1
|
Gül A, Aksentijevich I, Brogan P, Gattorno M, Grayson PC, Ozen S. The pathogenesis, clinical presentations and treatment of monogenic systemic vasculitis. Nat Rev Rheumatol 2025:10.1038/s41584-025-01250-9. [PMID: 40369133 DOI: 10.1038/s41584-025-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/16/2025]
Abstract
Many monogenic autoinflammatory diseases, including DADA2 (deficiency of adenosine deaminase 2), HA20 (haploinsufficiency of A20), SAVI (STING-associated vasculopathy with onset in infancy), COPA syndrome, LAVLI (LYN kinase-associated vasculopathy and liver fibrosis) and VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, present predominantly with vasculitis and constitute a substantial subgroup of vasculitic conditions associated with a 'probable aetiology'. The spectrum of monogenic vasculitis encompasses all sizes and types of blood vessel, ranging from large vessels to medium-size and small vessels, and from the arterial side to the venous side of the vasculature. Monogenic vasculitis typically starts early in life during infancy or childhood; VEXAS syndrome, which presents in late adulthood, is an exception. The activation of myeloid cells via inflammasome and nuclear factor-κB pathways, type I interferon-enhanced autoimmune mechanisms and/or dysregulated adaptive immune responses have an important role in the development of immune-mediated endothelial dysfunction and vascular damage. Genetic testing is essential for the diagnosis of underlying monogenic autoinflammatory diseases; however, the penetrance of genetic variants can vary. Increased awareness and recognition of distinctive clinical findings could facilitate earlier diagnosis and allow for more-targeted treatments.
Collapse
Affiliation(s)
- Ahmet Gül
- Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Paul Brogan
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Peter C Grayson
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seza Ozen
- Department of Paediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Zhang X, You Y, Xiong T, Zhang X, Wang H, Geng J, Wang M, Xu Y, Gao S, Wu X, Zheng Y, Wen X, Yang H, Wang Y, Wen X, Zhao C. Frk positively regulates innate antiviral immunity by phosphorylating TBK1. Front Microbiol 2025; 16:1525648. [PMID: 40012791 PMCID: PMC11861356 DOI: 10.3389/fmicb.2025.1525648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Type I interferons (IFN-I) are crucial for the initial defense against viral infections. TBK1 serves as a key regulator in the production of IFN-I, with its phosphorylation being essential for the regulation of its activity. However, the regulatory mechanisms governing its activation remain incompletely elucidated. In this study, we validated the function of Fyn-related kinase (Frk) in the antiviral innate immune response and identified the direct target molecule of Frk in the IFN-β signaling pathway. Furthermore, we elucidated the mechanism by which Frk phosphorylates TBK1 during infection and the role of Frk in IFN-β production. We discovered that Frk enhances the activation of the IFN-I production pathway by targeting TBK1. Mechanistically, Frk promotes the K63 ubiquitination of TBK1 and subsequent activation of the transcription factor IRF3 by phosphorylating TBK1 at tyrosine residues 174 and 179, thereby enhancing the production of IFN-β in macrophages. Employing both in vivo and in vitro viral infection assays, we demonstrated that IFN-β mediated by Frk inhibits the replication of VSV or HSV-1 and alleviates lung lesions. Our findings indicate that Frk functions as a key regulator of TBK1 to strengthen antiviral immunity and represents a promising target for the development of antiviral drugs.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Medical Engineering, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying You
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tingrong Xiong
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaokai Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Haibo Wang
- Department of Basic Courses, Non Commissioned Officer School, Third Military Medical University, Shijiazhuang, China
| | - Jinxia Geng
- Department of Basic Courses, Non Commissioned Officer School, Third Military Medical University, Shijiazhuang, China
| | - Miao Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yanyan Xu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Shanshan Gao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyan Wu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yue Zheng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xianhua Wen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Haoyu Yang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yu Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Basic Courses, Non Commissioned Officer School, Third Military Medical University, Shijiazhuang, China
| | - Xiaohua Wen
- Department of Health Medicine, The 980th Hospital of People’s Liberation Army Joint Logistics Support Forces, Shijiazhuang, China
| | - Congcong Zhao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Zhai Z, Yang C, Yin W, Liu Y, Li S, Ye Z, Xie M, Song X. Engineered Strategies to Interfere with Macrophage Fate in Myocardial Infarction. ACS Biomater Sci Eng 2025; 11:784-805. [PMID: 39884780 DOI: 10.1021/acsbiomaterials.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myocardial infarction (MI), a severe cardiovascular condition, is typically triggered by coronary artery disease, resulting in ischemic damage and the subsequent necrosis of the myocardium. Macrophages, known for their remarkable plasticity, are capable of exhibiting a range of phenotypes and functions as they react to diverse stimuli within their local microenvironment. In recent years, there has been an increasing number of studies on the regulation of macrophage behavior based on tissue engineering strategies, and its regulatory mechanisms deserve further investigation. This review first summarizes the effects of key regulatory factors of engineered biomaterials (including bioactive molecules, conductivity, and some microenvironmental factors) on macrophage behavior, then explores specific methods for inducing macrophage behavior through tissue engineering materials to promote myocardial repair, and summarizes the role of macrophage-host cell crosstalk in regulating inflammation, vascularization, and tissue remodeling. Finally, we propose some future challenges in regulating macrophage-material interactions and tailoring personalized biomaterials to guide macrophage phenotypes.
Collapse
Affiliation(s)
- Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
4
|
Wunderle V, Wilhelm T, Boukeileh S, Goßen J, Margreiter MA, Sakurov R, Capellmann S, Schwoerer M, Ahmed N, Bronneberg G, Arock M, Martin C, Schubert T, Levi‐Schaffer F, Rossetti G, Tirosh B, Huber M. KIRA6 is an Effective and Versatile Mast Cell Inhibitor of IgE-mediated Activation. Eur J Immunol 2025; 55:e202451348. [PMID: 39676406 PMCID: PMC11830387 DOI: 10.1002/eji.202451348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Mast cell (MC)-driven allergic diseases are constantly expanding and require the development of novel pharmacological MC stabilizers. Allergen/antigen (Ag)-triggered activation via crosslinking of the high-affinity receptor for IgE (FcεRI) is fundamentally regulated by SRC family kinases, for example, LYN and FYN, exhibiting positive and negative functions. We report that KIRA6, an inhibitor for the endoplasmic reticulum stress sensor IRE1α, suppresses IgE-mediated MC activation by inhibiting both LYN and FYN. KIRA6 attenuates Ag-stimulated early signaling and effector functions such as degranulation and proinflammatory cytokine production/secretion in murine bone marrow-derived MCs. Moreover, Ag-triggered bronchoconstriction in an ex vivo model and IgE-mediated stimulation of human MCs were repressed by KIRA6. The interaction of KIRA6 with three MC-relevant tyrosine kinases, LYN, FYN, and KIT, and the potential of KIRA6 structure as a pharmacophore for the development of respective single-, dual-, or triple-specificity inhibitors, was evaluated by homology modeling and molecular dynamics simulations. We found that KIRA6 particularly strongly binds the inactive state of LYN, FYN, and KIT with comparable affinities. In conclusion, our data suggest that the chemical structure of KIRA6 as a pharmacophore can be further developed to obtain an effective MC stabilizer.
Collapse
Affiliation(s)
- Veronika Wunderle
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
- Department of Neurology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Shatha Boukeileh
- The School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
| | - Jonas Goßen
- Institute for Advanced Simulation, Jülich Supercomputing CentreForschungszentrum Jülich GmbHJülichGermany
| | - Michael A. Margreiter
- Institute for Advanced Simulation, Jülich Supercomputing CentreForschungszentrum Jülich GmbHJülichGermany
| | - Roman Sakurov
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Sandro Capellmann
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Maike Schwoerer
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Nabil Ahmed
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Gina Bronneberg
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Michel Arock
- Department of Hematological Biology, Pitié‐Salpêtrière Charles‐Foix HospitalAP‐HP Sorbonne UniversityParisFrance
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical FacultyRWTH Aachen UniversityAachenGermany
| | | | | | - Giulia Rossetti
- Institute for Advanced Simulation, Jülich Supercomputing CentreForschungszentrum Jülich GmbHJülichGermany
- Jülich Supercomputing Centre (JSC)Forschungszentrum Jülich GmbHJülichGermany
- Department of NeurologyUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
| | - Boaz Tirosh
- The School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| | - Michael Huber
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
5
|
Pricoupenko N, Marsigliesi F, Marcq P, Blanch-Mercader C, Bonnet I. Src kinase slows collective rotation of confined epithelial cell monolayers. SOFT MATTER 2024; 20:9273-9285. [PMID: 39545852 DOI: 10.1039/d4sm00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Collective cell migration is key during development, wound healing, and metastasis and relies on coordinated cell behaviors at the group level. Src kinase is a key signalling protein for the physiological functions of epithelia, as it regulates many cellular processes, including adhesion, motility, and mechanotransduction. Its overactivation is associated with cancer aggressiveness. Here, we take advantage of optogenetics to precisely control Src activation in time and show that its pathological-like activation slows the collective rotation of epithelial cells confined into circular adhesive patches. We interpret velocity, force, and stress data during period of non-activation and period of activation of Src thanks to a hydrodynamic description of the cell assembly as a polar active fluid. Src activation leads to a 2-fold decrease in the ratio of polar angle to friction, which could result from increased adhesiveness at the cell-substrate interface. Measuring internal stress allows us to show that active stresses are subdominant compared to traction forces. Our work reveals the importance of fine-tuning the level of Src activity for coordinated collective behaviors.
