1
|
Srinivasan K, Nampoothiri M, Khandibharad S, Singh S, Nayak AG, Hariharapura RC. Proteomic diversity of Russell's viper venom: exploring PLA2 isoforms, pharmacological effects, and inhibitory approaches. Arch Toxicol 2024; 98:3569-3584. [PMID: 39181947 PMCID: PMC11489194 DOI: 10.1007/s00204-024-03849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Snakebite envenomation is a serious health concern in tropical regions, resulting in high mortality. The World Health Organization (WHO) has declared it a neglected tropical disease and is working on strategies to reduce mortality. Russell's viper (Daboia russelii) is one of the most abundant venomous snakes found across Southeast Asia. Proteomic analysis of Russell's viper venom has demonstrated variation, with phospholipase A2 (PLA2) being the most abundant toxin across geographic boundaries. PLA2, a major constituent of the low-molecular-weight fraction of snake venom, hydrolyses phospholipids at the sn-2 position, releasing arachidonic acid and lysophospholipids. They are reported to cause various pharmacological effects, including hemolysis, anticoagulation, neurotoxicity, myotoxicity, and oedema. Though administration of antivenoms (ASV) is the primary treatment for envenomation, it has many drawbacks. Besides causing hypersensitivity reactions and life-threatening anaphylaxis, treatment with ASV is further complicated due to its inability to neutralize low-molecular-weight toxins. Thus, there is a greater need to produce next-generation antivenoms that can target specific toxins in the venom. In this review, we explored the classification of Russell's viper and the variation in its proteomic profile across Southeast Asia to date. In addition, we have also summarized the mechanism of action of PLA2 and discussed various isoforms of PLA2 found across different regions with their respective pharmacological effects. Finally, the drawbacks of commercially available antivenoms and the molecules investigated for inhibiting the low-molecular-weight toxin, PLA2 are discussed.
Collapse
Affiliation(s)
- Kishore Srinivasan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Akshatha Ganesh Nayak
- Division of Biochemistry, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
2
|
Yasmin R, Thakur S, Blotra A, Sahu A, Vasudevan K, Reza MA, Doley R. Proteome analysis of Daboia russelii venom, a medically important snake from the Indian sub-continent. Toxicon 2024; 237:107532. [PMID: 38030094 DOI: 10.1016/j.toxicon.2023.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Daboia russelii is a category-I medically important snake throughout the Indian sub-continent contributing to majority of snakebite incidences in this part of the world. As such, extensive studies on its venom composition and search of efficient and appropriate interventions for its treatment become crucial. In this study, the proteome of Daboia russelii venom from Tanore, Rajshahi, Bangladesh was profiled using a combination of chromatographic and mass spectrometric techniques. A total of 37 different proteins belonging to 11 different snake venom protein families were detected. Proteomics analysis revealed the presence of major phospholipase A2 toxins. Daboiatoxin (both A and B subunits), the main lethal PLA2 toxin in the venom of Daboia siamensis (Myanmar viper) which is neurotoxic, myotoxic and cytotoxic was detected. Presence of Daboxin P, which is a major protein in the venom of Indian Daboia russelii with strong anticoagulant activity, was also observed. Inconsistent distribution of such lethal toxins in the venom of same species calls for more investigations of snake venoms from lesser explored regions and formulation of better alternatives to the current antivenom therapy for efficient treatment.
Collapse
Affiliation(s)
- Rafika Yasmin
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Susmita Thakur
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Avni Blotra
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500048, India
| | - Alka Sahu
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500048, India
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500048, India
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
3
|
Yee KT, Macrander J, Vasieva O, Rojnuckarin P. Exploring Toxin Genes of Myanmar Russell's Viper, Daboia siamensis, through De Novo Venom Gland Transcriptomics. Toxins (Basel) 2023; 15:toxins15050309. [PMID: 37235344 DOI: 10.3390/toxins15050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Russell's viper (Daboia siamensis) is a medically important venomous snake in Myanmar. Next-generation sequencing (NGS) shows potential to investigate the venom complexity, giving deeper insights into snakebite pathogenesis and possible drug discoveries. mRNA from venom gland tissue was extracted and sequenced on the Illumina HiSeq platform and de novo assembled by Trinity. The candidate toxin genes were identified via the Venomix pipeline. Protein sequences of identified toxin candidates were compared with the previously described venom proteins using Clustal Omega to assess the positional homology among candidates. Candidate venom transcripts were classified into 23 toxin gene families including 53 unique full-length transcripts. C-type lectins (CTLs) were the most highly expressed, followed by Kunitz-type serine protease inhibitors, disintegrins and Bradykinin potentiating peptide/C-type natriuretic peptide (BPP-CNP) precursors. Phospholipase A2, snake venom serine proteases, metalloproteinases, vascular endothelial growth factors, L-amino acid oxidases and cysteine-rich secretory proteins were under-represented within the transcriptomes. Several isoforms of transcripts which had not been previously reported in this species were discovered and described. Myanmar Russell's viper venom glands displayed unique sex-specific transcriptome profiles which were correlated with clinical manifestation of envenoming. Our results show that NGS is a useful tool to comprehensively examine understudied venomous snakes.
