1
|
Kaushal S, Gupta S, Shefrin S, Vora DS, Kaul SC, Sundar D, Wadhwa R, Dhanjal JK. Synthetic and Natural Inhibitors of Mortalin for Cancer Therapy. Cancers (Basel) 2024; 16:3470. [PMID: 39456564 PMCID: PMC11506508 DOI: 10.3390/cancers16203470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Upregulation of stress chaperone Mortalin has been closely linked to the malignant transformation of cells, tumorigenesis, the progression of tumors to highly aggressive stages, metastasis, drug resistance, and relapse. Various in vitro and in vivo assays have provided evidence of the critical role of Mortalin upregulation in promoting cancer cell characteristics, including proliferation, migration, invasion, and the inhibition of apoptosis, a consistent feature of most cancers. Given its critical role in several steps in oncogenesis and multi-modes of action, Mortalin presents a promising target for cancer therapy. Consequently, Mortalin inhibitors are emerging as potential anti-cancer drugs. In this review, we discuss various inhibitors of Mortalin (peptides, small RNAs, natural and synthetic compounds, and antibodies), elucidating their anti-cancer potentials.
Collapse
Affiliation(s)
- Shruti Kaushal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Samriddhi Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
| | - Dhvani Sandip Vora
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| |
Collapse
|
2
|
Bidooki SH, Sánchez-Marco J, Martínez-Beamonte R, Herrero-Continente T, Navarro MA, Rodríguez-Yoldi MJ, Osada J. Endoplasmic Reticulum Protein TXNDC5 Interacts with PRDX6 and HSPA9 to Regulate Glutathione Metabolism and Lipid Peroxidation in the Hepatic AML12 Cell Line. Int J Mol Sci 2023; 24:17131. [PMID: 38138960 PMCID: PMC10743020 DOI: 10.3390/ijms242417131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Non-alcoholic fatty liver disease or steatosis is an accumulation of fat in the liver. Increased amounts of non-esterified fatty acids, calcium deficiency, or insulin resistance may disturb endoplasmic reticulum (ER) homeostasis, which leads to the abnormal accumulation of misfolded proteins, activating the unfolded protein response. The ER is the primary location site for chaperones like thioredoxin domain-containing 5 (TXNDC5). Glutathione participates in cellular oxidative stress, and its interaction with TXNDC5 in the ER may decrease the disulfide bonds of this protein. In addition, glutathione is utilized by glutathione peroxidases to inactivate oxidized lipids. To characterize proteins interacting with TXNDC5, immunoprecipitation and liquid chromatography-mass spectrometry were used. Lipid peroxidation, reduced glutathione, inducible phospholipase A2 (iPLA2) and hepatic transcriptome were assessed in the AML12 and TXNDC5-deficient AML12 cell lines. The results showed that HSPA9 and PRDX6 interact with TXNDC5 in AML12 cells. In addition, TXNDC5 deficiency reduced the protein levels of PRDX6 and HSPA9 in AML12. Moreover, lipid peroxidation, glutathione and iPLA2 activities were significantly decreased in TXNDC5-deficient cells, and to find the cause of the PRDX6 protein reduction, proteasome suppression revealed no considerable effect on it. Finally, hepatic transcripts connected to PRDX6 and HSPA9 indicated an increase in the Dnaja3, Mfn2 and Prdx5 and a decrease in Npm1, Oplah, Gstp3, Gstm6, Gstt1, Serpina1a, Serpina1b, Serpina3m, Hsp90aa1 and Rps14 mRNA levels in AML12 KO cells. In conclusion, the lipid peroxidation system and glutathione mechanism in AML12 cells may be disrupted by the absence of TXNDC5, a novel protein-protein interacting partner of PRDX6 and HSPA9.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- CNRS, IPREM, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María J. Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
3
|
Lupane Triterpene Derivatives Improve Antiproliferative Effect on Leukemia Cells through Apoptosis Induction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238263. [PMID: 36500355 PMCID: PMC9738192 DOI: 10.3390/molecules27238263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Leukemia is one of the most frequent types of cancer. No effective treatment currently exists, driving a search for new compounds. Simple structural modifications were made to novel triterpenes isolated from Phoradendron wattii. Of the three resulting derivatives, 3α-methoxy-24-hydroxylup-20(29)-en-28-oic acid (T1m) caused a decrease in the median inhibitory concentration (IC50) on the K562 cell line. Its mode of action was apparently apoptosis, ROS generation, and loss of mitochondrial membrane potential (MMP). Molecular docking analysis showed T1m to produce lower binding energies than its precursor for the Bcl-2 and EGFR proteins. Small, simple, and viable modifications to triterpenes can improve their activity against leukemia cell lines. T1m is a potentially promising element for future research. Clarifying the targets in its mode of action will improve its applicability.