Collapse
Affiliation(s)
- Nastassia Pricoupenko
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Flavia Marsigliesi
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Philippe Marcq
- Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, F-75005, France
| | - Carles Blanch-Mercader
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Isabelle Bonnet
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| |
Collapse
|
6
|
Nicoletto RE, Holdcraft CJ, Yin AC, Retzbach EP, Sheehan SA, Greenspan AA, Laugier CM, Trama J, Zhao C, Zheng H, Goldberg GS. Effects of cadherin mediated contact normalization on oncogenic Src kinase mediated gene expression and protein phosphorylation. Sci Rep 2024; 14:23942. [PMID: 39397108 PMCID: PMC11471763 DOI: 10.1038/s41598-024-75449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Nontransformed cells form heterotypic cadherin junctions with adjacent transformed cells to inhibit tumor cell growth and motility. Transformed cells must override this form of growth control, called "contact normalization", to invade and metastasize during cancer progression. Heterocellular cadherin junctions between transformed and nontransformed cells are needed for this process. However, specific mechanisms downstream of cadherin signaling have not been clearly elucidated. Here, we utilized a β-catenin reporter construct to determine if contact normalization affects Wnt signaling in transformed cells. β-catenin driven GFP expression in Src transformed mouse embryonic cells was decreased when cultured with cadherin competent nontransformed cells compared to transformed cells cultured with themselves, but not when cultured with cadherin deficient nontransformed cells. We also utilized a layered culture system to investigate the effects of oncogenic transformation and contact normalization on gene expression and oncogenic Src kinase mediated phosphorylation events. RNA-Seq analysis found that cadherin dependent contact normalization inhibited the expression of 22 transcripts that were induced by Src transformation, and increased the expression of 78 transcripts that were suppressed by Src transformation. Phosphoproteomic analysis of cells expressing a temperature sensitive Src kinase construct found that contact normalization decreased phosphorylation of 10 proteins on tyrosine residues that were phosphorylated within 1 h of Src kinase activation in transformed cells. Taken together, these results indicate that cadherin dependent contact normalization inhibits Wnt signaling to regulate oncogenic kinase activity and gene expression, particularly PDPN expression, in transformed cells in order to control tumor progression.
Collapse
Affiliation(s)
- Rachel E Nicoletto
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Cayla J Holdcraft
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Ariel C Yin
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Edward P Retzbach
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Stephanie A Sheehan
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Amanda A Greenspan
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Christopher M Laugier
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Jason Trama
- Medical Diagnostic Laboratories, 2439 Kuser Rd, Hamilton Township, NJ, 08690, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Gary S Goldberg
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA.
| |
Collapse
|
7
|
Letafati A, Bahavar A, Tabarraei A, Norouzi M, Amiri A, Mozhgani SH. Human T-cell lymphotropic virus type 1 (HTLV-1) grip on T-cells: investigating the viral tapestry of activation. Infect Agent Cancer 2024; 19:23. [PMID: 38734673 PMCID: PMC11088018 DOI: 10.1186/s13027-024-00584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Human T-cell Lymphotropic virus type 1 (HTLV-1) belongs to retroviridae which is connected to two major diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and Adult T-cell leukemia/lymphoma (ATLL). This study aims to investigate the mRNA expressions of key proteins correlated to T-cell activation in asymptomatic carriers (ACs) HTLV-1 infected patients, shedding light on early molecular events and T-cell activation following HTLV-1 infection. MATERIAL AND METHODS The study involved 40 participants, including 20 ACs and 20 healthy subjects. Blood samples were collected, ELISA assessment for screening and confirmation with PCR for Trans-activating transcriptional regulatory protein (Tax) and HTLV-1 basic leucine zipper factor (HBZ) of the HTLV-1 were done. mRNA expressions of C-terminal Src kinase (CSK), Glycogen Synthase Kinase-3 Beta (GSK3β), Mitogen-Activated Protein Kinase 14 (MAP3K14 or NIK), Phospholipase C Gamma-1 (PLCG1), Protein Tyrosine Phosphatase non-Receptor Type 6 (PTPN6) and Mitogen-Activated Protein Kinase Kinase Kinase-7 (SLP-76) and Mitogen-Activated Protein Kinase14 (MAP3K7 or TAK1) were assayed using RT-qPCR. Statistical analyses were performed using PRISM and SPSS software. RESULTS While there were no significant upregulation in CSK and PTPN6 in ACs compared to healthy individuals, expression levels of GSK3β, MAP3K14, PLCG1, SLP-76, and TAK1 were significantly higher in ACs compared to healthy subjects which directly contributes to T-cell activation in the HTLV-1 ACs. CONCLUSION HTLV-1 infection induces differential mRNA expressions in key proteins associated with T-cell activation. mRNAs related to T-cell activation showed significant upregulation compared to PTPN6 and CSK which contributed to T-cell regulation. Understanding these early molecular events in ACs may provide potential markers for disease progression and identify therapeutic targets for controlling viral replication and mitigating associated diseases. The study contributes novel insights to the limited literature on T-cell activation and HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Abdollah Amiri
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
8
|
Levillayer L, Brighelli C, Demeret C, Sakuntabhai A, Bureau JF. Role of two modules controlling the interaction between SKAP1 and SRC kinases comparison with SKAP2 architecture and consequences for evolution. PLoS One 2024; 19:e0296230. [PMID: 38483858 PMCID: PMC10939263 DOI: 10.1371/journal.pone.0296230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
SRC kinase associated phosphoprotein 1 (SKAP1), an adaptor for protein assembly, plays an important role in the immune system such as stabilizing immune synapses. Understanding how these functions are controlled at the level of the protein-protein interactions is necessary to describe these processes and to develop therapeutics. Here, we dissected the SKAP1 modular organization to recognize SRC kinases and compared it to that of its paralog SRC kinase associated phosphoprotein 2 (SKAP2). Different conserved motifs common to either both proteins or specific to SKAP2 were found using this comparison. Two modules harboring different binding properties between SKAP1 and SKAP2 were identified: one composed of two conserved motifs located in the second interdomain interacting at least with the SH2 domain of SRC kinases and a second one composed of the DIM domain modulated by the SH3 domain and the activation of SRC kinases. This work suggests a convergent evolution of the binding properties of some SRC kinases interacting specifically with either SKAP1 or SKAP2.
Collapse
Affiliation(s)
- Laurine Levillayer
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Camille Brighelli
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Caroline Demeret
- Institut Pasteur, Université de Paris-Cité, Laboratoire Interactomique, ARN et Immunité ‐ Interactomics, RNA and Immunity, Paris, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Jean-François Bureau
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| |
Collapse
|
9
|
Tripathi N, Saraf P, Bhardwaj N, Shrivastava SK, Jain SK. Identifying inflammation-related targets of natural lactones using network pharmacology, molecular modeling and in vitro approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 38334283 DOI: 10.1080/07391102.2024.2310783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Natural lactones have been used in traditional and folklore medicine for centuries owing to their anti-inflammatory properties. The study uses a multifaceted approach to identify lead anti-inflammatory lactones from the SISTEMATX natural products database. The study analyzed the natural lactone database, revealing 18 lactones linked to inflammation targets. The primary targets were PTGES, PTGS1, COX-2, ALOX5 and IL1B. STX 12273 was the best hit, with the lowest binding energy and potential for inhibiting the COX-2 enzyme. The study suggested natural lactone, STX 12273, from the SISTEMATX database with anti-inflammatory potential and postulated its use for inflammation treatment or prevention.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
10
|
Villalobo A. Ca 2+ Signaling and Src Functions in Tumor Cells. Biomolecules 2023; 13:1739. [PMID: 38136610 PMCID: PMC10741856 DOI: 10.3390/biom13121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
11
|
Yegambaram M, Kumar S, Wu X, Lu Q, Sun X, Garcia Flores A, Meadows ML, Barman S, Fulton D, Wang T, Fineman JR, Black SM. Endothelin-1 acutely increases nitric oxide production via the calcineurin mediated dephosphorylation of Caveolin-1. Nitric Oxide 2023; 140-141:50-57. [PMID: 37659679 DOI: 10.1016/j.niox.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Endothelin (ET)-1 is an endothelial-derived peptide that exerts biphasic effects on nitric oxide (NO) levels in endothelial cells such that acute exposure stimulates-while sustained exposure attenuates-NO production. Although the mechanism involved in the decrease in NO generation has been identified but the signaling involved in the acute increase in NO is still unresolved. This was the focus of this study. Our data indicate that exposing pulmonary arterial endothelial cells (PAEC) to ET-1 led to an increase in NO for up to 30min after which levels declined. These effects were attenuated by ET receptor antagonists. The increase in NO correlated with significant increases in pp60Src activity and increases in eNOS phosphorylation at Tyr83 and Ser1177. The ET-1 mediated increase in phosphorylation and NO generation were attenuated by the over-expression of a pp60Src dominant negative mutant. The increase in pp60Src activity correlated with a reduction in the interaction of Caveolin-1 with pp60Src and the calcineurin-mediated dephosphorylation of caveolin-1 at three previously unidentified sites: Thr91, Thr93, and Thr95. The calcineurin inhibitor, Tacrolimus, attenuated the acute increase in pp60Src activity induced by ET-1 and a calcineurin siRNA attenuated the ET-1 mediated increase in eNOS phosphorylation at Tyr83 and Ser1177 as well as the increase in NO. By using a Caveolin-1 celluSpot peptide array, we identified a peptide targeting a sequence located between aa 41-56 as the pp60Src binding region. This peptide fused to the TAT sequence was found to decrease caveolin-pp60Src interaction, increased pp60Src activity, increased eNOS pSer1177 and NO levels in PAEC and induce vasodilation in isolated aortic rings in wildtype but not eNOS knockout mice. Together, our data identify a novel mechanism by which ET-1 acutely increases NO via a calcineurin-mediated dephosphorylation of caveolin-1 and the subsequent stimulation of pp60Src activity, leading to increases in phosphorylation of eNOS at Tyr83 and Ser1177.
