respective indoles. Either the tryptophanase genes tnaAs from E. coli and Proteus vulgaris or the aromatic amino acid decarboxylase genes AADCs from Bacillus atrophaeus, Clostridium sporogenes, and Ruminococcus gnavus were expressed in Corynebacterium glutamicum strains producing (halogenated) tryptophan. Regarding indoles, final titers of 16 mg L−1 7‐Cl‐indole and 23 mg L−1 7‐Br‐indole were attained. Tryptamine production led to a much higher titer of 2.26 g L−1 upon expression of AADC from B. atrophaeus. AADC enzymes were shown to be active with halogenated tryptophan in vitro and in vivo and supported production of 0.36 g L−1 7‐Br‐tryptamine with a volumetric productivity of 8.3 mg L−1 h−1 in a fed‐batch fermentation.
Collapse
Affiliation(s)
- Anastasia Kerbs
- Bielefeld University: Universitat Bielefeld, Genetics of Prokaryotes, GERMANY
| | - Arthur Burgardt
- Bielefeld University: Universitat Bielefeld, Genetics of Prokaryotes, GERMANY
| | - Kareen H Veldmann
- Bielefeld University: Universitat Bielefeld, Genetisc of Prokaryotes, GERMANY
| | - Thomas Schäffer
- Bielefeld University: Universitat Bielefeld, Fermentation Technology, GERMANY
| | - Jin-Ho Lee
- Kyungsung University, Food Science and Biotechnology, KOREA, REPUBLIC OF
| | - Volker F Wendisch
- Bielefeld University: Universitat Bielefeld, Genetics of Prokaryotes, Universitätsstr. 25, 33615, Bielefeld, GERMANY
| |
Collapse
|
2
|
Phillips RS, Buisman AA, Choi S, Hussaini A, Wood ZA. The crystal structure of Proteus vulgaris tryptophan indole-lyase complexed with oxindolyl-L-alanine: implications for the reaction mechanism. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:748-759. [DOI: 10.1107/s2059798318003352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
Abstract
Tryptophan indole-lyase (TIL) is a bacterial enzyme which catalyzes the reversible formation of indole and ammonium pyruvate from L-tryptophan. Oxindolyl-L-alanine (OIA) is an inhibitor of TIL, with a K
i value of about 5 µM. The crystal structure of the complex of Proteus vulgaris TIL with OIA has now been determined at 2.1 Å resolution. The ligand forms a closed quinonoid complex with the pyridoxal 5′-phosphate (PLP) cofactor. The small domain rotates about 10° to close the active site, bringing His458 into position to donate a hydrogen bond to Asp133, which also accepts a hydrogen bond from the heterocyclic NH of the inhibitor. This brings Phe37 and Phe459 into van der Waals contact with the aromatic ring of OIA. Mutation of the homologous Phe464 in Escherichia coli TIL to Ala results in a 500-fold decrease in k
cat/K
m for L-tryptophan, with less effect on the reaction of other nonphysiological β-elimination substrates. Stopped-flow kinetic experiments of F464A TIL show that the mutation has no effect on the formation of quinonoid intermediates. An aminoacrylate intermediate is observed in the reaction of F464A TIL with S-ethyl-L-cysteine and benzimidazole. A model of the L-tryptophan quinonoid complex with PLP in the active site of P. vulgaris TIL shows that there would be a severe clash of Phe459 (∼1.5 Å apart) and Phe37 (∼2 Å apart) with the benzene ring of the substrate. It is proposed that this creates distortion of the substrate aromatic ring out of plane and moves the substrate upwards on the reaction coordinate towards the transition state, thus reducing the activation energy and accelerating the enzymatic reaction.