Collapse
Affiliation(s)
- Khin Than Yee
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33801, USA
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- BioSynthetic Machines, Inc., Chicago, IL 60062, USA
| | - Ponlapat Rojnuckarin
- Excellence Center in Translational Hematology, Division of Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
op den Brouw B, Coimbra FCP, Casewell NR, Ali SA, Vonk FJ, Fry BG. A Genus-Wide Bioactivity Analysis of Daboia (Viperinae: Viperidae) Viper Venoms Reveals Widespread Variation in Haemotoxic Properties. Int J Mol Sci 2021; 22:13486. [PMID: 34948283 PMCID: PMC8706385 DOI: 10.3390/ijms222413486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
The snake genus Daboia (Viperidae: Viperinae; Oppel, 1811) contains five species: D. deserti, D. mauritanica, and D. palaestinae, found in Afro-Arabia, and the Russell's vipers D. russelii and D. siamensis, found in Asia. Russell's vipers are responsible for a major proportion of the medically important snakebites that occur in the regions they inhabit, and their venoms are notorious for their coagulopathic effects. While widely documented, the extent of venom variation within the Russell's vipers is poorly characterised, as is the venom activity of other species within the genus. In this study we investigated variation in the haemotoxic activity of Daboia using twelve venoms from all five species, including multiple variants of D. russelii, D. siamensis, and D. palaestinae. We tested the venoms on human plasma using thromboelastography, dose-response coagulometry analyses, and calibrated automated thrombography, and on human fibrinogen by thromboelastography and fibrinogen gels. We assessed activation of blood factors X and prothrombin by the venoms using fluorometry. Variation in venom activity was evident in all experiments. The Asian species D. russelii and D. siamensis and the African species D. mauritanica possessed procoagulant venom, while D. deserti and D. palaestinae were net-anticoagulant. Of the Russell's vipers, the venom of D. siamensis from Myanmar was most toxic and D. russelli of Sri Lanka the least. Activation of both factor X and prothrombin was evident by all venoms, though at differential levels. Fibrinogenolytic activity varied extensively throughout the genus and followed no phylogenetic trends. This venom variability underpins one of the many challenges facing treatment of Daboia snakebite envenoming. Comprehensive analyses of available antivenoms in neutralising these variable venom activities are therefore of utmost importance.
Collapse
Affiliation(s)
- Bianca op den Brouw
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| | - Francisco C. P. Coimbra
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan;
| | - Freek J. Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands;
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| |
Collapse
|
5
|
Chaisakul J, Khow O, Wiwatwarayos K, Rusmili MRA, Prasert W, Othman I, Abidin SAZ, Charoenpitakchai M, Hodgson WC, Chanhome L, Chaiyabutr N. A Biochemical and Pharmacological Characterization of Phospholipase A 2 and Metalloproteinase Fractions from Eastern Russell's Viper ( Daboia siamensis) Venom: Two Major Components Associated with Acute Kidney Injury. Toxins (Basel) 2021; 13:521. [PMID: 34437392 PMCID: PMC8402394 DOI: 10.3390/toxins13080521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) following Eastern Russell's viper (Daboia siamensis) envenoming is a significant symptom in systemically envenomed victims. A number of venom components have been identified as causing the nephrotoxicity which leads to AKI. However, the precise mechanism of nephrotoxicity caused by these toxins is still unclear. In the present study, we purified two proteins from D. siamensis venom, namely RvPLA2 and RvMP. Protein identification using LCMS/MS confirmed the identity of RvPLA2 to be snake venom phospholipase A2 (SVPLA2) from Thai D. siamensis venom, whereas RvMP exhibited the presence of a factor X activator with two subunits. In vitro and in vivo pharmacological studies demonstrated myotoxicity and histopathological changes of kidney, heart, and spleen. RvPLA2 (3-10 µg/mL) caused inhibition of direct twitches of the chick biventer cervicis muscle preparation. After administration of RvPLA2 or RvMP (300 µg/kg, i.p.) for 24 h, diffuse glomerular congestion and tubular injury with minor loss of brush border were detected in envenomed mice. RvPLA2 and RvMP (300 µg/kg; i.p.) also induced congestion and tissue inflammation of heart muscle as well as diffuse congestion of mouse spleen. This study showed the significant roles of PLA2 and SVMP in snake bite envenoming caused by Thai D. siamensis and their similarities with observed clinical manifestations in envenomed victims. This study also indicated that there is a need to reevaluate the current treatment strategies for Thai D. siamensis envenoming, given the potential for irreversible nephrotoxicity.
Collapse
Affiliation(s)
- Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Orawan Khow
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (L.C.); (N.C.)
| | | | - Muhamad Rusdi Ahmad Rusmili
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Malaysia;
| | - Watcharamon Prasert
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 46150, Malaysia; (I.O.); (S.A.Z.A.)