Collapse
Affiliation(s)
- Manivannan Yegambaram
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Sanjiv Kumar
- Department of Medicine, Augusta University, Augusta, GA, USA; Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona, Tucson, AZ, 33174, USA
| | - Qing Lu
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Xutong Sun
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Alejandro Garcia Flores
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | | | - Scott Barman
- Department of Pharmacology, Augusta University, Augusta, GA, USA
| | - David Fulton
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology, Augusta University, Augusta, GA, USA
| | - Ting Wang
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen M Black
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
12
|
Pei J, Cong Q. Computational analysis of regulatory regions in human protein kinases. Protein Sci 2023; 32:e4764. [PMID: 37632170 PMCID: PMC10503413 DOI: 10.1002/pro.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Eukaryotic proteins often feature modular domain structures comprising globular domains that are connected by linker regions and intrinsically disordered regions that may contain important functional motifs. The intramolecular interactions of globular domains and nonglobular regions can play critical roles in different aspects of protein function. However, studying these interactions and their regulatory roles can be challenging due to the flexibility of nonglobular regions, the long insertions separating interacting modules, and the transient nature of some interactions. Obtaining the experimental structures of multiple domains and functional regions is more difficult than determining the structures of individual globular domains. High-quality structural models generated by AlphaFold offer a unique opportunity to study intramolecular interactions in eukaryotic proteins. In this study, we systematically explored intramolecular interactions between human protein kinase domains (KDs) and potential regulatory regions, including globular domains, N- and C-terminal tails, long insertions, and distal nonglobular regions. Our analysis identified intramolecular interactions between human KDs and 35 different types of globular domains, exhibiting a variety of interaction modes that could contribute to orthosteric or allosteric regulation of kinase activity. We also identified prevalent interactions between human KDs and their flanking regions (N- and C-terminal tails). These interactions exhibit group-specific characteristics and can vary within each specific kinase group. Although long-range interactions between KDs and nonglobular regions are relatively rare, structural details of these interactions offer new insights into the regulation mechanisms of several kinases, such as HASPIN, MAPK7, MAPK15, and SIK1B.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
13
|
Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. MedComm (Beijing) 2023; 4:e254. [PMID: 37193304 PMCID: PMC10183156 DOI: 10.1002/mco2.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 05/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected a large portion of the global population, both physically and mentally. Current evidence suggests that the rapidly evolving coronavirus subvariants risk rendering vaccines and antibodies ineffective due to their potential to evade existing immunity, with enhanced transmission activity and higher reinfection rates that could lead to new outbreaks across the globe. The goal of viral management is to disrupt the viral life cycle as well as to relieve severe symptoms such as lung damage, cytokine storm, and organ failure. In the fight against viruses, the combination of viral genome sequencing, elucidation of the structure of viral proteins, and identifying proteins that are highly conserved across multiple coronaviruses has revealed many potential molecular targets. In addition, the time- and cost-effective repurposing of preexisting antiviral drugs or approved/clinical drugs for these targets offers considerable clinical advantages for COVID-19 patients. This review provides a comprehensive overview of various identified pathogenic targets and pathways as well as corresponding repurposed approved/clinical drugs and their potential against COVID-19. These findings provide new insight into the discovery of novel therapeutic strategies that could be applied to the control of disease symptoms emanating from evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yiying Xue
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yisa Chen
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - James D. Griffin
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
- Hefei Cancer HospitalChinese Academy of SciencesHefeiChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jing Yang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| |
Collapse
|
14
|
Goel RK, Kim N, Lukong KE. Seeking a better understanding of the non-receptor tyrosine kinase, SRMS. Heliyon 2023; 9:e16421. [PMID: 37251450 PMCID: PMC10220380 DOI: 10.1016/j.heliyon.2023.e16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
SRMS (Src-Related kinase lacking C-terminal regulatory tyrosine and N-terminal Myristoylation Sites) is a non-receptor tyrosine kinase first reported in a 1994 screen for genes regulating murine neural precursor cells. SRMS, pronounced "Shrims", lacks the C-terminal regulatory tyrosine critical for the regulation of the enzymatic activity of Src-family kinases (SFKs). Another remarkable characteristic of SRMS is its localization into distinct SRMS cytoplasmic punctae (SCPs) or GREL (Goel Raghuveera-Erique Lukong) bodies, a pattern not observed in the SFKs. This unique subcellular localization of SRMS could dictate its cellular targets, proteome, and potentially, substrates. However, the function of SRMS is still relatively unknown. Further, how is its activity regulated and by what cellular targets? Studies have emerged highlighting the potential role of SRMS in autophagy and in regulating the activation of BRK/PTK6. Potential novel cellular substrates have also been identified, including DOK1, vimentin, Sam68, FBKP51, and OTUB1. Recent studies have also demonstrated the potential role of the kinase in various cancers, including gastric and colorectal cancers and platinum resistance in ovarian cancer. This review discusses the advancements made in SRMS-related biology to date and the path to understanding the cellular and physiological significance of the kinase.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Center for Network Systems Biology, Boston University, Boston, MA, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Nayoung Kim
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| |
Collapse
|
15
|
Vergara-Gómez L, Bizama C, Zhong J, Buchegger K, Suárez F, Rosa L, Ili C, Weber H, Obreque J, Espinoza K, Repetto G, Roa JC, Leal P, García P. A Novel Gemcitabine-Resistant Gallbladder Cancer Model Provides Insights into Molecular Changes Occurring during Acquired Resistance. Int J Mol Sci 2023; 24:ijms24087238. [PMID: 37108401 PMCID: PMC10139168 DOI: 10.3390/ijms24087238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Treatment options for advanced gallbladder cancer (GBC) are scarce and usually rely on cytotoxic chemotherapy, but the effectiveness of any regimen is limited and recurrence rates are high. Here, we investigated the molecular mechanisms of acquired resistance in GBC through the development and characterization of two gemcitabine-resistant GBC cell sublines (NOZ GemR and TGBC1 GemR). Morphological changes, cross-resistance, and migratory/invasive capabilities were evaluated. Then, microarray-based transcriptome profiling and quantitative SILAC-based phosphotyrosine proteomic analyses were performed to identify biological processes and signaling pathways dysregulated in gemcitabine-resistant GBC cells. The transcriptome profiling of parental and gemcitabine-resistant cells revealed the dysregulation of protein-coding genes that promote the enrichment of biological processes such as epithelial-to-mesenchymal transition and drug metabolism. On the other hand, the phosphoproteomics analysis of NOZ GemR identified aberrantly dysregulated signaling pathways in resistant cells as well as active kinases, such as ABL1, PDGFRA, and LYN, which could be novel therapeutic targets in GBC. Accordingly, NOZ GemR showed increased sensitivity toward the multikinase inhibitor dasatinib compared to parental cells. Our study describes transcriptome changes and altered signaling pathways occurring in gemcitabine-resistant GBC cells, which greatly expands our understanding of the underlying mechanisms of acquired drug resistance in GBC.
Collapse
Affiliation(s)
- Luis Vergara-Gómez
- Biomedicine and Translational Research Laboratory, Centre of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Carolina Bizama
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Center for Cancer Prevention and Control (CECAN), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jun Zhong
- Delta Omics Biotechnology, Rockville, MD 20855, USA
| | - Kurt Buchegger
- Department of Basic Sciences, Universidad de La Frontera, Temuco 4810296, Chile
| | - Felipe Suárez
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Lorena Rosa
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Centre of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Helga Weber
- Biomedicine and Translational Research Laboratory, Centre of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Javiera Obreque
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Karena Espinoza
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Gabriela Repetto
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan C Roa
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Center for Cancer Prevention and Control (CECAN), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pamela Leal
- Biomedicine and Translational Research Laboratory, Centre of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| | - Patricia García
- School of Medicine, Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Center for Cancer Prevention and Control (CECAN), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
16
|
Levillayer L, Cassonnet P, Declercq M, Santos MD, Lebreton L, Danezi K, Demeret C, Sakuntabhai A, Jacob Y, Bureau JF. SKAP2 Modular Organization Differently Recognizes SRC Kinases Depending on Their Activation Status and Localization. Mol Cell Proteomics 2022; 22:100451. [PMID: 36423812 PMCID: PMC9792355 DOI: 10.1016/j.mcpro.2022.100451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.
Collapse
Affiliation(s)
- Laurine Levillayer
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Patricia Cassonnet
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Marion Declercq
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Mélanie Dos Santos
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Louis Lebreton
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Katerina Danezi
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Jean-François Bureau
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France,For correspondence: Jean-François Bureau
| |
Collapse
|
17
|
Mukai E, Fujimoto S, Inagaki N. Role of Reactive Oxygen Species in Glucose Metabolism Disorder in Diabetic Pancreatic β-Cells. Biomolecules 2022; 12:biom12091228. [PMID: 36139067 PMCID: PMC9496160 DOI: 10.3390/biom12091228] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
The dysfunction of pancreatic β-cells plays a central role in the onset and progression of type 2 diabetes mellitus (T2DM). Insulin secretory defects in β-cells are characterized by a selective impairment of glucose stimulation, and a reduction in glucose-induced ATP production, which is essential for insulin secretion. High glucose metabolism for insulin secretion generates reactive oxygen species (ROS) in mitochondria. In addition, the expression of antioxidant enzymes is very low in β-cells. Therefore, β-cells are easily exposed to oxidative stress. In islet studies using a nonobese T2DM animal model that exhibits selective impairment of glucose-induced insulin secretion (GSIS), quenching ROS generated by glucose stimulation and accumulated under glucose toxicity can improve impaired GSIS. Acute ROS generation and toxicity cause glucose metabolism disorders through different molecular mechanisms. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor, is a master regulator of antioxidant defense and a potential therapeutic target in oxidative stress-related diseases, suggesting the possible involvement of Nrf2 in β-cell dysfunction caused by ROS. In this review, we describe the mechanisms of insulin secretory defects induced by oxidative stress in diabetic β-cells.