Collapse
|
4
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
5
|
Narasimhan M, Khamkar V, Tilwani S, Dalal SN, Shetty D, Subramanian PG, Gupta S, Govekar R. Atypical activation of signaling downstream of inactivated Bcr-Abl mediates chemoresistance in chronic myeloid leukemia. J Cell Commun Signal 2021; 16:207-222. [PMID: 34596797 DOI: 10.1007/s12079-021-00647-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022] Open
Abstract
Chronic myeloid leukemia (CML) epitomises successful targeted therapy, where inhibition of tyrosine kinase activity of oncoprotein Bcr-Abl1 by imatinib, induces remission in 86% patients in initial chronic phase (CP). However, in acute phase of blast crisis, 80% patients show resistance, 40% among them despite inhibition of Bcr-Abl1 activity. This implies activation of either Bcr-Abl1- independent signalling pathways or restoration of signalling downstream of inactive Bcr-Abl1. In the present study, mass spectrometry and subsequent in silico pathway analysis of differentiators in resistant CML-CP cells identified key differentiators, 14-3-3ε and p38 MAPK, which belong to Bcr-Abl1 pathway. Their levels and activity respectively, indicated active Bcr-Abl1 pathway in CML-BC resistant cells, though Bcr-Abl1 is inhibited by imatinib. Further, contribution of these components to resistance was demonstrated by inhibition of Bcr-Abl1 down-stream signalling by knocking-out of 14-3-3ε and inhibition of p38 MAPK activity. The observations merit clinical validation to explore their translational potential.
Collapse
Affiliation(s)
- Mythreyi Narasimhan
- Rukmini Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Vaishnavi Khamkar
- Rukmini Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Sarika Tilwani
- Sorab Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Sorab N Dalal
- Sorab Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Dhanlaxmi Shetty
- Department of Cancer Cytogenetics, , ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - P G Subramanian
- Hematopathology Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Sanjay Gupta
- Gupta Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Rukmini Govekar
- Rukmini Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India. .,Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
6
|
Qiao GB, Wang RT, Wang SN, Tao SL, Tan QY, Jin H. GRP75-mediated upregulation of HMGA1 stimulates stage I lung adenocarcinoma progression by activating JNK/c-JUN signaling. Thorac Cancer 2021; 12:1558-1569. [PMID: 33755320 PMCID: PMC8107037 DOI: 10.1111/1759-7714.13944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Recurrence is a major challenge in early‐stage lung adenocarcinoma (LUAD) treatment. Here, we investigated the role and mechanism of high‐mobility group AT‐hook 1 (HMGA1) and glucose‐regulated protein 75‐kDa (GRP75) in stage I LUAD and evaluated their potential as biomarkers for predicting the recurrence and prognosis of stage I LUAD. Methods The TCGA dataset was used to investigate the clinical significance of HMGA1 and GRP75 in early‐stage LUAD. The biological functions of HMGA1 and GRP75 in LUAD were investigated both in vitro and in vivo through overexpression and knockdown experiments. The interaction and regulation between HMGA1 and GRP75 were evaluated with coimmunoprecipitation and ubiquitination assays. The downstream signaling pathway of the GRP75/HMGA1 axis was investigated by mRNA‐sequencing analysis. Results Both HMGA1 expression levels and GRP75 expression levels were associated with recurrence in stage I LUAD patients. In particular, HMGA1 had potential as an independent prognostic factor in stage I LUAD patients. Overexpression of GRP75 or HMGA1 significantly stimulated LUAD cell growth and metastasis, while silencing GRP75 or HMGA1 inhibited LUAD cell growth and metastasis in vitro and in vivo. Importantly, GRP75 inhibited ubiquitination‐mediated HMGA1 degradation by directly binding to HMGA1, thereby causes HMGA1 upregulation in LUAD. In addition, the GRP75/HMGA1 axis played its role by activating JNK/c‐JUN signaling in LUAD. Conclusions The activation of GRP75/HMGA1/JNK/c‐JUN signaling is an important mechanism that promotes the progression of stage I LUAD, and a high level of HMGA1 is a novel biomarker for predicting recurrence and a poor prognosis in stage I LUAD patients.