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 46150, Malaysia; (I.O.); (S.A.Z.A.)
| | | | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Lawan Chanhome
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (L.C.); (N.C.)
| | - Narongsak Chaiyabutr
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (L.C.); (N.C.)
| |
Collapse
|
6
|
Faisal T, Tan KY, Tan NH, Sim SM, Gnanathasan CA, Tan CH. Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell's viper ( Daboia russelii) venoms. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200177. [PMID: 33995514 PMCID: PMC8092856 DOI: 10.1590/1678-9199-jvatitd-2020-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. METHODS The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. RESULTS DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. CONCLUSION Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.
Collapse
Affiliation(s)
- Tasnim Faisal
- Department of Pharmacology, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | | | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Lin JH, Lo CM, Chuang SH, Chiang CH, Wang SD, Lin TY, Liao JW, Hung DZ. Collocation of avian and mammal antibodies to develop a rapid and sensitive diagnostic tool for Russell's Vipers Snakebite. PLoS Negl Trop Dis 2020; 14:e0008701. [PMID: 32956365 PMCID: PMC7529284 DOI: 10.1371/journal.pntd.0008701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/01/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Russell's vipers (RVs) envenoming is an important public health issue in South-East Asia. Disseminated intravascular coagulopathy, systemic bleeding, hemolysis, and acute renal injury are obvious problems that develop in most cases, and neuromuscular junction blocks are an additional problem caused by western RV snakebite. The complex presentations usually are an obstacle to early diagnosis and antivenom administration. Here, we tried to produce highly specific antibodies in goose yolks for use in a paper-based microfluidic diagnostic kit, immunochromatographic test of viper (ICT-Viper), to distinguish RVs from other vipers and even cobra snakebite in Asia. We used indirect ELISA to monitor specific goose IgY production and western blotting to illustrate the interaction of avian or mammal antibody with venom proteins. The ICT-Viper was tested not only in prepared samples but also in stored patient serum to demonstrate its preliminary efficacy. The results revealed that specific anti-Daboia russelii IgY could be raised in goose eggs effectively without inducing adverse effects. When it was collocated with horse anti-Daboia siamensis antibody, which broadly reacted with most of the venom proteins of both types of Russell's viper, the false cross-reactivity was reduced, and the test showed good performance. The limit of detection was reduced to 10 ng/ml in vitro, and the test showed good detection ability in clinical snake envenoming case samples. The ICT-Viper performed well and could be combined with a cobra venom detection kit (ICT-Cobra) to create a multiple detection strip (ICT-VC), which broadens its applications while maintaining its detection ability for snake envenomation identification. Nonetheless, the use of the ICT-Viper in the South-East Asia region is pending additional laboratory and field investigations and regional collaboration. We believe that the development of this practical diagnostic tool marks the beginning of positive efforts to face the global snakebite issue.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| | - Che-Min Lo
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| | - Ssu-Han Chuang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Chao-Hung Chiang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Sheng-Der Wang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Tsung-Yi Lin
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Lingam TMC, Tan KY, Tan CH. Proteomics and antivenom immunoprofiling of Russell's viper ( Daboia siamensis) venoms from Thailand and Indonesia. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190048. [PMID: 32082369 PMCID: PMC7004479 DOI: 10.1590/1678-9199-jvatitd-2019-0048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
The Eastern Russell’s viper, Daboia siamensis, is a WHO Category
1 medically important venomous snake. It has a wide but disjunct distribution in
Southeast Asia. The specific antivenom, D. siamensis Monovalent
Antivenom (DsMAV-Thailand) is produced in Thailand but not available in
Indonesia, where a heterologous trivalent antivenom, Serum Anti Bisa Ular
(SABU), is used instead. This study aimed to investigate the geographical venom
variation of D. siamensis from Thailand (Ds-Thailand) and
Indonesia (Ds-Indonesia), and the immunorecognition of the venom proteins by
antivenoms.
Collapse
Affiliation(s)
| | - Kae Yi Tan
- Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, Vaiyapuri S. The Urgent Need to Develop Novel Strategies for the Diagnosis and Treatment of Snakebites. Toxins (Basel) 2019; 11:E363. [PMID: 31226842 PMCID: PMC6628419 DOI: 10.3390/toxins11060363] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Snakebite envenoming (SBE) is a priority neglected tropical disease, which kills in excess of 100,000 people per year. Additionally, many millions of survivors also suffer through disabilities and long-term health consequences. The only treatment for SBE, antivenom, has a number of major associated problems, not least, adverse reactions and limited availability. This emphasises the necessity for urgent improvements to the management of this disease. Administration of antivenom is too frequently based on symptomatology, which results in wasting crucial time. The majority of SBE-affected regions rely on broad-spectrum polyvalent antivenoms that have a low content of case-specific efficacious immunoglobulins. Research into small molecular therapeutics such as varespladib/methyl-varespladib (PLA2 inhibitors) and batimastat/marimastat (metalloprotease inhibitors) suggest that such adjunctive treatments could be hugely beneficial to victims. Progress into toxin-specific monoclonal antibodies as well as alternative binding scaffolds such as aptamers hold much promise for future treatment strategies. SBE is not implicit during snakebite, due to venom metering. Thus, the delay between bite and symptom presentation is critical and when symptoms appear it may often already be too late to effectively treat SBE. The development of reliable diagnostical tools could therefore initiate a paradigm shift in the treatment of SBE. While the complete eradication of SBE is an impossibility, mitigation is in the pipeline, with new treatments and diagnostics rapidly emerging. Here we critically review the urgent necessity for the development of diagnostic tools and improved therapeutics to mitigate the deaths and disabilities caused by SBE.
