1
|
Mołoń M, Małek G, Bzducha-Wróbel A, Kula-Maximenko M, Mołoń A, Galiniak S, Skrzypiec K, Zebrowski J. Disturbances in cell wall biogenesis as a key factor in the replicative aging of budding yeast. Biogerontology 2025; 26:54. [PMID: 39907841 DOI: 10.1007/s10522-025-10196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Aging is a multifactorial process that significantly impairs organismal function. Yeast is one of the model organisms used in aging research. Our understanding of the impact of the cell wall on aging remains elusive. Yeast cell wall is a complex and dynamic structure that plays a crucial role in the growth, survival, and aging of Saccharomyces cerevisiae. In this study, we demonstrated for the first time that the deletion of genes involved in cell wall biogenesis leads to significant impact on aging. In this study, we analysed five deletion mutants: crh2Δ, cwp1Δ, flo11Δ, gas1Δ and hsp12Δ. We showed a correlation between Raman spectroscopy signatures assigned to proteins, nucleic acids and RNA and replicative aging. Using Raman spectroscopy, we also revealed that a lack GAS1 gene results in significant changes in the biochemical composition of the cells that may increase sensitivity to environmental stressors. Our data unequivocally indicate that employing yeast as a model in aging research is appropriate, as long as the factors under analysis are not implicated in cell wall biogenesis.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland.
| | - Gabriela Małek
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Ul. Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Agnieszka Mołoń
- Faculty of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Sabina Galiniak
- Faculty of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Faculty of Chemistry, Maria Curie-Skłodowska University, M.C. Skłodowska Square 5, 20-031, Lublin, Poland
| | - Jacek Zebrowski
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland
| |
Collapse
|
2
|
Lesniewska N, Duval JFL, Caillet C, Razafitianamaharavo A, Pinheiro JP, Bihannic I, Gley R, Le Cordier H, Vyas V, Pagnout C, Sohm B, Beaussart A. Physicochemical surface properties of Chlorella vulgaris: a multiscale assessment, from electrokinetic and proton uptake descriptors to intermolecular adhesion forces. NANOSCALE 2024; 16:5149-5163. [PMID: 38265106 DOI: 10.1039/d3nr04740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Given the growing scientific and industrial interests in green microalgae, a comprehensive understanding of the forces controlling the colloidal stability of these bioparticles and their interactions with surrounding aqueous microenvironment is required. Accordingly, we addressed here the electrostatic and hydrophobic surface properties of Chlorella vulgaris from the population down to the individual cell levels. We first investigated the organisation of the electrical double layer at microalgae surfaces on the basis of electrophoresis measurements. Interpretation of the results beyond zeta-potential framework underlined the need to account for both the hydrodynamic softness of the algae cells and the heterogeneity of their interface formed with the outer electrolyte solution. We further explored the nature of the structural charge carriers at microalgae interfaces through potentiometric proton titrations. Extraction of the electrostatic descriptors of interest from such data was obscured by cell physiology processes and dependence thereof on prevailing measurement conditions, which includes light, temperature and medium salinity. As an alternative, cell electrostatics was successfully evaluated at the cellular level upon mapping the molecular interactions at stake between (positively and negatively) charged atomic force microscopy tips and algal surface via chemical force microscopy. A thorough comparison between charge-dependent tip-to-algae surface adhesion and hydrophobicity level of microalgae surface evidenced that the contribution of electrostatics to the overall interaction pattern is largest, and that the electrostatic/hydrophobic balance can be largely modulated by pH. Overall, the combination of multiscale physicochemical approaches allowed a drawing of some of the key biosurface properties that govern microalgae cell-cell and cell-surface interactions.
Collapse
Affiliation(s)
| | | | - Céline Caillet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | | | | | | | - Renaud Gley
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | | | - Varun Vyas
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | | |
Collapse
|
3
|
Zheng L, Xu Y, Wang C, Yang F, Dong Y, Guo L. Susceptibility to caspofungin is regulated by temperature and is dependent on calcineurin in Candida albicans. Microbiol Spectr 2023; 11:e0179023. [PMID: 37966204 PMCID: PMC10715083 DOI: 10.1128/spectrum.01790-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Echinocandins are the newest antifungal drugs and are first-line treatment option for life-threatening systemic infections. Due to lack of consensus regarding what temperature should be used when evaluating susceptibility of yeasts to echinocandins, typically either 30°C, 35°C, or 37°C is used. However, the impact of temperature on antifungal efficacy of echinocandins is unexplored. In the current study, we demonstrated that Candida albicans laboratory strain SC5314 was more susceptible to caspofungin at 37°C than at 30°C. We also found that calcineurin was required for temperature-modulated caspofungin susceptibility. Surprisingly, the altered caspofungin susceptibility was not due to differential expression of some canonical genes such as FKS, CHS, or CHT genes. The molecular mechanism of temperature-modulated caspofungin susceptibility is undetermined and deserves further investigations.