Collapse
Affiliation(s)
- Guo-Bing Qiao
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ren-Tao Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Shu-Nan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Shao-Lin Tao
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qun-You Tan
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Fasih Ramandi N, Faranoush M, Ghassempour A, Aboul-Enein HY. Mass Spectrometry: A Powerful Method for Monitoring Various Type of Leukemia, Especially MALDI-TOF in Leukemia's Proteomics Studies Review. Crit Rev Anal Chem 2021; 52:1259-1286. [PMID: 33499652 DOI: 10.1080/10408347.2021.1871844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent success in studying the proteome, as a source of biomarkers, has completely changed our understanding of leukemia (blood cancer). The identification of differentially expressed proteins, such as relapse and drug resistance proteins involved in leukemia by using various ionization sources and mass analyzers of mass spectrometry techniques, has helped scientists find better diagnosis, prognosis, and treatment strategies. With the aid of this powerful analytical technique, we can investigate the qualification/quantification of proteins, protein-protein interactions, post-translational modifications, and find the correlation between proteins and their genes with the hope of finding the missing parts of the successful therapy puzzle. In this review, we followed different MS sources and analyzers which used for monitoring various type of leukemia, then focused on MALDI-TOF MS as a quick and reliable method for studying proteins. Due to several review published for other techniques, the present review is the first work in this field. Also, by classifying more than 400 proteins, we have found 42 proteins are involved in two or three different stages of leukemia. Finally, we have suggested six specific biomarkers for AML, one for ALL, three biomarkers with a role in the etiology of leukemia and 13 markers with the potential for further studies.
Collapse
Affiliation(s)
- Negin Fasih Ramandi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Cairo, Egypt
| |
Collapse
|
8
|
SMR peptide antagonizes mortalin promoted release of extracellular vesicles and affects mortalin protection from complement-dependent cytotoxicity in breast cancer cells and leukemia cells. Oncotarget 2019; 10:5419-5438. [PMID: 31534628 PMCID: PMC6739210 DOI: 10.18632/oncotarget.27138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Mortalin/GRP-75/mt-hsp70 is a mitochondrial chaperone protein, found in the cytoplasm, endoplasmic reticulum and cytoplasmic vesicles. It functions in many cellular processes such as mitochondrial biogenesis, intracellular trafficking, cell proliferation, signaling, immortalization and tumorigenesis. Thus, inhibition of mortalin is a promising avenue for cancer therapy. Previous studies in our lab have suggested that mortalin contributes to breast cancer development and progression. We showed that tumor extracellular vesicle secretion was decreased by knockdown of mortalin expression using HIV-1 Nef SMR peptides. Specifically, these peptides can block extracellular vesicle secretion and mediate cell cycle arrest in MDA-MB-231 and MCF-7 breast cancer cells.
Aims: This study aims to investigate further the function and mechanism of interaction of PEG-SMR-CLU and SMR-CPP peptides with the chaperone protein mortalin and to explore the effect of SMR-derived peptides and mortalin expression on extracellular vesicle release and complement dependent cell toxicity in human breast cancer and leukemia cell lines.
Results: Our results demonstrated additional effects reversing the tumorigenicity of these cells. First, the modified SMRwt peptides reduced the expression of the mesenchymal marker vimentin (VIM). Second, exposure to the SMRwt peptide inhibited mortalin and complement C9 expression in MDA-MB-231, MCF-7 breast cancer cells and K562 leukemia cells as measured by the Western blot analysis. Third, the SMRwt peptides blocked the cancer cells’ ability to release extracellular vesicles, which we observed blocked extracellular vesicle-mediated release of complement, re-establishing complements mediated cell death in those peptide-treated cells.
Methods: We developed a series of peptides derived from the Secretion Modification Region (SMR) of HIV-1 Nef protein, modified by the addition of either a cell-penetrating peptide (CPP), a positively charged arginine-rich peptide derived from HIV-1 regulatory protein Tat, or a Clusterin-binding peptide (CLU), a molecular chaperone involved in protein secretion. Both CPP and CLU peptide sequences were added at the C-terminus of the Nef SMR peptide. The CLU-containing peptides were also modified with polyethylene glycol (PEG) to enhance solubility. After treatment of cells with the peptides, we used the MTT cell viability and complement-mediated cytotoxicity assays to confirm the inhibitory role of modified SMRwt peptides on the proliferation of MDA-MB-231 and MCF-7 breast cancer cells and K562 leukemia cells. Flow cytometry was used to determine complement mediated cell apoptosis and death. Western blot analysis was used to track SMR peptides impact on expression of mortalin, vimentin and complement C9 and to measure the expression of extracellular vesicle proteins. NanoSight analysis and acetylcholinesterase (AChE) assay were used for measuring extracellular vesicles particle size and concentration and acetylcholinesterase.