Collapse
Affiliation(s)
| | | | - Thomas Vallance
- School of Pharmacy, University of Reading, Reading RG6 6AH, UK.
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | - Andrew B Bicknell
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | | | | |
Collapse
|
10
|
Baumann K, Dashevsky D, Sunagar K, Fry B. Scratching the Surface of an Itch: Molecular Evolution of Aculeata Venom Allergens. J Mol Evol 2018; 86:484-500. [DOI: 10.1007/s00239-018-9860-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
|
11
|
Faisal T, Tan KY, Sim SM, Quraishi N, Tan NH, Tan CH. Proteomics, functional characterization and antivenom neutralization of the venom of Pakistani Russell's viper (Daboia russelii) from the wild. J Proteomics 2018; 183:1-13. [PMID: 29729992 DOI: 10.1016/j.jprot.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 11/21/2022]
Abstract
The venom proteome of wild Pakistani Russell's viper (Daboia russelii) was investigated through nano-ESI-LCMS/MS of the reverse-phase HPLC fractions. A total of 54 venom proteins were identified and clustered into 11 protein families. Phospholipase A2 (PLA2, 63.8%) and Kunitz-type serine protease inhibitor (KSPI, 16.0%) were most abundant, followed by snake venom serine protease (SVSP, 5.5%, mainly Factor V activating enzyme), vascular endothelial growth factor (VEGF, 4.3%), snake venom metalloproteinase (SVMP, 2.5%, mainly Factor X activating enzyme) and phosphodiesterase (PDE, 2.5%). Other minor proteins include cysteine-rich secretory protein (CRiSP), snake venom C-type lectin/lectin-like protein (snaclec), nerve growth factor, L-amino acid oxidase and 5'-nucleotidase. PLA2, KSPI, SVSP, snaclec and SVMP are hemotoxic proteins in the venom. The study indicated substantial venom variation in D. russelii venoms of different locales, including 3 Pakistani specimens kept in the USA. The venom exhibited potent procoagulant activity on human plasma (minimum clotting dose = 14.5 ng/ml) and high lethality (rodent LD50 = 0.19 μg/g) but lacked hemorrhagic effect locally. The Indian VINS Polyvalent Antivenom bound the venom immunologically in a concentration-dependent manner. It moderately neutralized the venom procoagulant and lethal effects (normalized potency against lethality = 2.7 mg venom neutralized per g antivenom). BIOLOGICAL SIGNIFICANCE Comprehensive venom proteomes of D. russelii from different locales will facilitate better understanding of the geographical variability of the venom in both qualitative and quantitative terms. This is essential to provide scientific basis for the interpretation of differences in the clinical presentation of Russell's viper envenomation. The study revealed a unique venom proteome of the Pakistani D. russelii from the wild (Indus Delta), in which PLA2 predominated (~60% of total venom proteins). The finding unveiled remarkable differences in the venom compositions between the wild (present study) and the captive specimens reported previously. The integration of toxicity tests enabled the correlation of the venom proteome with the envenoming pathophysiology, where the venom showed potent lethality mediated through coagulopathic activity. The Indian VINS Polyvalent Antivenom (VPAV) showed binding activity toward the venom protein antigens; however the immunorecognition of small proteins and PLA2-dominating fractions was low to moderate. Consistently, the antivenom neutralized the toxicity of the wild Pakistani Russell's viper venom at moderate efficacies. Our results suggest that it may be possible to enhance the Indian antivenom potency against the Pakistani viper venom by the inclusion of venoms from a wider geographical range including that from Pakistan into the immunogen formulation.