Collapse
Affiliation(s)
- Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Xu
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Chen Wang
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Feng Yang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yubo Dong
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Sęk W, Kot AM, Rapoport A, Kieliszek M. Physiological and genetic regulation of anhydrobiosis in yeast cells. Arch Microbiol 2023; 205:348. [PMID: 37782422 PMCID: PMC10545650 DOI: 10.1007/s00203-023-03683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
Anhydrobiosis is a state of living organisms during which their metabolism is reversibly delayed or suspended due to a high degree of dehydration. Yeast cells, which are widely used in the food industry, may be induced into this state. The degree of viability of yeast cells undergoing the drying process also depends on rehydration. In an attempt to explain the essence of the state of anhydrobiosis and clarify the mechanisms responsible for its course, scientists have described various cellular compounds and structures that are responsible for it. The structures discussed in this work include the cell wall and plasma membrane, vacuoles, mitochondria, and lysosomes, among others, while the most important compounds include trehalose, glycogen, glutathione, and lipid droplets. Various proteins (Stf2p; Sip18p; Hsp12p and Hsp70p) and genes (STF2; Nsip18; TRX2; TPS1 and TPS2) are also responsible for the process of anhydrobiosis. Each factor has a specific function and is irreplaceable, detailed information is presented in this overview.
Collapse
Affiliation(s)
- Wioletta Sęk
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1, Riga, 1004, Latvia
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| |
Collapse
|
5
|
Gomes PA, d'Espinose de Lacaillerie JB, Lartiges B, Maliet M, Molinier V, Passade-Boupat N, Sanson N. Microalgae as Soft Permeable Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14044-14052. [PMID: 36343201 DOI: 10.1021/acs.langmuir.2c01735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The colloidal stability of non-motile algal cells in water drives their distribution in space. An accurate description of the interfacial properties of microalgae is therefore critical to understand how microalgae concentrations can change in their biotope or during harvesting processes. Here, we probe the surface charges of three unicellular algae─Chlorella vulgaris, Nannochloropsis oculata, and Tetraselmis suecica─through their electrophoretic mobility. Ohshima's soft particle theory describes the electrokinetic properties of particles covered by a permeable polyelectrolyte layer, a usual case for biological particles. The results appear to fit the predictions of Ohshima's theory, proving that all three microalgae behave electrokinetically as soft particles. This allowed us to estimate two characteristic parameters of the polyelectrolyte external layer of microalgae: the volume charge density and the hydrodynamic penetration length. Results were compared with transmission electron microscopy observations of the algal cells' surfaces, and in particular of their extracellular polymeric layer, which was identified with the permeable shell evidenced by electrophoretic measurements. Noticeably, the algal surface potentials estimated from electrophoretic mobility using the soft particle theory are less negative than the apparent zeta potentials. This finding indicates that electrostatics are expected to play a minor role in phenomena of environmental and industrial importance, such as microalgae aggregation or adhesion.