Conclusions: Mortalin promotes cell proliferation, metastasis, angiogenesis, downregulate apoptotic signaling. Thus, mortalin is a potential therapeutic target for cancer immunotherapy. The novel SMRwt peptides antagonize the functions of mortalin, blocking tumor extracellular vesicle release and extracellular vesicle-mediated release of complement. This leads to decreases in breast cancer cell metastasis and allows standard treatment of these late stage tumor cells, thus having important clinical implications for late stage breast cancer chemotherapy. These findings support further investigation into the therapeutic value of the SMR peptide in cancer metastasis.
Collapse
|
9
|
Matijasevic Z, Krzywicka-Racka A, Sluder G, Gallant J, Jones SN. The Zn-finger domain of MdmX suppresses cancer progression by promoting genome stability in p53-mutant cells. Oncogenesis 2016; 5:e262. [PMID: 27694836 PMCID: PMC5117848 DOI: 10.1038/oncsis.2016.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
The MDMX (MDM4) oncogene is amplified or overexpressed in a significant percentage of human tumors. MDMX is thought to function as an oncoprotein by binding p53 tumor suppressor protein to inhibit p53-mediated transcription, and by complexing with MDM2 oncoprotein to promote MDM2-mediated degradation of p53. However, down-regulation or loss of functional MDMX has also been observed in a variety of human tumors that are mutated for p53, often correlating with more aggressive cancers and a worse patient prognosis. We have previously reported that endogenous levels of MdmX can suppress proliferation and promote pseudo-bipolar mitosis in primary and tumor cells derived from p53-deficient mice, and that MdmX-p53 double deficient mice succumb to spontaneously formed tumors more rapidly than p53-deficient mice. These results suggest that the MdmX oncoprotein may act as a tumor-suppressor in cancers with compromised p53 function. By using orthotopic transplantation and lung colonization assays in mice we now establish a p53-independent anti-oncogenic role for MdmX in tumor progression. We also demonstrate that the roles of MdmX in genome stability and in proliferation are two distinct functions encoded by the separate MdmX protein domains. The central Zn-finger domain suppresses multipolar mitosis and chromosome loss, whereas the carboxy-terminal RING domain suppresses proliferation of p53-deficient cells. Furthermore, we determine that it is the maintenance of genome stability that underlies MdmX role in suppression of tumorigenesis in hyperploid p53 mutant tumors. Our results offer a rationale for the increased metastatic potential of p53 mutant human cancers with aberrant MdmX function and provide a caveat for the application of anti-MdmX treatment of tumors with compromised p53 activity.
Collapse
Affiliation(s)
- Z Matijasevic
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Krzywicka-Racka
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - G Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - J Gallant
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - S N Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
10
|
Hu Y, Yang L, Yang Y, Han Y, Wang Y, Liu W, Zuo J. Oncogenic role of mortalin contributes to ovarian tumorigenesis by activating the MAPK-ERK pathway. J Cell Mol Med 2016; 20:2111-2121. [PMID: 27374312 PMCID: PMC5082394 DOI: 10.1111/jcmm.12905] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
Mortalin is frequently overexpressed in human malignancies. Previous studies have suggested that mortalin contributes to ovarian cancer development and progression, but further investigation is warranted. The aim of this study is to elucidate the mechanism of mortalin in ovarian cancer development and progression. In this study, lentivirus‐delivered mortalin short hairpin RNA (shRNA) was used to knockdown mortalin expression in A2780 and A2780/cis ovarian cancer cell lines, and lentiviral mortalin‐pLVX‐AcGFP was used to generate mortalin‐overexpressing cell lines. The results demonstrated that decreased mortalin expression reduced ovarian cancer cell proliferation, colony formation, migration and invasion by Cell Counting Kit‐8 assay, colony formation assay, wounding healing assay and Transwell cell invasion assay, respectively. Flow cytometry results suggested that mortalin promotes the G1 transition, leading to faster restoration of a normal cell‐cycle distribution. Cell‐cycle proteins, including C‐myc and Cyclin‐D1, significantly increased, and Cyclin‐B1 remarkably decreased upon mortalin down‐regulation. Western blot analysis showed that mortalin knockdown significantly decreased p‐c‐Raf and phospho‐extracellular–regulated protein kinases (p‐ERK1/2) pathways but not the Jun N‐terminal kinase pathway, whereas mortalin overexpression had the opposite effect. Taken together, these results indicate that mortalin is an oncogenic factor, and mitogen‐activated protein kinase‐ERK signalling pathway activation by mortalin may contribute to ovarian cancer development and progression.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yujie Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanyan Han
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature 2016; 534:341-6. [PMID: 27281222 PMCID: PMC4913876 DOI: 10.1038/nature18288] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR-ABL. Direct inhibition of BCR-ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR-ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show--using proteomics, transcriptomics and network analyses--that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR-ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.