Collapse
|
3
|
Anufrieva NV, Faleev NG, Morozova EA, Bazhulina NP, Revtovich SV, Timofeev VP, Tkachev YV, Nikulin AD, Demidkina TV. The role of active site tyrosine 58 in Citrobacter freundii methionine γ-lyase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1220-8. [PMID: 25584856 DOI: 10.1016/j.bbapap.2014.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
In the spatial structure of methionine γ-lyase (MGL, EC 4.4.1.11) from Citrobacter freundii, Tyr58 is located at H-bonding distance to the oxygen atom of the phosphate "handle" of pyridoxal 5'-phosphate (PLP). It was replaced for phenylalanine by site-directed mutagenesis. The X-ray structure of the mutant enzyme was determined at 1.96Å resolution. Comparison of spatial structures and absorption spectra of wild-type and mutant holoenzymes demonstrated that the replacement did not result in essential changes of the conformation of the active site Tyr58Phe MGL. The Kd value of PLP for Tyr58Phe MGL proved to be comparable to the Kd value for the wild-type enzyme. The replacement led to a decrease of catalytic efficiencies in both γ- and β-elimination reactions of about two orders of magnitude as compared to those for the wild-type enzyme. The rates of exchange of C-α- and C-β- protons of inhibitors in D2O catalyzed by the mutant form are comparable with those for the wild-type enzyme. Spectral data on the complexes of the mutant form with the substrates and inhibitors showed that the replacement led to a change of rate the limiting step of the physiological reaction. The results allowed us to conclude that Tyr58 is involved in an optimal positioning of the active site Lys210 at some stages of γ- and β-elimination reactions. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Natalya V Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Nicolai G Faleev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 117813, Russia
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Natalia P Bazhulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Vladimir P Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Yaroslav V Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Alexei D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, ul. Institutskaya 4, Pushchino, Moscow Region 142290, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia.
| |
Collapse
|
4
|
Faleev NG, Zakomirdina LN, Vorob'ev MM, Tsvetikova MA, Gogoleva OI, Demidkina TV, Phillips RS. A straightforward kinetic evidence for coexistence of "induced fit" and "selected fit" in the reaction mechanism of a mutant tryptophan indole lyase Y72F from Proteus vulgaris. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1860-7. [PMID: 25084024 DOI: 10.1016/j.bbapap.2014.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/30/2014] [Accepted: 07/21/2014] [Indexed: 11/25/2022]
Abstract
The interaction of the mutant tryptophan indole-lyase (TIL) from Proteus vulgaris Y72F with the transition state analogue, oxindolyl-l-alanine (OIA), with the natural substrate, l-tryptophan, and with a substrate S-ethyl-l-cysteine was examined. In the case of wild-type enzyme these reactions are described by the same kinetic scheme where binding of holoenzyme with an amino acid, leading to reversible formation of an external aldimine, proceeds very fast, while following transformations, leading finally to reversible formation of a quinonoid intermediate proceed with measureable rates. Principally the same scheme ("induced fit") is realized in the case of mutant Y72F enzyme reaction with OIA. For the reaction of mutant enzyme with l-Trp at lower concentrations of the latter a principally different kinetic scheme is observed. This scheme suggests that binding of the substrate and formation of the quinonoid intermediate are at fast equilibrium, while preceding conformational changes of the holoenzyme proceed with measureable rates ("selected fit"). For the reaction with S-ethyl-l-cysteine the observed concentration dependence of kobs agrees with the realization of both kinetic schemes, the "selected fit" becoming predominant at lower concentrations of substrate, the "induced fit"- at higher ones. In the reaction with S-ethyl-l-cysteine the formation of the quinonoid intermediate proceeds slower than does catalytic α,β-elimination of ethylthiol from S-ethyl-l-cysteine, and consequently does not play a considerable role in the catalysis, which may be effected by a concerted E2 mechanism.