Collapse
Affiliation(s)
- Paula Araujo Gomes
- Soft Matter Sciences and Engineering Laboratory, ESPCI Paris, Université PSL, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7615, 10 Rue Vauquelin, F-75005Paris, France
- Laboratoire Physico-Chimie des Interfaces Complexes, ESPCI Paris, 10 Rue Vauquelin, F-75231Paris, France
- TotalEnergies OneTech, Pôle d'Etudes et Recherche de Lacq, BP 47, 64170Lacq, France
| | - Jean-Baptiste d'Espinose de Lacaillerie
- Soft Matter Sciences and Engineering Laboratory, ESPCI Paris, Université PSL, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7615, 10 Rue Vauquelin, F-75005Paris, France
- Laboratoire Physico-Chimie des Interfaces Complexes, ESPCI Paris, 10 Rue Vauquelin, F-75231Paris, France
| | - Bruno Lartiges
- Géosciences Environnement Toulouse (GET), Université de Toulouse 3 (Paul Sabatier), 14 Avenue Edouard Belin, 31400Toulouse, France
| | - Martin Maliet
- Soft Matter Sciences and Engineering Laboratory, ESPCI Paris, Université PSL, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7615, 10 Rue Vauquelin, F-75005Paris, France
| | - Valérie Molinier
- TotalEnergies OneTech, Pôle d'Etudes et Recherche de Lacq, BP 47, 64170Lacq, France
- Laboratoire Physico-Chimie des Interfaces Complexes, Bâtiment CHEMSTARTUP, Route Départemental 817, 64170Lacq, France
| | - Nicolas Passade-Boupat
- TotalEnergies OneTech, Pôle d'Etudes et Recherche de Lacq, BP 47, 64170Lacq, France
- Laboratoire Physico-Chimie des Interfaces Complexes, Bâtiment CHEMSTARTUP, Route Départemental 817, 64170Lacq, France
| | - Nicolas Sanson
- Soft Matter Sciences and Engineering Laboratory, ESPCI Paris, Université PSL, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7615, 10 Rue Vauquelin, F-75005Paris, France
- Laboratoire Physico-Chimie des Interfaces Complexes, ESPCI Paris, 10 Rue Vauquelin, F-75231Paris, France
| |
Collapse
|
6
|
Shinto H, Kojima M, Shigaki C, Hirohashi Y, Seto H. Effect of salt concentration and exposure temperature on adhesion and cytotoxicity of positively charged nanoparticles toward yeast cells. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Moura RD, Carvalho LM, Spagnol BAA, Carneiro T, Tosi Costa AC, Quadros ODF, Ventura JA, de Biasi RS, Fernandes AAR, Fernandes PMB. Difference between the cell wall roughnesses of mothers and daughters of Saccharomyces cerevisiae subjected to high pressure stress. Micron 2021; 147:103091. [PMID: 34090132 DOI: 10.1016/j.micron.2021.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
High hydrostatic pressure (HHP) stress generates cellular responses similar to those to other stresses that yeasts endure in fermentation tanks. Structural and spatial compaction of molecules, as well as weakening and stretching of plasma membranes and cell walls, are often observed and have a significant influence on the fermentative process. Atomic force microscopy (AFM) yields accurate data on the morphological characteristics of yeast cell walls, providing important insights for the development of more productive yeast strains. Saccharomyces cerevisiae cell wall assessment using AFM in the intermittent contact reading mode using a silicon cantilever, before and after application of a pressure of 100 MPa for 30 min, demonstrated that mother and daughter cells have different responses. Daughter cells were more sensitive to the effects of HHP, presenting lower average Ra (arithmetic roughness), Rz (ten-point average roughness), and Rq (root-mean-square roughness) after exposure to high pressure. Better adaptation to stress in mother cells leads to higher cell wall resistance and, therefore, to better protection.
Collapse
Affiliation(s)
- Raissa D Moura
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Lauanda M Carvalho
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Brígida A A Spagnol
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Tarcio Carneiro
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Ane Catarine Tosi Costa
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Oeber de F Quadros
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - José A Ventura
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil; Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, ES, 29050-790, Brazil
| | | | - A Alberto R Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Patricia M B Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil.
| |
Collapse
|
8
|
Boulton C. Provocation: all yeast cells are born equal, but some grow to be more equal than others. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Horianopoulos LC, Kronstad JW. Chaperone Networks in Fungal Pathogens of Humans. J Fungi (Basel) 2021; 7:209. [PMID: 33809191 PMCID: PMC7998936 DOI: 10.3390/jof7030209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The heat shock proteins (HSPs) function as chaperones to facilitate proper folding and modification of proteins and are of particular importance when organisms are subjected to unfavourable conditions. The human fungal pathogens are subjected to such conditions within the context of infection as they are exposed to human body temperature as well as the host immune response. Herein, the roles of the major classes of HSPs are briefly reviewed and their known contributions in human fungal pathogens are described with a focus on Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. The Hsp90s and Hsp70s in human fungal pathogens broadly contribute to thermotolerance, morphological changes required for virulence, and tolerance to antifungal drugs. There are also examples of J domain co-chaperones and small HSPs influencing the elaboration of virulence factors in human fungal pathogens. However, there are diverse members in these groups of chaperones and there is still much to be uncovered about their contributions to pathogenesis. These HSPs do not act in isolation, but rather they form a network with one another. Interactions between chaperones define their specific roles and enhance their protein folding capabilities. Recent efforts to characterize these HSP networks in human fungal pathogens have revealed that there are unique interactions relevant to these pathogens, particularly under stress conditions. The chaperone networks in the fungal pathogens are also emerging as key coordinators of pathogenesis and antifungal drug tolerance, suggesting that their disruption is a promising strategy for the development of antifungal therapy.