Collapse
|
12
|
Zhang M, Sun F, Chen F, Zhou B, Duan Y, Su H, Lin X. Subcellular proteomic approach for identifying the signaling effectors of protein kinase C-β₂ under high glucose conditions in human umbilical vein endothelial cells. Mol Med Rep 2015; 12:7247-62. [PMID: 26459836 PMCID: PMC4626174 DOI: 10.3892/mmr.2015.4403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
The high glucose‑induced activation of protein kinase C‑β2 (PKC‑β2) has an essential role in the pathophysiology of diabetes‑associated vascular disease. In the present study, human umbilical vein endothelial cells (HUVECs) were cultured in high and normal glucose conditions prior to being infected with a recombinant adenovirus to induce the overexpression of PKC‑β2. The activity of PKC‑β2 was also decreased using a selective PKC‑β2 inhibitor. A series of two‑dimensional electrophoresis images detected ~800 spots in the nuclei, and ~600 spots in the cytosol. Following intra‑ and inter‑group cross‑matching, 38 significantly altered spots were identified as high glucose‑induced and PKC‑β2‑associated nuclear proteins. In addition to the observation that the regulation of key proteins involved in the nuclear factor (NF)‑κB signaling cascade occurred in the cytosol, various transcription factors, including peroxisome proliferator‑activated receptor δ (PPAR‑δ), were also altered in the nuclei. A human protein‑protein interaction network of potential connections of PKC‑β2‑associated proteins was constructed in the proteomics investigation using Biological General Repository for Interaction Datasets. The results indicated that PKC‑β2 may be involved in high glucose‑induced glucose and lipid crosstalk by regulating PPAR‑δ. In addition, NF‑κB inhibitor‑interacting Ras‑like protein 1 may be important in the PKC‑β2‑NF‑κB inhibitor‑NF‑κB signaling pathway in HUVECs under high‑glucose conditions.
Collapse
Affiliation(s)
- Min Zhang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Fangfang Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bo Zhou
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yaqian Duan
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Su
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xuebo Lin
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
13
|
Guo W, Yan L, Yang L, Liu X, E Q, Gao P, Ye X, Liu W, Zuo J. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma. PLoS One 2014; 9:e85766. [PMID: 24465691 PMCID: PMC3894982 DOI: 10.1371/journal.pone.0085766] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/05/2013] [Indexed: 02/05/2023] Open
Abstract
Heat shock protein 90 (HSP90) inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70) family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lichong Yan
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiukai E
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peiye Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofei Ye
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail: (JZ); (WL)
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail: (JZ); (WL)
| |
Collapse
|
14
|
Di G, You W, Yu J, Wang D, Ke C. Genetic changes in muscle protein following hybridization between Haliotis diversicolor
reeve Japan and Taiwan populations revealed using a proteomic approach. Proteomics 2013; 13:845-59. [DOI: 10.1002/pmic.201200351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/28/2012] [Accepted: 11/14/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Guilan Di
- State Key Laboratory of Marine Environmental Science; Xiamen University; Xiamen P. R. China
- College of Ocean and Earth Sciences; Xiamen University; Xiamen P. R. China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science; Xiamen University; Xiamen P. R. China
- College of Ocean and Earth Sciences; Xiamen University; Xiamen P. R. China
| | - Jinjin Yu
- College of Ocean and Earth Sciences; Xiamen University; Xiamen P. R. China
| | - Dexiang Wang
- College of Ocean and Earth Sciences; Xiamen University; Xiamen P. R. China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science; Xiamen University; Xiamen P. R. China
- College of Ocean and Earth Sciences; Xiamen University; Xiamen P. R. China
| |
Collapse
|
15
|
A comparative proteomic study identified LRPPRC and MCM7 as putative actors in imatinib mesylate cross-resistance in Lucena cell line. Proteome Sci 2012; 10:23. [PMID: 22458888 PMCID: PMC3361502 DOI: 10.1186/1477-5956-10-23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/30/2012] [Indexed: 11/23/2022] Open
Abstract