Collapse
Affiliation(s)
- Eri Mukai
- Medical Physiology and Metabolism Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 5258577, Japan
- Correspondence:
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi 7838505, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| |
Collapse
|
18
|
Andreolla AP, Borges AA, Bordignon J, Duarte dos Santos CN. Mayaro Virus: The State-of-the-Art for Antiviral Drug Development. Viruses 2022; 14:1787. [PMID: 36016409 PMCID: PMC9415492 DOI: 10.3390/v14081787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
Mayaro virus is an emerging arbovirus that causes nonspecific febrile illness or arthralgia syndromes similar to the Chikungunya virus, a virus closely related from the Togaviridae family. MAYV outbreaks occur more frequently in the northern and central-western states of Brazil; however, in recent years, virus circulation has been spreading to other regions. Due to the undifferentiated initial clinical symptoms between MAYV and other endemic pathogenic arboviruses with geographic overlapping, identification of patients infected by MAYV might be underreported. Additionally, the lack of specific prophylactic approaches or antiviral drugs limits the pharmacological management of patients to treat symptoms like pain and inflammation, as is the case with most pathogenic alphaviruses. In this context, this review aims to present the state-of-the-art regarding the screening and development of compounds/molecules which may present anti-MAYV activity and infection inhibition.
Collapse
Affiliation(s)
- Ana Paula Andreolla
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Alessandra Abel Borges
- Laboratório de Pesquisas em Virologia e Imunologia, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
| | | |
Collapse
|
19
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
20
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
21
|
Ma L, Tian Y, Qian T, Li W, Liu C, Chu B, Kong Q, Cai R, Bai P, Ma L, Deng Y, Tian R, Wu C, Sun Y. Kindlin-2 promotes Src-mediated tyrosine phosphorylation of androgen receptor and contributes to breast cancer progression. Cell Death Dis 2022; 13:482. [PMID: 35595729 PMCID: PMC9122951 DOI: 10.1038/s41419-022-04945-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Androgen receptor (AR) signaling plays important roles in breast cancer progression. We show here that Kindlin-2, a focal adhesion protein, is critically involved in the promotion of AR signaling and breast cancer progression. Kindlin-2 physically associates with AR and Src through its two neighboring domains, namely F1 and F0 domains, resulting in formation of a Kindlin-2-AR-Src supramolecular complex and consequently facilitating Src-mediated AR Tyr-534 phosphorylation and signaling. Depletion of Kindlin-2 was sufficient to suppress Src-mediated AR Tyr-534 phosphorylation and signaling, resulting in diminished breast cancer cell proliferation and migration. Re-expression of wild-type Kindlin-2, but not AR-binding-defective or Src-binding-defective mutant forms of Kindlin-2, in Kindlin-2-deficient cells restored AR Tyr-534 phosphorylation, signaling, breast cancer cell proliferation and migration. Furthermore, re-introduction of phosphor-mimic mutant AR-Y534D, but not wild-type AR reversed Kindlin-2 deficiency-induced inhibition of AR signaling and breast cancer progression. Finally, using a genetic knockout strategy, we show that ablation of Kindlin-2 from mammary tumors in mouse significantly reduced AR Tyr-534 phosphorylation, breast tumor progression and metastasis in vivo. Our results suggest a critical role of Kindlin-2 in promoting breast cancer progression and shed light on the molecular mechanism through which it functions in this process.
Collapse
Affiliation(s)
- Luyao Ma
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yeteng Tian
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Tao Qian
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Wenjun Li
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Chengmin Liu
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Bizhu Chu
- grid.263817.90000 0004 1773 1790Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Qian Kong
- grid.263817.90000 0004 1773 1790Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Renwei Cai
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Panzhu Bai
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Lisha Ma
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yi Deng
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Ruijun Tian
- grid.263817.90000 0004 1773 1790Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Chuanyue Wu
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Ying Sun
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
22
|
Lv W, Jin S, Cao D, Wang N, Jin X, Zhang Y. Effects of Luteinizing Hormone Releasing Hormone A2 on Gonad Development in Juvenile Amur Sturgeon, Acipenser schrenckii, Revealed by Transcriptome Profiling Analysis. Front Genet 2022; 13:859965. [PMID: 35401695 PMCID: PMC8989137 DOI: 10.3389/fgene.2022.859965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Acipenser schrenckii is an economically important aquatic species whose gonads require particularly long times to reach sexual maturity. Luteinizing hormone plays important roles in gonad development, and luteinizing hormone releasing hormone A2 (LH-A2) is used as an oxytocin to promote ovulation in aquaculture of A. schrenckii. In this study, we aimed to determine the effects of LH-A2 on gonad development in juvenile A. schrenckii through transcriptome profiling analysis of the pituitary and gonads after LH-A2 treatment at a dose of 3 μg/kg. The 17β-estradiol (E2) levels gradually increased with LH-A2 treatment time, and significantly differed from those of the control group on days 5 and 7 (p < 0.01). However, the content of testosterone (Testo) gradually decreased with LH-A2 treatment time and showed significant differences on day 3 (p < 0.05), and on days 5 and 7 (p < 0.01), compared to those in the control group. Thus, LH-A2 promotes the secretion of E2 and inhibits the secretion of Testo. Transcriptome profiling analysis revealed a total of 2,883 and 8,476 differentially expressed genes (DEGs) in the pituitary and gonads, respectively, thus indicating that LH-A2 has more regulatory effects on the gonads than the pituitary in A. schrenckii. Signal transduction, global and overview maps, immune system, endocrine system and lipid metabolism were the main enriched metabolic pathways in both the pituitary and gonads. Sixteen important genes were selected from these metabolic pathways. Seven genes were co-DEGs enriched in both signal transduction and endocrine system metabolic pathways. The other co-DEGs were selected from the immune system and lipid metabolism metabolic pathways, and showed mRNA expression changes of >7.0. The expression of five DEGs throughout LH-A2 treatment was verified to show the same patterns of change as those observed with RNA-seq, indicating the accuracy of the RNA-seq in this study. Our findings provide valuable evidence of the regulation of gonad development of juvenile A. schrenckii by LH-A2 and may enable the establishment of artificial techniques to regulate gonad development in this species.
Collapse
Affiliation(s)
- Weihua Lv
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shubo Jin
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Dingchen Cao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Nianmin Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xing Jin
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ying Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
23
|
Shah A, Patel C, Parmar G, Patel A, Jain M. A concise review on tyrosine kinase targeted cancer therapy. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220331104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The tyrosine kinase (TK) family is considered one of the important family members of the kinase family due to its important role in various cellular processes like cell growth, cell differentiation, apoptosis, etc. Mutation, overexpression, and dysfunction of tyrosine kinase receptors lead to the development of malignancy; thus, they are considered as one of the important targets for the development of anti-cancer molecules. The tyrosine kinase family is majorly divided into two classes; receptor and non-receptor tyrosine kinase. Both of the classes have an important role in the development of tumour cells. Currently, there are more than 40 FDA-approved tyrosine kinase inhibitors, which are used in the treatment of various types of cancers. Tyrosine kinase inhibitors mainly block the phosphorylation of tyrosine residue of the corresponding kinase substrate and so activation of downstream signalling pathways can be inhibited. The promising results of tyrosine kinase inhibitors in solid tumours provide a revolution in oncology research. In this article, we had summarized the role of some important members of the tyrosine kinase family in the development and progression of tumour cells and the significance of tyrosine kinase inhibitors in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Ashish Shah
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
- Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Chhagan Patel
- Shree Sarvajaink Pharmacy College, Mehsana, Gujarat India
| | - Ghanshaym Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Anand, Gujarat, India
| | - Manav Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| |
Collapse
|
24
|
Mondal D, Amin SA, Moinul M, Das K, Jha T, Gayen S. How the structural properties of the indole derivatives are important in kinase targeted drug design?: A case study on tyrosine kinase inhibitors. Bioorg Med Chem 2022; 53:116534. [PMID: 34864496 DOI: 10.1016/j.bmc.2021.116534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022]
Abstract
Kinases are considered as important signalling enzymes that illustrate 20% of the druggable genome. Human kinase family comprises >500 protein kinases and about 20 lipid kinases. Protein kinases are responsible for the mechanism of protein phosphorylation. These are necessary for regulation of various cellular activities including proliferation, cell cycle, apoptosis, motility, growth, differentiation, etc. Their deregulation leads to disruption of many cellular processes leading to different diseases most importantly cancer. Thus, kinases are considered as valuable targets in different types of cancer as well as other diseases. Researchers around the world are actively engaged in developing inhibitors based on distinct chemical scaffolds. Indole represents as a versatile scaffold in the naturally occurring and bioactive molecules. It is also used as a privileged scaffold for the target-based drug design against different diseases. This present article aim to review the applications of indole scaffold in the design of inhibitors against different tyrosine kinases such as epidermal growth factor receptors (EGFRs), vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptors (PDGFRs), etc. Important structure activity relationships (SARs) of indole derivatives were discussed. The present work is an attempt to summarize all the crucial structural information which is essential for the development of indole based tyrosine kinase inhibitors with improved potency.