Collapse
Affiliation(s)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
10
|
PiP 2 favors an α-helical structure of non-recombinant Hsp12 of Saccharomyces cerevisiae. Protein Expr Purif 2021; 181:105830. [PMID: 33485946 DOI: 10.1016/j.pep.2021.105830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022]
Abstract
Hsp12 is a small heat shock protein of Saccharomyces cerevisiae upregulated in response to various stresses. Non recombinant Hsp12 has been purified and characterized. Using circular dichroism (CD), Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC), it has been demonstrated that the native Hsp12 is monomeric and intrinsically disordered (IDP). Hsp12 gains in structure in the presence of specific lipids (PiP2). The helical form binds to liposomes models membrane with high affinity, leading to their rigidification. These results suggest that hydrophobic and ionic interactions are involved. Hsp12 is most likely a membrane chaperone expressed during stresses in Saccharomyces cerevisiae.
Collapse
|
11
|
Léger A, Hocquellet A, Dieryck W, Moine V, Marchal A, Marullo P, Josseaume A, Cabanne C. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8154-8161. [PMID: 28871789 DOI: 10.1021/acs.jafc.7b02477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.
Collapse
Affiliation(s)
- Antoine Léger
- Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | | | | | - Virginie Moine
- Biolaffort, 126 quai de la Souys, F-33100 Bordeaux, France
| | - Axel Marchal
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche OENOLOGIE, 210 chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Philippe Marullo
- Biolaffort, 126 quai de la Souys, F-33100 Bordeaux, France
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche OENOLOGIE, 210 chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | | | | |
Collapse
|
12
|
Lan T, Naguib HE, Coolens C. Development of a permeable phantom for dynamic contrast enhanced (DCE) imaging quality assurance: material characterization and testing. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa6486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress. Appl Environ Microbiol 2016; 82:4789-4801. [PMID: 27235439 DOI: 10.1128/aem.01213-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties.
Collapse
|
14
|
Moreira TCP, da Silva VM, Gombert AK, da Cunha RL. Stabilization mechanisms of oil-in-water emulsions by Saccharomyces cerevisiae. Colloids Surf B Biointerfaces 2016; 143:399-405. [DOI: 10.1016/j.colsurfb.2016.03.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/29/2015] [Accepted: 03/15/2016] [Indexed: 11/17/2022]
|
15
|
Nguyen TD, Guyot S, Lherminier J, Wache Y, Saurel R, Husson F. Protection of living yeast cells by micro-organized shells of natural polyelectrolytes. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Zimkus A, Misiūnas A, Ramanavičius A, Chaustova L. Evaluation of Competence Phenomenon of Yeast Saccharomyces cerevisiae by Lipophilic Cations Accumulation and FT-IR Spectroscopy. Relation of Competence to Cell Cycle. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Nati T, Bravim F, Soares J, Mota MM, Broach JR, Fernandes AAR, Fernandes PMB. Monitoring expression of yeast cell wall protein-encoding genes in response to high hydrostatic pressure. BMC Proc 2014. [PMCID: PMC4211093 DOI: 10.1186/1753-6561-8-s4-p205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Kurahashi A, Sato M, Nishibori K, Fujimori F. Heat shock protein 9 mRNA expression increases during fruiting body differentiation in Grifola frondosa and other edible mushrooms. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Pillet F, Chopinet L, Formosa C, Dague E. Atomic Force Microscopy and pharmacology: from microbiology to cancerology. Biochim Biophys Acta Gen Subj 2013; 1840:1028-50. [PMID: 24291690 DOI: 10.1016/j.bbagen.2013.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atomic Force Microscopy (AFM) has been extensively used to study biological samples. Researchers take advantage of its ability to image living samples to increase our fundamental knowledge (biophysical properties/biochemical behavior) on living cell surface properties, at the nano-scale. SCOPE OF REVIEW AFM, in the imaging modes, can probe cells morphological modifications induced by drugs. In the force spectroscopy mode, it is possible to follow the nanomechanical properties of a cell and to probe the mechanical modifications induced by drugs. AFM can be used to map single molecule distribution at the cell surface. We will focus on a collection of results aiming at evaluating the nano-scale effects of drugs, by AFM. Studies on yeast, bacteria and mammal cells will illustrate our discussion. Especially, we will show how AFM can help in getting a better understanding of drug mechanism of action. MAJOR CONCLUSIONS This review demonstrates that AFM is a versatile tool, useful in pharmacology. In microbiology, it has been used to study the drugs fighting Candida albicans or Pseudomonas aeruginosa. The major conclusions are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In cancerology, AFM has been used to explore the effects of cytotoxic drugs or as an innovative diagnostic technology. AFM has provided original results on cultured cells, cells extracted from patient and directly on patient biopsies. GENERAL SIGNIFICANCE This review enhances the interest of AFM technologies for pharmacology. The applications reviewed range from microbiology to cancerology.