Background Although chronic myeloid leukemia (CML) treatment has improved since the introduction of imatinib mesylate (IM), cases of resistance have been reported. This resistance has been associated with the emergence of multidrug resistance (MDR) phenotype, as a BCR-ABL independent mechanism. The classic pathway studied in MDR promotion is ATP-binding cassette (ABC) family transporters expression, but other mechanisms that drive drug resistance are largely unknown. To better understand IM therapy relapse due to the rise of MDR, we compared the proteomic profiles of K562 and Lucena (K562/VCR) cells. Results The use of 2-DE coupled with a MS approach resulted in the identification of 36 differentially expressed proteins. Differential mRNA levels of leucine-rich PPR motif-containing (LRPPRC) protein, minichromosome maintenance complex component 7 (MCM7) and ATP-binding cassette sub-family B (MDR/TAP) member 1 (ABCB1) were capable of defining samples from CML patients as responsive or resistant to therapy. Conclusions Through the data presented in this work, we show the relevance of MDR to IM therapy. In addition, our proteomic approach identified candidate actors involved in resistance, which could lead to additional information on BCR-ABL-independent molecular mechanisms.
Collapse
|
16
|
Buchi F, Pastorelli R, Ferrari G, Spinelli E, Gozzini A, Sassolini F, Bosi A, Tombaccini D, Santini V. Acetylome and phosphoproteome modifications in imatinib resistant chronic myeloid leukaemia cells treated with valproic acid. Leuk Res 2011; 35:921-31. [PMID: 21382639 DOI: 10.1016/j.leukres.2011.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/10/2011] [Accepted: 01/29/2011] [Indexed: 11/26/2022]
Abstract
Chronic myeloid leukaemia has a specific therapy: BCR/ABL inhibitor imatinib. Resistance due to BCR/ABL dependent and independent mechanisms is partially reversible by histone deacetylase inhibitors. We analysed by 2D-electrophoresis and anti-pan-acetylated and anti-phosphotyrosine immunoblots, followed by spot-matching and MALDI-TOF mass spectrometry, which proteome modifications would parallel restoration of sensitivity to imatinib by valproic acid (VPA). VPA plus imatinib significantly increased acetylation of HSP90 and hnRNP L and decreased phosphorylation of HSPs and hnRNPs in imatinib resistant cells. VPA was able to modify profoundly acetylome and phosphoproteome of CML cells, while reverting resistance to imatinib.
Collapse
Affiliation(s)
- Francesca Buchi
- Functional Unit of Haematology, Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pilzer D, Saar M, Koya K, Fishelson Z. Mortalin inhibitors sensitize K562 leukemia cells to complement-dependent cytotoxicity. Int J Cancer 2010; 126:1428-35. [PMID: 19739077 DOI: 10.1002/ijc.24888] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mortalin, the mitochondrial hsp70, is a vital constitutively expressed heat shock protein. Its elevated expression has been correlated with malignant transformation and poor cancer prognosis. Cancer cells exhibit increased resistance to complement-dependent cytotoxicity, partly due to their capacity to eliminate the complement membrane attack complex (MAC) from their cell surface. As we have previously reported, mortalin and the complement membrane attack complexes are released in membrane vesicles from complement attacked cells. As shown here, knock down of mortalin with specific siRNA reduces MAC elimination and enhances cell sensitivity to MAC-induced cell death. Similar results were obtained with MKT-077, a cationic rhodacyanine dye that inhibits mortalin. Treatment of human erythroleukemia K562 and colorectal carcinoma HCT116 cells with MKT-077 sensitizes them to cell death mediated by MAC but not by streptolysin O. Pre-treatment of cells with MKT-077 also reduces the extent of MAC-mortalin vesiculation following a sublytic complement attack. In the presence of MKT-077, the direct binding of mortalin to complement C9, the major MAC component, is inhibited. The tumor suppressor protein p53 is a known mortalin client protein. The effect of MKT-077 on complement-mediated lysis of HCT116 p53(+/+) and p53(-/-) cells was found to be independent on the presence of p53. Our results also demonstrate that recombinant human mortain inhibits complement-mediated hemolysis of rabbit erythrocytes as well as zinc-induced C9 polymerization. We conclude that mortalin supports cancer cell resistance to complement-dependent cytotoxicity and propose consideration of mortalin as a novel target for cancer adjuvant immunotherapy.