Collapse
Affiliation(s)
- Dipayan Mondal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, MP, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, P. O. Box 17020, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Md Moinul
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kalpataru Das
- Advanced Organic Synthesis Laboratory, Department of Chemistry, Dr. Harisingh Gour University, Sagar 470003, MP, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, P. O. Box 17020, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Shovanlal Gayen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, MP, India; Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
25
|
Zhang H, He J, Hu G, Zhu F, Jiang H, Gao J, Zhou H, Lin H, Wang Y, Chen K, Meng F, Hao M, Zhao K, Luo C, Liang Z. Dynamics of Post-Translational Modification Inspires Drug Design in the Kinase Family. J Med Chem 2021; 64:15111-15125. [PMID: 34668699 DOI: 10.1021/acs.jmedchem.1c01076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Post-translational modification (PTM) on protein plays important roles in the regulation of cellular function and disease pathogenesis. The systematic analysis of PTM dynamics presents great opportunities to enlarge the target space by PTM allosteric regulation. Here, we presented a framework by integrating the sequence, structural topology, and particular dynamics features to characterize the functional context and druggabilities of PTMs in the well-known kinase family. The machine learning models with these biophysical features could successfully predict PTMs. On the other hand, PTMs were identified to be significantly enriched in the reported allosteric pockets and the allosteric potential of PTM pockets were thus proposed through these biophysical features. In the end, the covalent inhibitor DC-Srci-6668 targeting the PTM pocket in c-Src kinase was identified, which inhibited the phosphorylation and locked c-Src in the inactive state. Our findings represent a crucial step toward PTM-inspired drug design in the kinase family.
Collapse
Affiliation(s)
- Huimin Zhang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jixiao He
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fei Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hao Jiang
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jing Gao
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, China
| | - Yingjuan Wang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Kaixian Chen
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Fanwang Meng
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Minghong Hao
- Ensem Therapeutics, Inc., 200 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.,University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Zhang X, Xu H, Bi X, Hou G, Liu A, Zhao Y, Wang G, Cao X. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways. Cell Death Dis 2021; 12:931. [PMID: 34642304 PMCID: PMC8511016 DOI: 10.1038/s41419-021-04221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Studies have shown that matrine has antitumor activity against many types of cancers. However, the direct target in cancer cells of its anticancer effect has not been identified. The purpose of this study was to find the molecular target of matrine to inhibit the proliferation of cancer cells and explore its mechanism of action. Herein we showed that matrine inhibited the proliferation of cancer in vitro and in vivo. Pull-down assay with matrine-amino coupling resins and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) identified Src as the target of matrine. Cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) provided solid evidences that matrine directly bound to Src. Bioinformatics prediction and pull-down experiment demonstrated that Src kinase domain was required for its interaction with matrine and Ala392 in the kinase domain participated in matrine-Src interaction. Intriguingly, matrine was proven to inhibit Src kinase activity in a non-ATP-competitive manner by blocking the autophosphorylation of Tyr419 in Src kinase domain. Matrine down-regulated the phosphorylation levels of MAPK/ERK, JAK2/STAT3, and PI3K/Akt signaling pathways via targeting Src. Collectively, matrine targeted Src, inhibited its kinase activity, and down-regulated its downstream MAPK/ERK, JAK2/STAT3, and PI3K/Akt phosphorylation signaling pathways to inhibit the proliferation of cancer cells.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hui Xu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyang Bi
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guoqing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Andong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youyun Zhao
- Department of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430073, China
| | - Guoping Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
27
|
Abstract
Effective regulation of immune-cell activation is critical for ensuring that the immune response, and inflammation generated for the purpose of pathogen elimination, are limited in space and time to minimize tissue damage. Autoimmune disease can occur when immunoreceptor signaling is dysregulated, leading to unrestrained inflammation and organ damage. Conversely, tumors can coopt the tissue healing and immunosuppressive functions of hematopoietic cells to promote metastasis and evade therapy. The Src-family kinase Lyn is an essential regulator of immunoreceptor signaling, initiating both proinflammatory and suppressive signaling pathways in myeloid immune cells (eg, neutrophils, dendritic cells, monocytes, macrophages) and in B lymphocytes. Defects in Lyn signaling are implicated in autoimmune disease, but mechanisms by which Lyn, expressed along with a battery of other Src-family kinases, may uniquely direct both positive and negative signaling remain incompletely defined. This review describes our current understanding of the activating and inhibitory contributions of Lyn to immunoreceptor signaling and how these processes contribute to myeloid and B-cell function. We also highlight recent work suggesting that the 2 proteins generated by alternative splicing of lyn, LynA and LynB, differentially regulate both immune and cancer-cell signaling. These principles may also extend to other Lyn-expressing cells, such as neuronal and endocrine cells. Unraveling the common and cell-specific aspects of Lyn function could lead to new approaches to therapeutically target dysregulated pathways in pathologies ranging from autoimmune and neurogenerative disease to cancer.
Collapse
Affiliation(s)
- Ben F Brian
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Current Affiliation: Current affiliation for B.F.B.: Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, USA
- Correspondence: Tanya S. Freedman, PhD, University of Minnesota Twin Cities Campus: University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA. E-mail:
| |
Collapse
|
28
|
Kim M, Reinhard C, Niehrs C. A MET-PTPRK kinase-phosphatase rheostat controls ZNRF3 and Wnt signaling. eLife 2021; 10:70885. [PMID: 34590584 PMCID: PMC8516413 DOI: 10.7554/elife.70885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Zinc and ring finger 3 (ZNRF3) is a transmembrane E3 ubiquitin ligase that targets Wnt receptors for ubiquitination and lysosomal degradation. Previously, we showed that dephosphorylation of an endocytic tyrosine motif (4Y motif) in ZNRF3 by protein tyrosine phosphatase receptor-type kappa (PTPRK) promotes ZNRF3 internalization and Wnt receptor degradation (Chang et al 2020). However, a responsible protein tyrosine kinase(s) (PTK) phosphorylating the 4Y motif remained elusive. Here we identify the proto-oncogene MET (mesenchymal-epithelial transition factor) as a 4Y kinase. MET binds to ZNRF3 and induces 4Y phosphorylation, stimulated by the MET ligand HGF (hepatocyte growth factor, scatter factor). HGF-MET signaling reduces ZNRF3-dependent Wnt receptor degradation thereby enhancing Wnt/β-catenin signaling. Conversely, depletion or pharmacological inhibition of MET promotes the internalization of ZNRF3 and Wnt receptor degradation. We conclude that HGF-MET signaling phosphorylates- and PTPRK dephosphorylates ZNRF3 to regulate ZNRF3 internalization, functioning as a rheostat for Wnt signaling that may offer novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Minseong Kim
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Carmen Reinhard
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
29
|
Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proc Natl Acad Sci U S A 2021; 118:2026583118. [PMID: 34433665 DOI: 10.1073/pnas.2026583118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antigen (Ag) crosslinking of immunoglobulin E-receptor (IgE-FcεRI) complexes in mast cells stimulates transmembrane (TM) signaling, requiring phosphorylation of the clustered FcεRI by lipid-anchored Lyn tyrosine kinase. Previous studies showed that this stimulated coupling between Lyn and FcεRI occurs in liquid ordered (Lo)-like nanodomains of the plasma membrane and that Lyn binds directly to cytosolic segments of FcεRI that it initially phosphorylates for amplified activity. Net phosphorylation above a nonfunctional threshold is achieved in the stimulated state but not in the resting state, and current evidence supports the hypothesis that this relies on Ag crosslinking to disrupt a balance between Lyn and tyrosine phosphatase activities. However, the structural interactions that underlie the stimulation process remain poorly defined. This study evaluates the relative contributions and functional importance of different types of interactions leading to suprathreshold phosphorylation of Ag-crosslinked IgE-FcεRI in live rat basophilic leukemia mast cells. Our high-precision diffusion measurements by imaging fluorescence correlation spectroscopy on multiple structural variants of Lyn and other lipid-anchored probes confirm subtle, stimulated stabilization of the Lo-like nanodomains in the membrane inner leaflet and concomitant sharpening of segregation from liquid disordered (Ld)-like regions. With other structural variants, we determine that lipid-based interactions are essential for access by Lyn, leading to phosphorylation of and protein-based binding to clustered FcεRI. By contrast, TM tyrosine phosphatase, PTPα, is excluded from these regions due to its Ld-preference and steric exclusion of TM segments. Overall, we establish a synergy of lipid-based, protein-based, and steric interactions underlying functional TM signaling in mast cells.
Collapse
|
30
|
Rip J, de Bruijn MJW, Neys SFH, Singh SP, Willar J, van Hulst JAC, Hendriks RW, Corneth OBJ. Bruton's tyrosine kinase inhibition induces rewiring of proximal and distal B-cell receptor signaling in mice. Eur J Immunol 2021; 51:2251-2265. [PMID: 34323286 PMCID: PMC9291019 DOI: 10.1002/eji.202048968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/31/2021] [Accepted: 07/22/2021] [Indexed: 12/04/2022]
Abstract
Bruton′s tyrosine kinase (Btk) is a crucial signaling molecule in BCR signaling and a key regulator of B‐ cell differentiation and function. Btk inhibition has shown impressive clinical efficacy in various B‐cell malignancies. However, it remains unknown whether inhibition additionally induces changes in BCR signaling due to feedback mechanisms, a phenomenon referred to as BCR rewiring. In this report, we studied the impact of Btk activity on major components of the BCR signaling pathway in mice. As expected, NF‐κB and Akt/S6 signaling was decreased in Btk‐deficient B cells. Unexpectedly, phosphorylation of several proximal signaling molecules, including CD79a, Syk, and PI3K, as well as the key Btk‐effector PLCγ2 and the more downstream kinase Erk, were significantly increased. This pattern of BCR rewiring was essentially opposite in B cells from transgenic mice overexpressing Btk. Importantly, prolonged Btk inhibitor treatment of WT mice or mice engrafted with leukemic B cells also resulted in increased phosho‐CD79a and phospho‐PLCγ2 in B cells. Our findings show that Btk enzymatic function determines phosphorylation of proximal and distal BCR signaling molecules in B cells. We conclude that Btk inhibitor treatment results in rewiring of BCR signaling, which may affect both malignant and healthy B cells.