Collapse
Affiliation(s)
- Tasnim Faisal
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Naeem Quraishi
- ASV/ARV Serology Laboratory, Peoples Medical University, Nawabshah, Pakistan
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Tan KY, Tan NH, Tan CH. Venom proteomics and antivenom neutralization for the Chinese eastern Russell's viper, Daboia siamensis from Guangxi and Taiwan. Sci Rep 2018; 8:8545. [PMID: 29867131 PMCID: PMC5986800 DOI: 10.1038/s41598-018-25955-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/06/2018] [Indexed: 01/19/2023] Open
Abstract
The eastern Russell's viper (Daboia siamensis) causes primarily hemotoxic envenomation. Applying shotgun proteomic approach, the present study unveiled the protein complexity and geographical variation of eastern D. siamensis venoms originated from Guangxi and Taiwan. The snake venoms from the two geographical locales shared comparable expression of major proteins notwithstanding variability in their toxin proteoforms. More than 90% of total venom proteins belong to the toxin families of Kunitz-type serine protease inhibitor, phospholipase A2, C-type lectin/lectin-like protein, serine protease and metalloproteinase. Daboia siamensis Monovalent Antivenom produced in Taiwan (DsMAV-Taiwan) was immunoreactive toward the Guangxi D. siamensis venom, and effectively neutralized the venom lethality at a potency of 1.41 mg venom per ml antivenom. This was corroborated by the antivenom effective neutralization against the venom procoagulant (ED = 0.044 ± 0.002 µl, 2.03 ± 0.12 mg/ml) and hemorrhagic (ED50 = 0.871 ± 0.159 µl, 7.85 ± 3.70 mg/ml) effects. The hetero-specific Chinese pit viper antivenoms i.e. Deinagkistrodon acutus Monovalent Antivenom and Gloydius brevicaudus Monovalent Antivenom showed negligible immunoreactivity and poor neutralization against the Guangxi D. siamensis venom. The findings suggest the need for improving treatment of D. siamensis envenomation in the region through the production and the use of appropriate antivenom.
Collapse
Affiliation(s)
- Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Deka A, Sharma M, Sharma M, Mukhopadhyay R, Doley R. Purification and partial characterization of an anticoagulant PLA 2 from the venom of Indian Daboia russelii that induces inflammation through upregulation of proinflammatory mediators. J Biochem Mol Toxicol 2017; 31. [PMID: 28608598 DOI: 10.1002/jbt.21945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2023]
Abstract
The present study describes the purification and partial characterization of a basic anticoagulant PLA2 enzyme named as Rv(i) PLA2 from the venom of Indian Daboia russelii. The molecular mass of the protein was found to be 13,659.65 Da, and peptide mass fingerprinting revealed that it belongs to group II PLA2 family. The peptide sequence showed similarity to uncharacterized basic PLA2 enzyme having an accession no. of P86368 reported from Sri Lankan D. russelii. Rv(i) PLA2 exhibited strong phospholipase A2 and anticoagulant activity. It also induced expression of COX-2 and TNF-α mRNA in a dose-dependent manner in phorbol 12-myristate 13-acetate differentiated THP-1 cells, which play a crucial role during inflammation. Chemical modification of His residue in Rv(i) PLA2 with p-bromophenacyl bromide abolished the enzymatic, anticoagulant, and inflammatory activities. The result indicates that the catalytic site of Rv(i) PLA2 might play a vital role in inducing inflammation at the bite site during D. russelii envenomation.
Collapse
Affiliation(s)
- Archana Deka
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Maitreyee Sharma
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Manoj Sharma
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Rupak Mukhopadhyay
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
14
|
Tsai IH, Wang YM, Huang KF. Structures of Azemiops feae venom phospholipases and cys-rich-secretory protein and implications for taxonomy and toxinology. Toxicon 2016; 114:31-9. [DOI: 10.1016/j.toxicon.2016.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/31/2016] [Accepted: 02/11/2016] [Indexed: 11/28/2022]
|
15
|
Tan NH, Fung SY, Tan KY, Yap MKK, Gnanathasan CA, Tan CH. Functional venomics of the Sri Lankan Russell's viper (Daboia russelii) and its toxinological correlations. J Proteomics 2015; 128:403-23. [PMID: 26342672 DOI: 10.1016/j.jprot.2015.08.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/16/2015] [Accepted: 08/25/2015] [Indexed: 12/01/2022]
Abstract
UNLABELLED The venom proteome (venomics) of the Sri Lankan Daboia russelii was elucidated using 1D SDS PAGE nano-ESI-LCMS/MS shotgun proteomics. A total of 41 different venom proteins belonging to 11 different protein families were identified. The four main protein families are phospholipase A2 (PLA2, 35.0%), snaclec (SCL, 22.4%, mainly platelet aggregation inhibitors), snake venom serine proteinase (SVSP, 16.0%, mainly Factor V activating enzyme) and snake venom metalloproteinase (SVMP, 6.9%, mainly heavy chain of Factor X activating enzyme). Other protein families that account for more than 1% of the venom protein include l-amino acid oxidase (LAAO, 5.2%), Kunitz-type serine proteinase inhibitor (KSPI, 4.6%), venom nerve growth factor (VNGF. 3.5%), 5'-nucleotidase (5'NUC, 3.0%), cysteine-rich secretory protein (CRISP, 2.0%) and phosphodiesterase (PDE, 1.3%). The venom proteome is consistent with the enzymatic and toxic activities of the venom, and it correlates with the clinical manifestations of Sri Lankan D. russelii envenomation which include hemorrhage, coagulopathy, renal failure, neuro-myotoxicity and intravascular hemolysis. The venom exhibited remarkable presypnatic neurotoxicity presumably due to the action of basic PLA2 in high abundance (35.0%). Besides, SCLs, Factor X activating enzymes (SVMPs), SVSPs, and LAAOs are potential hemotoxins (50.5%), contributing to coagulopathy and hemorrhagic syndrome in Sri Lankan D. russelii envenomation. SIGNIFICANCE The study demonstrated the proteomic profile of the Sri Lankan Russell's viper venom, unraveling its complex composition of toxins and correlations with major toxic activities. The types, numbers, and relative abundances of toxins were reported. The venom content was dominated by the neurotoxic basic phospholipases A2 (>30% of total protein abundance) and several hemotoxic or coagulopathic protein families (approximately 50% in total). The proteome correlates with the functional and toxinological characterizations of the venom, and reflects the pathophysiological effects of envenomation by the Sri Lankan Russell's viper. The venom proteomics may serve to propel the understanding on pathogenesis and treatment strategy for envenomation by this viper in Sri Lanka. The enriched database contributed by the proteomic findings will be useful for comparing venom variations among Russell's vipers from different geographical areas.