Collapse
Affiliation(s)
- Flavien Pillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Louise Chopinet
- CNRS, IPBS-UMR 5089, BP64182, 205 route de Narbonne, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Cécile Formosa
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS, UMR 7565, SRSMC, Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, Faculté de Pharmacie, Nancy, France
| | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS; ITAV-USR 3505; F31106 Toulouse, France.
| |
Collapse
|
20
|
Li+ effect on the cell wall of the yeast Saccharomyces cerevisiae as probed by FT-IR spectroscopy. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0186-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe effect of Li+ ions as a transformation inducing agent on the yeast cell wall has been studied. Two Saccharomyces cerevisiae strains, p63-DC5 with a native cell wall, and strain XCY42-30D(mnn1) which contains structural changes in the mannan-protein complex, were used. Fourier transform infrared (FT-IR) spectroscopy has been used for the characterization of the yeast strains and for determination of the effect of lithium cations on the cell wall. A comparison of the carbohydrate absorption band positions in the 970–1185 cm−1 range, of Na+ and Li+ treated yeast cells has been estimated. Absorption band positions of the cell wall carbohydrates of p63-DC5 were not influenced by the studied ions. On the contrary, the treatment of XCY42-30D(mnn1) cells with Li+ ions shifted glucan band positions, implying that the cell wall structure of strain XCY42-30D(mnn1) is more sensitive to Li+ ion treatment.
Collapse
|
21
|
Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts. Appl Microbiol Biotechnol 2013; 97:6867-81. [DOI: 10.1007/s00253-013-4850-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/06/2013] [Accepted: 03/10/2013] [Indexed: 11/25/2022]
|
22
|
El-Kirat-Chatel S, Beaussart A, Alsteens D, Jackson DN, Lipke PN, Dufrêne YF. Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. NANOSCALE 2013; 5:1105-15. [PMID: 23262781 PMCID: PMC3564254 DOI: 10.1039/c2nr33215a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such a novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3-D-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy (AFM) to demonstrate that caspofungin induces major remodelling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the cells, which correlate with a decrease of the cell wall mechanical strength. Moreover, we find that the drug induces the massive exposure of the cell adhesion protein Als1 on the cell surface and leads to increased cell surface hydrophobicity, two features that trigger cell aggregation. This behaviour is not observed in yeast species lacking Als1, demonstrating the key role that the protein plays in determining the aggregation phenotype of C. albicans. The results show that AFM opens up new avenues for understanding the molecular bases of microbe-drug interactions and for developing new therapeutic agents.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Desmond N. Jackson
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
| | - Peter N. Lipke
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
| | - Yves F. Dufrêne
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
- Corresponding authors:
| |
Collapse
|
23
|
Ahn J, Won M, Choi JH, Kyun ML, Cho HS, Park HM, Kang CM, Chung KS. Small heat-shock protein Hsp9 has dual functions in stress adaptation and stress-induced G2-M checkpoint regulation via Cdc25 inactivation in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2012; 417:613-8. [DOI: 10.1016/j.bbrc.2011.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|
24
|
Dague E, Bitar R, Ranchon H, Durand F, Yken HM, François JM. An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 2010; 27:673-84. [DOI: 10.1002/yea.1801] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Duval JF, Gaboriaud F. Progress in electrohydrodynamics of soft microbial particle interphases. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2009.12.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Vernengo J, Fussell GW, Smith NG, Lowman AM. Synthesis and characterization of injectable bioadhesive hydrogels for nucleus pulposus replacement and repair of the damaged intervertebral disc. J Biomed Mater Res B Appl Biomater 2010; 93:309-17. [DOI: 10.1002/jbm.b.31547] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Wang YC, Chen BS. Integrated cellular network of transcription regulations and protein-protein interactions. BMC SYSTEMS BIOLOGY 2010; 4:20. [PMID: 20211003 PMCID: PMC2848195 DOI: 10.1186/1752-0509-4-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 03/08/2010] [Indexed: 01/13/2023]
Abstract
Background With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. Results In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. Conclusions We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology.