Collapse
Affiliation(s)
- Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marjolein J W de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Simar Pal Singh
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jonas Willar
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jennifer A C van Hulst
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Mahaman YAR, Huang F, Embaye KS, Wang X, Zhu F. The Implication of STEP in Synaptic Plasticity and Cognitive Impairments in Alzheimer's Disease and Other Neurological Disorders. Front Cell Dev Biol 2021; 9:680118. [PMID: 34195199 PMCID: PMC8236946 DOI: 10.3389/fcell.2021.680118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a tyrosine phosphatase that has been implicated in Alzheimer’s disease (AD), the most common form of dementia, and many other neurological diseases. The protein level and activity of STEP have been found to be elevated in most of these disorders, and specifically in AD as a result of dysregulation of different pathways including PP2B/DARPP32/PP1, PKA as well as impairments of both proteasomal and lysosomal systems. The upregulation in STEP leads to increased binding to, and dephosphorylation of, its substrates which are mainly found to be synaptic plasticity and thus learning and memory related proteins. These proteins include kinases like Fyn, Pyk2, ERK1/2 and both NMDA and AMPA receptor subunits GluN2B and GluA2. The dephosphorylation of these molecules results in inactivation of these kinases and internalization of NMDA and AMPA receptor complexes leading to synapse loss and cognitive impairments. In this study, we aim to review STEP regulation and its implications in AD as well as other neurological disorders and then summarize data on targeting STEP as therapeutic strategy in these diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kidane Siele Embaye
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
32
|
Shetve VV, Bhowmick S, Alissa SA, Alothman ZA, Wabaidu SM, Asmary FA, Alhajri HM, Islam MA. Identification of selective Lyn inhibitors from the chemical databases through integrated molecular modelling approaches. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:1-27. [PMID: 33161767 DOI: 10.1080/1062936x.2020.1799433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In the current study, the Asinex and ChEBI databases were virtually screened for the identification of potential Lyn protein inhibitors. Therefore, a multi-steps molecular docking study was carried out using the VSW utility tool embedded in Maestro user interface of the Schrödinger suite. On initial screening, molecules having a higher XP-docking score and binding free energy compared to Staurosporin were considered for further assessment. Based on in silico pharmacokinetic analysis and a common-feature pharmacophore mapping model developed from the Staurosporin, four molecules were proposed as promising Lyn inhibitors. The binding interactions of all proposed Lyn inhibitors revealed strong ligand efficiency in terms of energy score obtained in molecular modelling analyses. Furthermore, the dynamic behaviour of each molecule in association with the Lyn protein-bound state was assessed through an all-atoms molecular dynamics (MD) simulation study. MD simulation analyses were confirmed with notable intermolecular interactions and consistent stability for the Lyn protein-ligand complexes throughout the simulation. High negative binding free energy of identified four compounds calculated through MM-PBSA approach demonstrated a strong binding affinity towards the Lyn protein. Hence, the proposed compounds might be taken forward as potential next-generation Lyn kinase inhibitors for managing numerous Lyn associated diseases or health complications after experimental validation.
Collapse
Affiliation(s)
- V V Shetve
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University , Pune, India
| | - S Bhowmick
- Department of Chemical Technology, University of Calcutta , Kolkata, India
| | - S A Alissa
- Chemistry Department, College of Science, Princess Nourah Bint Abdulrahman University , Riyadh, Saudi Arabia
| | - Z A Alothman
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - S M Wabaidu
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - F A Asmary
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - H M Alhajri
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - M A Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester, UK
- School of Health Sciences, University of Kwazulu-Natal , Durban, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria, South Africa
| |
Collapse
|
33
|
Lv Y, Deng H, Liu Y, Chang K, Du H, Zhou P, Mao H, Hu C. The tyrosine kinase SRC of grass carp (Ctenopharyngodon idellus) up-regulates the expression of IFN I by activating TANK binding kinase 1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103834. [PMID: 32827605 DOI: 10.1016/j.dci.2020.103834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
In response to viral infections, various pattern recognition receptors (PRRs) are activated for the production of type I interferon (IFN I). As a center of these receptor responses, TANK binding kinase-1 (TBK1) activates interferon regulatory factor 3 (IRF3). SRC is a member of Src family kinases (SFK) which participates in TBK1-mediated IFN I signaling pathway. In mammals, the immunological function of SRC is depended on its interaction with TBK1. To date, SRC has not been studied in fish. In this paper, we cloned the ORF of grass carp (Ctenopharyngodon idellus) SRC (CiSRC). CiSRC has a closer relationship with Sinocyclocheilus rhinocerous SRC (SrSRC). The expression level of CiSRC was significantly up-regulated following poly (I:C) stimulation in grass carp tissues and cells. Subcellular localization results showed that CiSRC is located both in the cytoplasm and nucleus, while CiTBK1 is only located in the cytoplasm of CIK cells. When GFP-CiSRC and FLAG-CiTBK1 were co-transfected into CIK cells, we found that they were co-localized in the cytoplasm. GST-pulldown and Co-immunoprecipitation analysis revealed that CiSRC and CiSRC tyrosine kinase domain deletion mutant (SRC-ΔTyrkc) can interact with CiTBK1, respectively. CiSRC promotes the phosphorylation of CiTBK1. Furthermore, the phosphorylation of TBK1 is more strongly under poly (I:C) stimulation. We also demonstrated that SRC can up-regulate IFN I expression. These results above unraveled that CiSRC initiates innate immune response by binding to and then up-regulating the phosphorylation of TBK1.
Collapse
Affiliation(s)
- Yangfeng Lv
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hang Deng
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yapeng Liu
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hailing Du
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Zhou
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
34
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
35
|
Ehinger Y, Morisot N, Phamluong K, Sakhai SA, Soneja D, Adrover MF, Alvarez VA, Ron D. cAMP-Fyn signaling in the dorsomedial striatum direct pathway drives excessive alcohol use. Neuropsychopharmacology 2021; 46:334-342. [PMID: 32417851 PMCID: PMC7852539 DOI: 10.1038/s41386-020-0712-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Fyn kinase in the dorsomedial striatum (DMS) of rodents plays a central role in mechanisms underlying excessive alcohol intake. The DMS is comprised of medium spiny neurons (MSNs) that project directly (dMSNs) or indirectly (iMSNs) to the substantia nigra. Here, we examined the cell-type specificity of Fyn's actions in alcohol use. First, we knocked down Fyn selectively in DMS dMSNs or iMSNs of mice and measured the level of alcohol consumption. We found that downregulation of Fyn in dMSNs, but not in iMSNs, reduces excessive alcohol but not saccharin intake. D1Rs are coupled to Gαs/olf, which activate cAMP signaling. To examine whether Fyn's actions are mediated through cAMP signaling, DMS dMSNs were infected with GαsDREADD, and the activation of Fyn signaling was measured following CNO treatment. We found that remote stimulation of cAMP signaling in DMS dMSNs activates Fyn and promotes the phosphorylation of the Fyn substrate, GluN2B. In contract, remote activation of GαsDREADD in DLS dMSNs did not alter Fyn signaling. We then tested whether activation of GαsDREADD in DMS dMSNs or iMSNs alters alcohol intake and observed that CNO-dependent activation of GαsDREADD in DMS dMSNs but not iMSNs increases alcohol but not saccharin intake. Finally, we examined the contribution of Fyn to GαsDREADD-dependent increase in alcohol intake, and found that systemic administration of the Fyn inhibitor, AZD0503 blocks GαsDREADD-dependent increase in alcohol consumption. Our results suggest that the cAMP-Fyn axis in the DMS dMSNs is a molecular transducer of mechanisms underlying the development of excessive alcohol consumption.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Nadege Morisot
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
- Nkarta Therapeutics, San Francisco, CA, USA
| | - Khanhky Phamluong
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Samuel A Sakhai
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
- Sage Therapeutics, San Francisco, CA, USA
| | - Drishti Soneja
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Martin F Adrover
- National Institutes of Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, 20892, USA
- INGEBI, CONICET, Buenos Aires, Argentina
| | - Veronica A Alvarez
- National Institutes of Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, 20892, USA
- Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health, Bethesda, MD, 20892, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA.
| |
Collapse
|
36
|
Song L, Liu Z, Hu HH, Yang Y, Li TY, Lin ZZ, Ye J, Chen J, Huang X, Liu DT, Zhou J, Shi Y, Zhao H, Xie C, Chen L, Song E, Lin SY, Lin SC. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun 2020; 11:5842. [PMID: 33203880 PMCID: PMC7672079 DOI: 10.1038/s41467-020-19694-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Increased lipogenesis has been linked to an increased cancer risk and poor prognosis; however, the underlying mechanisms remain obscure. Here we show that phosphatidic acid phosphatase (PAP) lipin-1, which generates diglyceride precursors necessary for the synthesis of glycerolipids, interacts with and is a direct substrate of the Src proto-oncogenic tyrosine kinase. Obesity-associated microenvironmental factors and other Src-activating growth factors, including the epidermal growth factor, activate Src and promote Src-mediated lipin-1 phosphorylation on Tyr398, Tyr413 and Tyr795 residues. The tyrosine phosphorylation of lipin-1 markedly increases its PAP activity, accelerating the synthesis of glycerophospholipids and triglyceride. Alteration of the three tyrosine residues to phenylalanine (3YF-lipin-1) disables lipin-1 from mediating Src-enhanced glycerolipid synthesis, cell proliferation and xenograft growth. Re-expression of 3YF-lipin-1 in PyVT;Lpin1-/- mice fails to promote progression and metastasis of mammary tumours. Human breast tumours exhibit increased p-Tyr-lipin-1 levels compared to the adjacent tissues. Importantly, statistical analyses show that levels of p-Tyr-lipin-1 correlate with tumour sizes, lymph node metastasis, time to recurrence and survival of the patients. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic Src, providing a mechanistic link between obesity-associated mitogenic signaling and breast cancer malignancy.