Collapse
Affiliation(s)
- David Pilzer
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
18
|
Koga Y, Ishikawa S, Nakamura T, Masuda T, Nagai Y, Takamori H, Hirota M, Kanemitsu K, Baba Y, Baba H. Oxysterol binding protein-related protein-5 is related to invasion and poor prognosis in pancreatic cancer. Cancer Sci 2008; 99:2387-94. [PMID: 19032366 PMCID: PMC11159934 DOI: 10.1111/j.1349-7006.2008.00987.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In previous studies, the gene expression profiles of two hamster pancreatic cancer cells with different potentials for invasion and metastasis were analyzed. In the present study, we identified that one of the genes expressed strongly in the highly metastatic cell line is hamster oxysterol binding protein-related protein (ORP)-5. The aim of the present study was to clarify the relationship between ORP5 and invasion and poor prognosis of human pancreatic cancer. Invasion assays were carried out in both hamster and human pancreatic cancer cells by suppressing the ORP5 gene with short interfering RNA or inducing its expression by introducing an expression vector. To evaluate the relationship between ORP5 and the characteristics of human pancreatic cancer, 56 pancreatic cancer tissue specimens were analyzed and the ORP5 expression in each pancreatic cancer tissue specimen was analyzed by immunohistochemistry. In both the hamster and human pancreatic cancer cells, suppression of ORP5 significantly reduced the invasion rate of the cells and induction of ORP5 significantly enhanced the invasion rate of the cells. In the clinical sample, the median survival times of the patients with ORP5-positive (n = 33) and ORP5-negative (n = 23) cancer were 8.3 and 17.2 months, respectively (P = 0.02). Also, the 1-year survival rates of patients with ORP5-positive and ORP5-negative cancer were 36.4 and 73.9%, respectively (P = 0.005). The ORP5 expression level was related to both invasion and poor prognosis in human pancreatic cancer. These findings suggest that the expression of ORP5 may induce cancer cell invasion, resulting in the poor prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Yoshikatsu Koga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J Mol Med (Berl) 2008; 86:585-96. [PMID: 18335186 PMCID: PMC2359832 DOI: 10.1007/s00109-008-0322-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 12/17/2022]
Abstract
A wild-type (wt) p53 gene characterizes thyroid tumors, except for the rare anaplastic histotype. Because p53 inactivation is a prerequisite for tumor development, alterations of p53 regulators represent an alternative way to impair p53 function. Indeed, murine double minute 2 (MDM2), the main p53 negative regulator, is overexpressed in many tumor histotypes including those of the thyroid. A new p53 regulator, MDM4 (a.k.a. MDMX or HDMX) an analog of MDM2, represents a new oncogene although its impact on tumor properties remains largely unexplored. We estimated levels of MDM2, MDM4, and its variants, MDM4-S (originally HDMX-S) and MDM4-211 (originally HDMX211), in a group of 57 papillary thyroid carcinomas (PTC), characterized by wt tumor protein 53, in comparison to matched contra-lateral lobe normal tissue. Further, we evaluated the association between expression levels of these genes and the histopathological features of tumors. Quantitative real-time polymerase chain reaction revealed a highly significant downregulation of MDM4 mRNA in tumor tissue compared to control tissue (P < 0.0001), a finding confirmed by western blot on a subset of 20 tissue pairs. Moreover, the tumor-to-normal ratio of MDM4 levels for each individual was significantly lower in late tumor stages, suggesting a specific downregulation of MDM4 expression with tumor progression. In comparison, MDM2 messenger RNA (mRNA) and protein levels were frequently upregulated with no correlation with MDM4 levels. Lastly, we frequently detected overexpression of MDM4-S mRNA and presence of the aberrant form, MDM4-211 in this tumor group. These findings indicate that MDM4 alterations are a frequent event in PTC. It is worthy to note that the significant downregulation of full-length MDM4 in PTC reveals a novel status of this factor in human cancer that counsels careful evaluation of its role in human tumorigenesis and of its potential as therapeutic target.