Collapse
Affiliation(s)
- Yu-Chao Wang
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | |
Collapse
|
28
|
Hyono A, Gaboriaud F, Mazda T, Takata Y, Ohshima H, Duval JFL. Impacts of papain and neuraminidase enzyme treatment on electrohydrodynamics and IgG-mediated agglutination of type A red blood cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10873-85. [PMID: 19735140 DOI: 10.1021/la900087c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The stability of native and enzyme-treated human red blood cells of type A (Rh D positive) against agglutination is investigated under conditions where it is mediated by immunoglobuline G (IgG) anti-D antibody binding. The propensity of cells to agglutinate is related to their interphasic (electrokinetic) properties. These properties significantly depend on the concentration of proteolytic papain enzyme and protease-free neuraminidase enzyme that the cells are exposed to. The analysis is based on the interpretation of electrophoretic data of cells by means of the numerical theory for the electrokinetics of soft (bio)particles. A significant reduction of the hydrodynamic permeability of the external soft glycoprotein layer of the cells is reported under the action of papain. This reflects a significant decrease in soft surface layer thickness and a loss in cell surface integrity/rigidity, as confirmed by nanomechanical AFM analysis. Neuraminidase action leads to an important decrease in the interphase charge density by removing sialic acids from the cell soft surface layer. This is accompanied by hydrodynamic softness modulations less significant than those observed for papain-treated cells. On the basis of these electrohydrodynamic characteristics, the overall interaction potential profiles between two native cells and two enzyme-treated cells are derived as a function of the soft surface layer thickness in the Debye-Hückel limit that is valid for cell suspensions under physiological conditions (approximately 0.16 M). The thermodynamic computation of cell suspension stability against IgG-mediated agglutination then reveals that a decrease in the cell surface layer thickness is more favorable than a decrease in interphase charge density for inducing agglutination. This is experimentally confirmed by agglutination data collected for papain- and neuraminidase-treated cells.
Collapse
Affiliation(s)
- Atsushi Hyono
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Shamrock VJ, Duval JFL, Lindsey GG, Gaboriaud F. The role of the heat shock protein Hsp12p in the dynamic response of Saccharomyces cerevisiae to the addition of Congo red. FEMS Yeast Res 2009; 9:391-9. [PMID: 19416105 DOI: 10.1111/j.1567-1364.2009.00495.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In this study, we investigate the electrohydrodynamic and nanomechanical characteristics of two Saccharomyces cerevisiae yeast strains, a wild-type (WT) strain and a strain overexpressing (OE) Hsp12p, in the presence and absence of hydrophobic Congo red compound. By combining these two advanced biophysical methods, we demonstrate that Hsp12p proteins are mostly located within a thin layer (c. 10 nm thick) positioned at the external side of the cell wall. However, this Hsp12p-enriched layer does not prevent Congo red from entering the cell wall and from interacting with the chitin therein. The entrance of Congo red within the cell wall is reflected in an increase of the turgor pressure for the OE strain and a decrease of that for the WT strain. It is shown that these opposite trends are consistent with significant modulations of the water content within the cell wall from/to the cytoplasm. These are the result of changes in the hydrophobicity/hydrophilicity balance, as governed by the intertwined local concentration variations of Congo red and Hsp12p across the cell wall. In particular, the decrease of the turgor pressure in the case of WT strain upon addition of Congo red is shown to be consistent with an upregulation of Hsp12p in the close vicinity of the plasma membrane.
Collapse
Affiliation(s)
- Vanessa J Shamrock
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | | | | | | |
Collapse
|
30
|
Cerf A, Cau JC, Vieu C, Dague E. Nanomechanical properties of dead or alive single-patterned bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5731-6. [PMID: 19334742 DOI: 10.1021/la9004642] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The main goal of this paper is to probe mechanical properties of living and dead bacteria via atomic force microscopy (AFM) indentation experimentations. Nevertheless, the prerequisite for bioAFM study is the adhesion of the biological sample on a surface. Although AFM has now been used in microbiology for 20 years, the immobilization of micro-organisms is still challenging. Immobilizing a single cell, without the need for chemical fixation has therefore constituted our second purpose. Highly ordered arrays of single living bacteria were generated over the millimeter scale by selective adsorption of bacteria onto micrometric chemical patterns. The chemically engineered template surfaces were prepared with a microcontact printing process, and different functionalizations of the patterns by incubation were investigated. Thanks to this original immobilization strategy, the Young moduli of the same cell were measured using force spectroscopy before and after heating (45 degrees C, 20 min). The cells with a damaged membrane (after heating) present a Young modulus twice as high as that of healthy bacteria.