Collapse
Affiliation(s)
- Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Zhihua Liu
- Center of Intestinal Barrier and Fecal Microbiota Transplantation, The Fifth Affiliated Hospital of Guangzhou Medical University, 510700, Guangdong, China
| | - Hui-Hui Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Ying Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Terytty Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, 710000, Shaanxi, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Jing Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Yiran Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Hao Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Erwei Song
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China.
| |
Collapse
|
37
|
Huang T, Fu G, Gao J, Zhang Y, Cai W, Wu S, Jia S, Xia S, Bachmann T, Bekker A, Tao YX. Fgr contributes to hemorrhage-induced thalamic pain by activating NF-κB/ERK1/2 pathways. JCI Insight 2020; 5:139987. [PMID: 33055425 PMCID: PMC7605540 DOI: 10.1172/jci.insight.139987] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Thalamic pain, a type of central poststroke pain, frequently occurs following ischemia/hemorrhage in the thalamus. Current treatment of this disorder is often ineffective, at least in part due to largely unknown mechanisms that underlie thalamic pain genesis. Here, we report that hemorrhage caused by microinjection of type IV collagenase or autologous whole blood into unilateral ventral posterior lateral nucleus and ventral posterior medial nucleus of the thalamus increased the expression of Fgr, a member of the Src family nonreceptor tyrosine kinases, at both mRNA and protein levels in thalamic microglia. Pharmacological inhibition or genetic knockdown of thalamic Fgr attenuated the hemorrhage-induced thalamic injury on the ipsilateral side and the development and maintenance of mechanical, heat, and cold pain hypersensitivities on the contralateral side. Mechanistically, the increased Fgr participated in hemorrhage-induced microglial activation and subsequent production of TNF-α likely through activation of both NF-κB and ERK1/2 pathways in thalamic microglia. Our findings suggest that Fgr is a key player in thalamic pain and a potential target for the therapeutic management of this disorder.
Collapse
Affiliation(s)
| | | | - Ju Gao
- Department of Anesthesiology
| | | | | | | | | | | | | | | | - Yuan-Xiang Tao
- Department of Anesthesiology
- Department of Pharmacology, Physiology & Neuroscience; and
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
38
|
Kinoshita-Kikuta E, Utsumi T, Miyazaki A, Tokumoto C, Doi K, Harada H, Kinoshita E, Koike T. Protein-N-myristoylation-dependent phosphorylation of serine 13 of tyrosine kinase Lyn by casein kinase 1γ at the Golgi during intracellular protein traffic. Sci Rep 2020; 10:16273. [PMID: 33004926 PMCID: PMC7531007 DOI: 10.1038/s41598-020-73248-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/14/2020] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation of Src-family kinases (SFKs) is a critical co-translational modification to anchor the enzymes in the plasma membrane. Phosphorylation of SFKs is also an essential modification for regulating their enzymatic activities. In this study, we used Phos-tag SDS-PAGE to investigate N-myristoylation-dependent phosphorylation of SFKs and their non-N-myristoylated G2A mutants. The serine-13 residue of Lyn (Lyn-S13) was shown to be N-myristoylation-dependently phosphorylated. Although there have been more than 40 reports of mass spectrometric studies on phosphorylation at Lyn-S13, the kinase responsible remained unclear. We succeeded in identifying casein kinase 1γ (CK1γ) as the kinase responsible for phosphorylation of Lyn-S13. In HEK293 cells co-expressing Lyn and CK1γ, the phosphorylation level of Lyn-S13 increased significantly. CK1γ is unique among the CK1 family (α, γ, δ, and ε) in carrying an S-palmitoylation site for membrane binding. Co-expression with the non-S-palmitoylated CK1γ mutant, which localized in the cytosol, gave no increase in the phosphorylation level at Lyn-S13. In HEK293 cells expressing the non-S-palmitoylated Lyn-C3A mutant, on the other hand, the Lyn-C3A mutant was phosphorylated at Lyn-S13, and the mutant remained at the Golgi. These results showed that S-palmitoylated CK1γ can phosphorylate S13 of N-myristoylated Lyn at the Golgi during intracellular protein traffic.
Collapse
Affiliation(s)
- Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Functional Molecular Science, School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshihiko Utsumi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Aya Miyazaki
- Department of Functional Molecular Science, School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | - Chiharu Tokumoto
- Department of Functional Molecular Science, School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | - Kyosuke Doi
- Department of Functional Molecular Science, School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruna Harada
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. .,Department of Functional Molecular Science, School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan.
| | - Tohru Koike
- Department of Functional Molecular Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Functional Molecular Science, School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
39
|
Chromatin accessibility mapping of the striatum identifies tyrosine kinase FYN as a therapeutic target for heroin use disorder. Nat Commun 2020; 11:4634. [PMID: 32929078 PMCID: PMC7490718 DOI: 10.1038/s41467-020-18114-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
The current opioid epidemic necessitates a better understanding of human addiction neurobiology to develop efficacious treatment approaches. Here, we perform genome-wide assessment of chromatin accessibility of the human striatum in heroin users and matched controls. Our study reveals distinct neuronal and non-neuronal epigenetic signatures, and identifies a locus in the proximity of the gene encoding tyrosine kinase FYN as the most affected region in neurons. FYN expression, kinase activity and the phosphorylation of its target Tau are increased by heroin use in the post-mortem human striatum, as well as in rats trained to self-administer heroin and primary striatal neurons treated with chronic morphine in vitro. Pharmacological or genetic manipulation of FYN activity significantly attenuates heroin self-administration and responding for drug-paired cues in rodents. Our findings suggest that striatal FYN is an important driver of heroin-related neurodegenerative-like pathology and drug-taking behavior, making FYN a promising therapeutic target for heroin use disorder. Epigenetic mechanisms have emerged as contributors to the molecular impairments caused by exposure to environmental factors such as abused substances. Here the authors perform epigenetic profiling of the striatum and identify the tyrosine kinase FYN is an important driver of neurodegenerative-like pathology and drug-taking behaviour.
Collapse
|
40
|
Three-Dimensional Interactions Analysis of the Anticancer Target c-Src Kinase with Its Inhibitors. Cancers (Basel) 2020; 12:cancers12082327. [PMID: 32824733 PMCID: PMC7466017 DOI: 10.3390/cancers12082327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Src family kinases (SFKs) constitute the biggest family of non-receptor tyrosine kinases considered as therapeutic targets for cancer therapy. An aberrant expression and/or activation of the proto-oncogene c-Src kinase, which is the oldest and most studied member of the family, has long been demonstrated to play a major role in the development, growth, progression and metastasis of numerous human cancers, including colon, breast, gastric, pancreatic, lung and brain carcinomas. For these reasons, the pharmacological inhibition of c-Src activity represents an effective anticancer strategy and a few compounds targeting c-Src, together with other kinases, have been approved as drugs for cancer therapy, while others are currently undergoing preclinical studies. Nevertheless, the development of potent and selective inhibitors of c-Src aimed at properly exploiting this biological target for the treatment of cancer still represents a growing field of study. In this review, the co-crystal structures of c-Src kinase in complex with inhibitors discovered in the past two decades have been described, highlighting the key ligand-protein interactions necessary to obtain high potency and the features to be exploited for addressing selectivity and drug resistance issues, thus providing useful information for the design of new and potent c-Src kinase inhibitors.
Collapse
|
41
|
Voisset E, Brenet F, Lopez S, de Sepulveda P. SRC-Family Kinases in Acute Myeloid Leukaemia and Mastocytosis. Cancers (Basel) 2020; 12:cancers12071996. [PMID: 32708273 PMCID: PMC7409304 DOI: 10.3390/cancers12071996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022] Open
Abstract
Protein tyrosine kinases have been recognized as important actors of cell transformation and cancer progression, since their discovery as products of viral oncogenes. SRC-family kinases (SFKs) play crucial roles in normal hematopoiesis. Not surprisingly, they are hyperactivated and are essential for membrane receptor downstream signaling in hematological malignancies such as acute myeloid leukemia (AML) and mastocytosis. The precise roles of SFKs are difficult to delineate due to the number of substrates, the functional redundancy among members, and the use of tools that are not selective. Yet, a large num ber of studies have accumulated evidence to support that SFKs are rational therapeutic targets in AML and mastocytosis. These two pathologies are regulated by two related receptor tyrosine kinases, which are well known in the field of hematology: FLT3 and KIT. FLT3 is one of the most frequently mutated genes in AML, while KIT oncogenic mutations occur in 80-90% of mastocytosis. Studies on oncogenic FLT3 and KIT signaling have shed light on specific roles for members of the SFK family. This review highlights the central roles of SFKs in AML and mastocytosis, and their interconnection with FLT3 and KIT oncoproteins.
Collapse
|
42
|
Simatou A, Simatos G, Goulielmaki M, Spandidos DA, Baliou S, Zoumpourlis V. Historical retrospective of the SRC oncogene and new perspectives (Review). Mol Clin Oncol 2020; 13:21. [PMID: 32765869 PMCID: PMC7403812 DOI: 10.3892/mco.2020.2091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Since its first discovery as part of the Rous sarcoma virus (RSV) genome, the c-SRC (SRC) proto-oncogene has been proved a key regulator of cancer development and progression, and thus it has been highlighted as an attractive target for anti-cancer therapeutic strategies. Though the exact mechanisms of its action are still not fully understood, SRC protein mediates crucial normal cell functions, such as cell development, proliferation and survival, and its dysregulation is considered as an oncogenic signature and a driving force for cancer initiation. In the present review, we present a flashback to the history of the Src research, while focusing on the most important milestones in the field. Moreover, we investigate the proposed regulatory mechanisms and molecules that mediate its action in order to designate putative therapeutic targets and useful prognostic and/or diagnostic tools. Furthermore, we present and discuss existing therapeutic approaches that are explored in clinical settings.