Collapse
Affiliation(s)
- Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Michelle Khai Khun Yap
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur Malaysia.
| |
Collapse
|
16
|
Zhu W, Wu Z, Shen S, Liu J, Xiang N, Liao Y, Lin X, Chen L, Chen Q. Purification, Partial Characterizations, and N-Terminal Amino Acid Sequence of a Procoagulant Protein FV-2 fromDaboia Russelli Siamensis(Myanmar) Venom. J Biochem Mol Toxicol 2015; 29:465-471. [DOI: 10.1002/jbt.21713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Weiwei Zhu
- Department of Pharmacology, Medical College; Jinan University; Guangzhou 510632 People's Republic of China
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine; Ministry of Education, Jinan University; Guangzhou 510632 People's Republic of China
- Department of Developmental and Regenerative Biology; Jinan University; Guangzhou 510632 People's Republic of China
| | - Shuhao Shen
- Department of Pharmacology, Medical College; Jinan University; Guangzhou 510632 People's Republic of China
| | - Jun Liu
- Department of Physiology, Medical College; Jinan University; Guangzhou 510632 People's Republic of China
| | - Nanlin Xiang
- Department of Pharmacology, Medical College; Jinan University; Guangzhou 510632 People's Republic of China
| | - Yunjian Liao
- Department of Pharmacology, Medical College; Jinan University; Guangzhou 510632 People's Republic of China
| | - Xi Lin
- Department of Pharmacology, Medical College; Jinan University; Guangzhou 510632 People's Republic of China
| | - Lixin Chen
- Department of Pharmacology, Medical College; Jinan University; Guangzhou 510632 People's Republic of China
| | - Qi Chen
- Department of Pharmacology and Toxicology; Guangdong Institute for Food and Drug Control; Guangdong Province Guangzhou 510180 People's Republic of China
| |
Collapse
|
17
|
Wang YM, Huang KF, Tsai IH. Snake venom glutaminyl cyclases: Purification, cloning, kinetic study, recombinant expression, and comparison with the human enzyme. Toxicon 2014; 86:40-50. [DOI: 10.1016/j.toxicon.2014.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 11/17/2022]
|
18
|
Isolation, Functional Characterization and Proteomic Identification of CC2-PLA2 from Cerastes cerastes Venom: A Basic Platelet-Aggregation-Inhibiting Factor. Protein J 2014; 33:61-74. [DOI: 10.1007/s10930-013-9534-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Sharma M, Gogoi N, Dhananjaya BL, Menon JC, Doley R. Geographical variation of Indian Russell’s viper venom and neutralization of its coagulopathy by polyvalent antivenom. TOXIN REV 2013. [DOI: 10.3109/15569543.2013.855789] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Neonate-to-adult transition of snake venomics in the short-tailed pit viper, Gloydius brevicaudus. J Proteomics 2013; 84:148-57. [DOI: 10.1016/j.jprot.2013.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 11/20/2022]
|
21
|
Abstract
Snake envenomation is a global public health problem, with highest incidence in Southeast Asia. Inadequate health services, difficult transportation and consequent delay in antisnake venom administration are the main reasons for high mortality. Adverse drug reactions and inadequate storage conditions limit the use of antisnake venom. The medicinal plants, available locally and used widely by traditional healers, therefore need attention. A wide array of plants and their active principles have been evaluated for pharmacological properties. However, numerous unexplored plants claimed to be antidotes in folklore medicine need to be studied. The present article reviews the current status of various medicinal plants for the management of snake bite.