Collapse
Affiliation(s)
- Aline Cerf
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse, France.
| | | | | | | |
Collapse
|
31
|
Pradelles R, Alexandre H, Ortiz-Julien A, Chassagne D. Effects of yeast cell-wall characteristics on 4-ethylphenol sorption capacity in model wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11854-11861. [PMID: 19053375 DOI: 10.1021/jf802170p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Saccharomyces cerevisiae is an efficient biosorbant, used in winemaking to reduce the concentration of undesirable molecules such as fatty acids. Volatile phenols such as 4-ethylphenol, which causes a horsy smell in wine, are particular targets of this type of curative process. This study demonstrates that the sorption capacity of 4-ethylphenol by yeasts is greatly influenced by strain nature, methods, and medium used for biomass production and drying after harvesting. S. cerevisiae mutant strains with deletion of genes encoding specific proteins involved in cell-wall structure and composition were studied, and a major role for mannoproteins in 4-ethylphenol sorption was identified. It was confirmed that 4-ethylphenol sorption occurs at the surface of the yeast wall and that not all mannoproteins are determinants of sorption: the sorption capacity of cells with deletion of the Gas1p-encoding gene was 75% lower than that of wild type. Physicochemical properties of yeast cell surface have been also studied.
Collapse
|
32
|
Tatchou-Nyamsi-König JA, Dague E, Mullet M, Duval JFL, Gaboriaud F, Block JC. Adhesion of Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET) used for bottled waters. WATER RESEARCH 2008; 42:4751-4760. [PMID: 18929388 DOI: 10.1016/j.watres.2008.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/03/2008] [Accepted: 09/06/2008] [Indexed: 05/26/2023]
Abstract
Adhesion of the bacteria Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET), a polymer widely used within the bottled water industry was measured in two different groundwater solutions. From this, it was found that whilst the percentage cell adhesion for a given strain did not change between groundwater types, substantial variation was obtained between the two bacterial species tested: M. avium (10-30% adhered cells) and C. jejuni (1-2%) and no major variations were measured as a function of groundwater composition for a given strain. To explain this, the interfacial electro-hydrodynamic properties of the bacteria were investigated by microelectrophoresis, with the resultant data analysed on the basis of electrokinetic theory for soft biocolloidal particles. The results obtained showed that M. avium carries a significant volume charge density and that its peripheral layer exhibits limited hydrodynamic flow permeation compared to that of C. jejuni. It was also demonstrated that steric hindrance to flow penetration and the degree of hydrophobicity within/of the outer bacterial interface are larger for M. avium cells. In line with this, the larger amount of M. avium cells deposited onto PET substrates as compared to that of C. jejuni can be explained by hydrophobic attraction and chemical binding between hydrophobic PET and outer soft surface layer of the bacteria. Hydrophobicity of PET was addressed by combining contact angle analyses and force spectroscopy using CH(3)-terminated AFM tip.
Collapse
Affiliation(s)
- Josiane-Aurore Tatchou-Nyamsi-König
- Laboratory of Physical Chemistry and Microbiology for the Environment, Nancy-University, CNRS, 405 rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
33
|
Shamrock VJ, Lindsey GG. A compensatory increase in trehalose synthesis in response to desiccation stress in Saccharomyces cerevisiae cells lacking the heat shock protein Hsp12p. Can J Microbiol 2008; 54:559-68. [PMID: 18641702 DOI: 10.1139/w08-044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of HSP12 deletion on the response of yeast to desiccation was investigated. The Deltahsp12 strain was found to be more desiccation tolerant than the wild-type strain. Furthermore, the increased intracellular trehalose levels in the Deltahsp12 strain suggested that this strain compensated for the lack of Hsp12p synthesis by increasing trehalose synthesis, which facilitated increased desiccation tolerance. Results obtained from flow cytometry using the membrane exclusion dye propidium iodide suggested that Hsp12p helped maintain plasma membrane integrity during desiccation. Analysis of the oxidative loads experienced by the wild-type and Deltahsp12 strains showed that during mid-exponential phase, the increased trehalose levels present in the Deltahsp12 cells resulted in increased protection of these cells against reactive oxygen species compared with wild-type cells. During stationary phase, lower levels of reactive oxygen species reduction by reduced glutathione was enhanced in the wild-type strain, which displayed lower intracellular trehalose concentrations. Comparison of the tolerance of the wild-type and Deltahsp12 strains with applied oxidative stress showed that the Deltahsp12 strain was more tolerant to exogenously applied H2O2, which we attributed to the higher intracellular trehalose concentration. Flow cytometry demonstrated that Hsp12p played a role in maintaining plasma membrane integrity during applied oxidative stress.