Collapse
Affiliation(s)
- Nicolai G Faleev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Lyudmila N Zakomirdina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Mikhail M Vorob'ev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Marina A Tsvetikova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga I Gogoleva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Production of indole from L-tryptophan and effects of these compounds on biofilm formation by Fusobacterium nucleatum ATCC 25586. Appl Environ Microbiol 2010; 76:4260-8. [PMID: 20472741 DOI: 10.1128/aem.00166-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The l-tryptophan degradation product indole is a purported extracellular signaling molecule that influences biofilm formation in various bacteria. Here we analyzed the mechanisms of indole production in Fusobacterium nucleatum and the effects of tryptophan and indole on F. nucleatum planktonic and biofilm cells. The amino acid sequence deduced from the fn1943 gene in F. nucleatum ATCC 25586 was 28% identical to that deduced from tnaA in Escherichia coli, which encodes tryptophanase catalyzing the beta-elimination of l-tryptophan to produce indole. The fn1943 gene was cotranscribed with the downstream gene fn1944, which is a homolog of tnaB encoding low-affinity tryptophan permease. The transcript started at position -68 or -153 from the first nucleotide of the fn1943 translation initiation codon. Real-time quantitative PCR showed that much more F. nucleatum fn1943 transcripts were obtained from log-phase cells than from stationary-phase cells. Indole production by the purified recombinant protein encoded by fn1943 was examined using high-performance liquid chromatography. The K(m) and k(cat) of the enzyme were 0.26 +/- 0.03 mM and 0.74 +/- 0.04 s(-1), respectively. F. nucleatum biofilm formation and the biofilm supernatant concentration of indole increased dose dependently with increasing tryptophan concentrations. Exogenous indole also increased F. nucleatum biofilm formation in a dose-dependent manner. Even at very high concentrations, tryptophan did not affect fn1943 expression, whereas similar indole concentrations decreased expression. Thus, exogenous tryptophan and indole were suggested to increase F. nucleatum biofilms.
Collapse
|
6
|
Conformational changes and loose packing promote E. coli Tryptophanase cold lability. BMC STRUCTURAL BIOLOGY 2009; 9:65. [PMID: 19814824 PMCID: PMC2770544 DOI: 10.1186/1472-6807-9-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022]
Abstract
Background Oligomeric enzymes can undergo a reversible loss of activity at low temperatures. One such enzyme is tryptophanase (Trpase) from Escherichia coli. Trpase is a pyridoxal phosphate (PLP)-dependent tetrameric enzyme with a Mw of 210 kD. PLP is covalently bound through an enamine bond to Lys270 at the active site. The incubation of holo E. coli Trpases at 2°C for 20 h results in breaking this enamine bond and PLP release, as well as a reversible loss of activity and dissociation into dimers. This sequence of events is termed cold lability and its understanding bears relevance to protein stability and shelf life. Results We studied the reversible cold lability of E. coli Trpase and its Y74F, C298S and W330F mutants. In contrast to the holo E. coli Trpase all apo forms of Trpase dissociated into dimers already at 25°C and even further upon cooling to 2°C. The crystal structures of the two mutants, Y74F and C298S in their apo form were determined at 1.9Å resolution. These apo mutants were found in an open conformation compared to the closed conformation found for P. vulgaris in its holo form. This conformational change is further supported by a high pressure study. Conclusion We suggest that cold lability of E. coli Trpases is primarily affected by PLP release. The enhanced loss of activity of the three mutants is presumably due to the reduced size of the side chain of the amino acids. This prevents the tight assembly of the active tetramer, making it more susceptible to the cold driven changes in hydrophobic interactions which facilitate PLP release. The hydrophobic interactions along the non catalytic interface overshadow the effect of point mutations and may account for the differences in the dissociation of E. coli Trpase to dimers and P. vulgaris Trpase to monomers.
Collapse
|
7
|
Demidkina TV, Antson AA, Faleev NG, Phillips RS, Zakomirdina LN. Spatial structure and the mechanism of tyrosine phenol-lyase and tryptophan indole-lyase. Mol Biol 2009. [DOI: 10.1134/s0026893309020101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|