Collapse
Affiliation(s)
- Y K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi - 110029, India
| | | |
Collapse
|
22
|
Sunagar K, Johnson WE, O'Brien SJ, Vasconcelos V, Antunes A. Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol Biol Evol 2012; 29:1807-22. [PMID: 22319140 DOI: 10.1093/molbev/mss058] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cysteine-rich secretory proteins (CRISPs) are glycoproteins found exclusively in vertebrates and have broad diversified functions. They are hypothesized to play important roles in mammalian reproduction and in reptilian venom, where they disrupt homeostasis of the prey through several mechanisms, including among others, blockage of cyclic nucleotide-gated and voltage-gated ion channels and inhibition of smooth muscle contraction. We evaluated the molecular evolution of CRISPs in toxicoferan reptiles at both nucleotide and protein levels relative to their nonvenomous mammalian homologs. We show that the evolution of CRISP gene in these reptiles is significantly influenced by positive selection and in snakes (ω = 3.84) more than in lizards (ω = 2.33), whereas mammalian CRISPs were under strong negative selection (CRISP1 = 0.55, CRISP2 = 0.40, and CRISP3 = 0.68). The use of ancestral sequence reconstruction, mapping of mutations on the three-dimensional structure, and detailed evaluation of selection pressures suggests that the toxicoferan CRISPs underwent accelerated evolution aided by strong positive selection and directional mutagenesis, whereas their mammalian homologs are constrained by negative selection. Gene and protein-level selection analyses identified 41 positively selected sites in snakes and 14 sites in lizards. Most of these sites are located on the molecular surface (nearly 76% in snakes and 79% in lizards), whereas the backbone of the protein retains a highly conserved structural scaffold. Nearly 46% of the positively selected sites occur in the cysteine-rich domain of the protein. This directional mutagenesis, where the hotspots of mutations are found on the molecular surface and functional domains of the protein, acts as a diversifying mechanism for the exquisite biological targeting of CRISPs in toxicoferan reptiles. Finally, our analyses suggest that the evolution of toxicoferan-CRISP venoms might have been influenced by the specific predatory mechanism employed by the organism. CRISPs in Elapidae, which mostly employ neurotoxins, have experienced less positive selection pressure (ω = 2.86) compared with the "nonvenomous" colubrids (ω = 4.10) that rely on grip and constriction to capture the prey, and the Viperidae, a lineage that mostly employs haemotoxins (ω = 4.19). Relatively lower omega estimates in Anguimorph lizards (ω = 2.33) than snakes (ω = 3.84) suggests that lizards probably depend more on pace and powerful jaws for predation than venom.
Collapse
Affiliation(s)
- Kartik Sunagar
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
23
|
Chen HS, Wang YM, Huang WT, Huang KF, Tsai IH. Cloning, characterization and mutagenesis of Russell's viper venom L-amino acid oxidase: Insights into its catalytic mechanism. Biochimie 2012; 94:335-44. [PMID: 21802487 DOI: 10.1016/j.biochi.2011.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/14/2011] [Indexed: 11/16/2022]
Abstract
To investigate the structure-function relationships and geographic variations of L-amino acid oxidase (LAAO) from Daboia venoms, a single LAAO (designated as DrLAO) was purified from eastern Indian Daboia russelii venom and characterized. The purified DrLAO showed subunit molecular mass of 60-64kDa; its N-terminal sequence (1-20) was identical to those of several true viper LAAOs. Its preferred substrates were hydrophobic l-amino acids and the kinetic specificities were ordered as follows: Phe, Tyr, Met, Leu, and Trp. Enzyme assay and Western blotting showed that the venom LAAO contents of D. russelii were higher than those of Daboia siamensis. DrLAO dose-dependently inhibited ADP- and collagen-induced platelet aggregation with IC(50) values of 0.27 and 0.82μM, respectively. Apparently, DrLAO may synergize with other venom components to prolong and enhance bleeding symptoms after Daboia envenoming. The full sequence of DrLAO was deduced from its cDNA sequence and then confirmed by peptide mass fingerprinting. Molecular phylogenetic analysis revealed that SV-LAAO family members could be differentiated not only by snake taxonomy but also by the variations at position 223, and they divided into H223, S223, N223, and D223 subclasses. We have further prepared recombinant DrLAO and mutants by the Pichia expression system. Mutagenic analyses of DrLAO His223 revealed that this residue bound substrates instead of serving as an essential base in the catalytic steps. Our results suggest a direct hydride transfer from substrate to FAD as the mechanism for SV-LAAOs.
Collapse
Affiliation(s)
- Hong-Sen Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Abstract
Snake bite is one of the most neglected public health issues in poor rural communities living in the tropics. Because of serious misreporting, the true worldwide burden of snake bite is not known. South Asia is the world's most heavily affected region, due to its high population density, widespread agricultural activities, numerous venomous snake species and lack of functional snake bite control programs. Despite increasing knowledge of snake venoms' composition and mode of action, good understanding of clinical features of envenoming and sufficient production of antivenom by Indian manufacturers, snake bite management remains unsatisfactory in this region. Field diagnostic tests for snake species identification do not exist and treatment mainly relies on the administration of antivenoms that do not cover all of the important venomous snakes of the region. Care-givers need better training and supervision, and national guidelines should be fed by evidence-based data generated by well-designed research studies. Poorly informed rural populations often apply inappropriate first-aid measures and vital time is lost before the victim is transported to a treatment centre, where cost of treatment can constitute an additional hurdle. The deficiency of snake bite management in South Asia is multi-causal and requires joint collaborative efforts from researchers, antivenom manufacturers, policy makers, public health authorities and international funders.