Collapse
Affiliation(s)
- Vanessa J Shamrock
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, Cape 7700, South Africa
| | | |
Collapse
|
34
|
Nisamedtinov I, Lindsey GG, Karreman R, Orumets K, Koplimaa M, Kevvai K, Paalme T. The response of the yeastSaccharomyces cerevisiaeto sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p. FEMS Yeast Res 2008; 8:829-38. [DOI: 10.1111/j.1567-1364.2008.00391.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Panaretou B, Zhai C. The heat shock proteins: Their roles as multi-component machines for protein folding. FUNGAL BIOL REV 2008. [DOI: 10.1016/j.fbr.2009.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Karreman RJ, Lindsey GG. Modulation of Congo-red-induced aberrations in the yeast Saccharomyces cerevisiae by the general stress response protein Hsp12p. Can J Microbiol 2007; 53:1203-10. [DOI: 10.1139/w07-090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that in Saccharomyces cerevisiae HSP12, which codes for the small cell wall heat shock protein Hsp12p, was induced upon exposure to cell-wall-damaging agents such as Congo red. Here, we demonstrate that Hsp12p decreases the interaction between Congo red and chitin. A Δhsp12 mutant strain displayed decreased viability, increased aggregation and sedimentation, as well as an altered morphology when grown in the presence of Congo red dye. The presence of Hsp12p was also necessary for the Congo-red-mediated invasion of agar plates.
Collapse
Affiliation(s)
- Robert J. Karreman
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| | - George G. Lindsey
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| |
Collapse
|
37
|
Guzy RD, Mack MM, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and gene transcription in yeast. Antioxid Redox Signal 2007; 9:1317-28. [PMID: 17627464 DOI: 10.1089/ars.2007.1708] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To survive, respiring organisms must sense and respond to changes in environmental oxygen levels. Complex III of the mitochondrial electron transport chain (ETC) has been implicated in the O2 sensing pathway in mammals through its ability to increase production of reactive oxygen species (ROS) during hypoxia. The present study tested whether Complex III in yeast also contributes to O2 sensing during hypoxia. Strains deficient in mitochondrial DNA (rho0), the Rieske iron-sulfur protein (DeltaRip1) in Complex III, or an enzyme responsible for coenzyme Q biosynthesis (DeltaCoq2) were studied to determine the importance of Complex III activity in the transcriptional response to hypoxia. Loss of Complex III function abrogated the hypoxia-induced increase in ROS in each strain. Northern analysis identified a set of genes that are activated by hypoxia in wild-type but not in rho0, DeltaRip1, or DeltaCoq2 strains. Yeast lacking the transcription factors Yap1p, Mga2p, and Msn2p were also deficient in hypoxic activation of gene transcription, suggesting the importance of redox regulation in hypoxic gene expression. The authors conclude that Complex III of the ETC is required for ROS production and for expression of a group of hypoxia-inducible genes in yeast. These findings indicate that the mitochondrial O2 sensing mechanism is highly conserved throughout evolution.
Collapse
Affiliation(s)
- Robert D Guzy
- Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
38
|
Mtwisha L, Farrant JM, Brandt W, Hlongwane C, Lindsey GG. ASP53, a thermostable protein from Acacia erioloba seeds that protects target proteins against thermal denaturation. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:139-149. [PMID: 32689340 DOI: 10.1071/fp06135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 01/18/2007] [Indexed: 05/27/2023]
Abstract
ASP53, a 53 kDa heat soluble protein, was identified as the most abundant protein in the mature seeds of Acacia erioloba E.Mey. Immunocytochemistry showed that ASP53 was present in the vacuoles and cell walls of the axes and cotyledons of mature seeds and disappeared coincident with loss of desiccation tolerance. The sequence of the ASP53 transcript was determined and found to be homologous to the double cupin domain-containing vicilin class of seed storage proteins. Mature seeds survived heating to 60°C and this may be facilitated by the presence of ASP53. Circular dichroism spectroscopy demonstrated that the protein displayed defined secondary structure, which was maintained even at high temperature. ASP53 was found to inhibit all three stages of protein thermal denaturation. ASP53 decreased the rate of loss of alcohol dehydrogenase activity at 55°C, decreased the rate of temperature-dependent loss of secondary structure of haemoglobin and completely inhibited the temperature-dependent aggregation of egg white protein.
Collapse
Affiliation(s)
- Linda Mtwisha
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| | - Wolf Brandt
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| | | | - George G Lindsey
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa
| |
Collapse
|
39
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|