Collapse
|
20
|
Yan D, Olkkonen VM. Characteristics of oxysterol binding proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:253-85. [PMID: 18275891 DOI: 10.1016/s0074-7696(07)65007-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein families characterized by a ligand binding domain related to that of oxysterol binding protein (OSBP) have been identified in eukaryotic species from yeast to humans. These proteins, designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins, have been implicated in various cellular functions. However, the detailed mechanisms of their action have remained elusive. Data from our and other laboratories suggest that binding of sterol ligands may be a unifying theme. Work with Saccharomyces cerevisiae ORPs suggests a function of these proteins in the nonvesicular intracellular transport of sterols, in secretory vesicle transport from the Golgi complex, and in the establishment of cell polarity. Mammals have more ORP genes, and differential splicing substantially increases the complexity of the encoded protein family. Functional studies on mammalian ORPs point in different directions: integration of sterol and sphingomyelin metabolism, sterol transport, regulation of neutral lipid metabolism, control of the microtubule-dependent motility of endosomes/lysosomes, and regulation of signaling cascades. We envision that during evolution, the functions of ORPs have diverged from an ancestral one in sterol transport, to meet the increasing demand of the regulatory potential in multicellular organisms. Our working hypothesis is that mammalian ORPs mainly act as sterol sensors that relay information to a spectrum of different cellular processes.
Collapse
Affiliation(s)
- Daoguang Yan
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, FI-00290 Helsinki, Finland
| | | |
Collapse
|
21
|
Abstract
Proteomics technologies are emerging as a useful tool in the identification of disease biomarkers, and in defining and characterising both normal physiological and disease processes. Many cellular changes in protein expression in response to an external stimulus or mutation can only be characterised at the proteome level. In these cases protein expression is often controlled by altered rates of translation and/or degradation, making proteomics an important tool in the analysis of biological systems. In the leukaemias, post-translational modification of proteins (e.g. phosphorylation, acetylation) plays a key role in the molecular pathology of the disease: such modifications can now be detected with novel proteomic methods. In a clinical setting, serum remains a relatively un-mined source of information for prognosis and response to therapy. This protein rich fluid represents an opportunity for proteomics research to benefit hematologists and others. In this review, we discuss the technologies available for the study of the proteome that offer realistic opportunities in haematology.
Collapse
Affiliation(s)
- Richard D Unwin
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Christie Hospital, Kinnaird House, Kinnaird Road, Withington, Manchester, UK M20 4QL.
| | | |
Collapse
|
22
|
Deocaris CC, Widodo N, Shrestha BG, Kaur K, Ohtaka M, Yamasaki K, Kaul SC, Wadhwa R. Mortalin sensitizes human cancer cells to MKT-077-induced senescence. Cancer Lett 2007; 252:259-69. [PMID: 17306926 DOI: 10.1016/j.canlet.2006.12.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 12/27/2006] [Indexed: 01/01/2023]
Abstract
Mortalin is a chaperone protein that functions in many cellular processes such as mitochondrial biogenesis, intracellular trafficking, cell proliferation and signaling. Its upregulation in many human cancers makes it a candidate target for therapeutic intervention by small molecule drugs. In continuation to our earlier studies showing mortalin as a cellular target of MKT-077, a mitochondrion-seeking delocalized cationic dye that causes selective death of cancer cells, in this work, we report that MKT-077 binds to the nucleotide-binding domain of mortalin, causes tertiary structural changes in the protein, inactivates its chaperone function, and induces senescence in human tumor cell lines. Interestingly, in tumor cells with elevated level of mortalin expression, fairly low drug doses were sufficient to induce senescence. Guided by molecular screening for mortalin in tumor cells, our results led to the idea that working at low doses of the drug could be an alternative senescence-inducing cancer therapeutic strategy that could, in theory, avoid renal toxicities responsible for the abortion of MKT-077 clinical trials. Our work may likely translate to a re-appraisal of the therapeutic benefits of low doses of several classes of anti-tumor drugs, even of those that had been discontinued due to adverse effects.
Collapse
Affiliation(s)
- Custer C Deocaris
- National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaul SC, Deocaris CC, Wadhwa R. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 2006; 42:263-74. [PMID: 17188442 DOI: 10.1016/j.exger.2006.10.020] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Mortalin was first cloned as a mortality factor that existed in the cytoplasmic fractions of normal, but not in immortal, mouse fibroblasts. A decade of efforts have expanded its persona from a house keeper protein involved in mitochondrial import, energy generation and chaperoning of misfolded proteins, to a guardian of stress that has multiple binding partners and to a killer protein that contributes to carcinogenesis on one hand and to old age disorders on the other. Being proved to be an attractive target for cancer therapy, it also warrants attention from the perspectives of management of old age diseases and healthy aging.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | | | | |
Collapse
|