Collapse
Affiliation(s)
| | - George Simatos
- First Breast Unit, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
43
|
Tan Q, Liang XJ, Lin SM, Cheng Y, Ding YQ, Liu TF, Zhou WJ. Engagement of Robo1 by Slit2 induces formation of a trimeric complex consisting of Src-Robo1-E-cadherin for E-cadherin phosphorylation and epithelial-mesenchymal transition. Biochem Biophys Res Commun 2020; 522:757-762. [PMID: 31791578 DOI: 10.1016/j.bbrc.2019.11.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022]
Abstract
Loss of E-cadherin elicits epithelial-mesenchymal transition (EMT). While both the Src family of membrane-associated non-receptor tyrosine kinases (SFKs) and Slit2 binding to Roundabout 1 (Robo1) have been shown to induce E-cadherin repression and EMT, whether these two signaling pathways are mechanistically coupled remains unknown in epithelial cells. Here we found that Slit2 and Robo1 overexpression activated Src kinases for tyrosine phosphorylation, degradation of E-cadherin and induction of EMT. Specific blockade of Slit2 binding to Robo1 inactivated Src, prevented E-cadherin phosphorylation and EMT induction. Biochemically, the cytoplasmic CC3 motif of Robo1 (CC3) bound directly to the SH2 and 3 domains of c-Src and the cytoplasmic domains of E-cadherin. Slit2 induced Robo1 association with endogenous c-Src and E-cadherin, whereas ectopic expression of CC3 dissociated this protein complex in colorectal epithelial cells. These results indicate that Slit2 not only induces Robo1 binding to Src, but also recruits Src to E-cadherin for tyrosine phosphorylation of E-cadherin, leading to E-cadherin degradation and EMT induction in colorectal epithelial cells.
Collapse
Affiliation(s)
- Qi Tan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China; Department of Pathology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangzhou, 518172, China
| | - Xiang-Jing Liang
- Ultrasound Medical Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Si-Min Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China.
| | - Teng-Fei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China.
| | - Wei-Jie Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China; Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510005, China.
| |
Collapse
|
44
|
Okuzaki D, Yamauchi T, Mitani F, Miyata M, Ninomiya Y, Watanabe R, Akamatsu H, Oneyama C. c-Src promotes tumor progression through downregulation of microRNA-129-1-3p. Cancer Sci 2020; 111:418-428. [PMID: 31799727 PMCID: PMC7004518 DOI: 10.1111/cas.14269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) fine‐tune cellular signaling by regulating expression of signaling proteins, and aberrant expression of miRNAs is observed in many cancers. The tyrosine kinase c‐Src is upregulated in various human cancers, but the molecular mechanisms underlying c‐Src‐mediated tumor progression remain unclear. In previous investigations of miRNA‐mediated control of c‐Src‐related oncogenic pathways, we identified miRNAs that were downregulated in association with c‐Src transformation and uncovered the signaling networks by predicting their target genes, which might act cooperatively to control tumor progression. Here, to further elucidate the process of cell transformation driven by c‐Src, we analyzed the expression profiles of miRNAs in a doxycycline‐inducible Src expression system. We found that miRNA (miR)‐129‐1‐3p was downregulated in the early phase of c‐Src‐induced cell transformation, and that reexpression of miR‐129‐1‐3p disrupted c‐Src‐induced cell transformation. In addition, miR‐129‐1‐3p downregulation was tightly associated with tumor progression in human colon cancer cells/tissues. Expression of miR‐129‐1‐3p in human colon cancer cells caused morphological changes and suppressed tumor growth, cell adhesion, and invasion. We also identified c‐Src and its critical substrate Fer, and c‐Yes, a member of the Src family of kinases, as novel targets of miR‐129‐1‐3p. Furthermore, we found that miR‐129‐1‐3p‐mediated regulation of c‐Src/Fer and c‐Yes is important for controlling cell adhesion and invasion. Downregulation of miR‐129‐1‐3p by early activation of c‐Src increases expression of these target genes and synergistically promotes c‐Src‐related oncogenic signaling. Thus, c‐Src‐miR‐129‐1‐3p circuits serve as critical triggers for tumor progression in many human cancers that harbor upregulation of c‐Src.
Collapse
Affiliation(s)
- Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomoe Yamauchi
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Fumie Mitani
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Mamiko Miyata
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yuichi Ninomiya
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Risayo Watanabe
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
45
|
Kulathu Y, Zuern C, Yang J, Reth M. Synthetic biology of B cell activation: understanding signal amplification at the B cell antigen receptor using a rebuilding approach. Biol Chem 2019; 400:555-563. [PMID: 30465710 DOI: 10.1515/hsz-2018-0308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
Abstract
Upon activation of the B cell antigen receptor (BCR), the spleen tyrosine kinase (Syk) and the Src family kinase Lyn phosphorylate tyrosines of the immunoreceptor tyrosine-based activation motif (ITAM) of Igα and Igβ which further serve as binding sites for the SH2 domains of these kinases. Using a synthetic biology approach, we dissect the roles of different ITAM residues of Igα in Syk activation. We found that a leucine to glycine mutation at the Y+3 position after the first ITAM tyrosine prevents Syk binding and activation. However, a pre-activated Syk can still phosphorylate this tyrosine in trans. Our data show that the formation of a Syk/ITAM initiation complex and trans-ITAM phosphorylation is crucial for BCR signal amplification. In contrast, the interaction of Lyn with the first ITAM tyrosine is not altered by the leucine to glycine mutation. In addition, our study suggests that an ITAM-bound Syk phosphorylates the non-ITAM tyrosine Y204 of Igα only in cis. Collectively, our reconstitution experiments suggest a model whereby first trans-phosphorylation amplifies the BCR signal and subsequently cis-phosphorylation couples the receptor to downstream signaling elements.
Collapse
Affiliation(s)
- Yogesh Kulathu
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christa Zuern
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jianying Yang
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
46
|
Kim MH, Jung SY, Song KH, Park JI, Ahn J, Kim EH, Park JK, Hwang SG, Woo HJ, Song JY. A new FGFR inhibitor disrupts the TGF-β1-induced fibrotic process. J Cell Mol Med 2019; 24:830-840. [PMID: 31692229 PMCID: PMC6933341 DOI: 10.1111/jcmm.14793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti‐fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3‐(2‐chloro‐6‐fluorobenzyl)‐1,6,7‐trimethyl‐1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione (IM‐1918), markedly inhibited transforming growth factor (TGF)‐β‐stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α‐smooth muscle actin, on human lung fibroblasts. However, IM‐1918 neither decreased Smad‐2 and Smad‐3 nor affected p38MAPK and JNK. Instead, IM‐1918 reduced Akt and extracellular signal‐regulated kinase 1/2 phosphorylation increased by TGF‐β. Additionally, IM‐1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin‐induced murine lung fibrosis model, IM‐1918 profoundly reduced fibrotic areas and decreased collagen and α‐smooth muscle actin accumulation. These results suggest that IM‐1918 can be applied to treat lung fibrosis.
Collapse
Affiliation(s)
- Mi-Hyoung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.,Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Eun-Ho Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hee-Jong Woo
- Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
47
|
Martin SC, Ball ZT. Aminoquinoline-Rhodium(II) Conjugates as Src-Family SH3 Ligands. ACS Med Chem Lett 2019; 10:1380-1385. [PMID: 31620222 DOI: 10.1021/acsmedchemlett.9b00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/09/2019] [Indexed: 11/28/2022] Open
Abstract
High-affinity, selective ligands are sought for a variety of biomolecules but are particularly difficult to generate in the protein-protein interaction space. Rhodium(II) conjugates provide a structure-based approach to improved affinity and specificity for targeting protein-protein interactions such as SH3 domains. In this study of small-molecule-rhodium conjugates, we report a potent ligand 4b (K d of 27 nM) for the Lyn SH3 domain, based on an aminoquinoline fragment. The results demonstrate robust affinity gains possible from even modest small-molecule leads through cooperative inorganic-organic binding, based on specific histidine interactions. A docking study sheds light on the structural basis of binding and supports a previously proposed binding model.
Collapse
Affiliation(s)
- Samuel C. Martin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
48
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
49
|
Targeting Tyrosine Kinases in Acute Myeloid Leukemia: Why, Who and How? Int J Mol Sci 2019; 20:ijms20143429. [PMID: 31336846 PMCID: PMC6679203 DOI: 10.3390/ijms20143429] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy carrying a heterogeneous molecular panel of mutations participating in the blockade of differentiation and the increased proliferation of myeloid hematopoietic stem and progenitor cells. The historical "3 + 7" treatment (cytarabine and daunorubicin) is currently challenged by new therapeutic strategies, including drugs depending on the molecular landscape of AML. This panel of mutations makes it possible to combine some of these new treatments with conventional chemotherapy. For example, the FLT3 receptor is overexpressed or mutated in 80% or 30% of AML, respectively. Such anomalies have led to the development of targeted therapies using tyrosine kinase inhibitors (TKIs). In this review, we document the history of TKI targeting, FLT3 and several other tyrosine kinases involved in dysregulated signaling pathways.
Collapse
|
50
|
Asiri A, Toss MS, Raposo TP, Akhlaq M, Thorpe H, Alfahed A, Asiri A, Ilyas M. Cten promotes Epithelial–Mesenchymal Transition (EMT) in colorectal cancer through stabilisation of Src. Pathol Int 2019; 69:381-391. [DOI: 10.1111/pin.12811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Abdulaziz Asiri
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health SciencesMinistry of National Guard Health Affairs (MNGH) Riyadh Saudi Arabia
| | - Michael S. Toss
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
| | - Teresa Pereira Raposo
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
| | - Maham Akhlaq
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
| | - Hannah Thorpe
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
| | - Abdulaziz Alfahed
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
- Department of Medical Laboratory, College of Applied Medical SciencesPrince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Abutaleb Asiri
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
| | - Mohammad Ilyas
- Division of Cancer and Stem Cells, School of MedicineThe University of Nottingham Nottingham UK
- Nottingham Molecular Pathology Node, Queen's Medical CentreThe University of Nottingham Nottingham UK
| |
Collapse
|