Collapse
Affiliation(s)
- Emilie Alirol
- Division of International and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Vija H, Samel M, Siigur E, Aaspõllu A, Trummal K, Tõnismägi K, Subbi J, Siigur J. Purification, characterization, and cDNA cloning of acidic platelet aggregation inhibiting phospholipases A2 from the snake venom of Vipera lebetina (Levantine viper). Toxicon 2009; 54:429-39. [DOI: 10.1016/j.toxicon.2009.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 11/16/2022]
|
26
|
Warrell DA. Researching nature's venoms and poisons. Trans R Soc Trop Med Hyg 2009; 103:860-6. [DOI: 10.1016/j.trstmh.2009.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022] Open
|
27
|
González-Morales L, Diego-García E, Segovia L, Carmen Gutiérrez MD, Possani LD. Venom from the centipede Scolopendra viridis Say: Purification, gene cloning and phylogenetic analysis of a phospholipase A2. Toxicon 2009; 54:8-15. [DOI: 10.1016/j.toxicon.2009.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 02/18/2009] [Accepted: 03/02/2009] [Indexed: 11/15/2022]
|
28
|
Risch M, Georgieva D, von Bergen M, Jehmlich N, Genov N, Arni RK, Betzel C. Snake venomics of the Siamese Russell's viper (Daboia russelli siamensis) -- relation to pharmacological activities. J Proteomics 2009; 72:256-69. [PMID: 19457351 DOI: 10.1016/j.jprot.2009.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
The venom proteome of Daboia russelli siamensis, a snake of medical importance in several Asian countries, was analysed by 2-D electrophoresis, subsequent MS/MS and enzymatic assays. The proteome comprises toxins from six protein families: serine proteinases, metalloproteinases, phospholipases A(2), L-amino acid oxidases, vascular endothelial growth factors and C-type lectin-like proteins. The venom toxin composition correlates with the clinical manifestation of the Russell's viper bite and explains pathological effects of the venom such as coagulopathy, oedema, hypotensive, necrotic and tissue damaging effects. The vast majority of toxins are potentially involved in coagulopathy and neurotoxic effects. The predominant venom components are proteinases capable of activating blood coagulation factors and promoting a rapid clotting of the blood, and neurotoxic phospholipase A(2)s. The analysis of the venom protein composition provides a catalogue of secreted toxins. The proteome of D. r. siamensis exhibits a lower level of toxin diversity than the proteomes of other viperid snakes. In comparison to the venoms of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis, the venom from D. r. siamensis showed quantitative differences in the proteolytic, phospholipase A(2), L-amino acid oxidase and alkaline phosphatase activities.
Collapse
Affiliation(s)
- Michaela Risch
- Helmholtz-Centre for Environmental Research-UFZ, Department of Proteomics, 04318 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen HS, Tsai HY, Wang YM, Tsai IH. P-III hemorrhagic metalloproteinases from Russell's viper venom: cloning, characterization, phylogenetic and functional site analyses. Biochimie 2008; 90:1486-98. [PMID: 18554518 DOI: 10.1016/j.biochi.2008.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 05/14/2008] [Indexed: 11/21/2022]
Abstract
Two homologous P-III hemorrhagic metalloproteinases were purified from Russell's viper venoms from Myanmar and Kolkata (eastern India), and designated as daborhagin-M and daborhagin-K, respectively. They induced severe dermal hemorrhage in mice at a minimum hemorrhagic dose of 0.8-0.9 microg. Daborhagin-M specifically hydrolyzed an Aalpha-chain of fibrinogen, fibronectin, and type IV collagen in vitro. Analyses of its cleavage sites on insulin chain B and kinetic specificities toward oligopeptides suggested that daborhagin-M prefers hydrophobic residues at the P(1), P(1)', and P(2)' positions on the substrates. Of the eight Daboia geographic venom samples analyzed by Western blotting, only those from Myanmar and eastern India showed a strong positive band at 65kDa, which correlated with the high risk of systemic hemorrhagic symptoms elicited by Daboia envenoming in both regions. The full sequence of daborhagin-K was determined by cDNA cloning and sequencing, and then confirmed by peptide mass fingerprinting. Furthermore, molecular phylogenetic analyses based on 27 P-IIIs revealed the co-evolution of two major P-III classes with distinct hemorrhagic potencies, and daborhagin-K belongs to the most hemorrhagic subclass. By comparing the absolute complexity profiles between these two classes, we identified four structural motifs probably responsible for the phylogenetic subtyping and hemorrhagic potencies of P-III SVMPs.
Collapse
Affiliation(s)
- Hong-Sen Chen
- Graduate Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|