1
|
Glasgow BJ. Tear Lipocalin and Lipocalin-Interacting Membrane Receptor. Front Physiol 2021; 12:684211. [PMID: 34489718 PMCID: PMC8417070 DOI: 10.3389/fphys.2021.684211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Tear lipocalin is a primate protein that was recognized as a lipocalin from the homology of the primary sequence. The protein is most concentrated in tears and produced by lacrimal glands. Tear lipocalin is also produced in the tongue, pituitary, prostate, and the tracheobronchial tree. Tear lipocalin has been assigned a multitude of functions. The functions of tear lipocalin are inexorably linked to structural characteristics that are often shared by the lipocalin family. These characteristics result in the binding and or transport of a wide range of small hydrophobic molecules. The cavity of tear lipocalin is formed by eight strands (A-H) that are arranged in a β-barrel and are joined by loops between the β-strands. Recently, studies of the solution structure of tear lipocalin have unveiled new structural features such as cation-π interactions, which are extant throughout the lipocalin family. Lipocalin has many unique features that affect ligand specificity. These include a capacious and a flexible cavity with mobile and short overhanging loops. Specific features that confer promiscuity for ligand binding in tear lipocalin will be analyzed. The functions of tear lipocalin include the following: antimicrobial activities, scavenger of toxic and tear disruptive compounds, endonuclease activity, and inhibition of cysteine proteases. In addition, tear lipocalin binds and may modulate lipids in the tears. Such actions support roles as an acceptor for phospholipid transfer protein, heteropolymer formation to alter viscosity, and tear surface interactions. The promiscuous lipid-binding properties of tear lipocalin have created opportunities for its use as a drug carrier. Mutant analogs have been created to bind other molecules such as vascular endothelial growth factor for medicinal use. Tear lipocalin has been touted as a useful biomarker for several diseases including breast cancer, chronic obstructive pulmonary disease, diabetic retinopathy, and keratoconus. The functional possibilities of tear lipocalin dramatically expanded when a putative receptor, lipocalin-interacting membrane receptor was identified. However, opposing studies claim that lipocalin-interacting membrane receptor is not specific for lipocalin. A recent study even suggests a different function for the membrane protein. This controversy will be reviewed in light of gene expression data, which suggest that tear lipocalin has a different tissue distribution than the putative receptor. But the data show lipocalin-interacting membrane receptor is expressed on ocular surface epithelium and that a receptor function here would be rational.
Collapse
Affiliation(s)
- Ben J. Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Dupuis JH, Wang S, Song C, Yada RY. The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics. PLoS One 2020; 15:e0237884. [PMID: 32841243 PMCID: PMC7447066 DOI: 10.1371/journal.pone.0237884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 01/31/2023] Open
Abstract
The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein’s helical domains. Removal of these bonds leads to enhanced membrane interactions. This work examined the effects of their sequential removal, both individually and in combination, using all-atom molecular dynamics to elucidate the role of disulfide linkages in maintaining overall protein tertiary structure. The tertiary structure was found to remain stable at both acidic (active) and neutral (inactive) pH despite the removal of disulfide linkages. The findings include how the dimer structure is stabilized and the impact on secondary structure on a residue-basis as a function of disulfide bond removal. The StPSI possesses an extensive network of inter-monomer hydrophobic interactions and intra-monomer hydrogen bonds, which is likely the key to the stability of the StPSI by stabilizing local secondary structure and the tertiary saposin-fold, leading to a robust association between monomers, regardless of the disulfide bond state. Removal of disulfide bonds did not significantly impact secondary structure, nor lead to quaternary structural changes. Instead, disulfide bond removal induces regions of amino acids with relatively higher or lower variation in secondary structure, relative to when all the disulfide bonds are intact. Although disulfide bonds are not required to preserve overall secondary structure, they may have an important role in maintaining a less plastic structure within plant cells in order to regulate membrane affinity or targeting.
Collapse
Affiliation(s)
- John H. Dupuis
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, People's Republic of China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People’s Republic of China
| | - Rickey Y. Yada
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
3
|
Glasgow BJ, Abduragimov AR. Interaction of ceramides and tear lipocalin. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:399-408. [PMID: 29331331 PMCID: PMC5835416 DOI: 10.1016/j.bbalip.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/19/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
The distribution of lipids in tears is critical to their function. Lipids in human tears may retard evaporation by forming a surface barrier at the air interface. Lipids complexed with the major lipid binding protein in tears, tear lipocalin, reside in the bulk (aqueous) and may have functions unrelated to the surface. Many new lipids species have been revealed through recent mass spectrometric studies. Their association with lipid binding proteins has not been studied. Squalene, (O-acyl) omega-hydroxy fatty acids (OAHFA) and ceramides are examples. Even well-known lipids such as wax and cholesteryl esters are only presumed to be unbound because extracts of protein fractions of tears were devoid of these lipids. Our purpose was to determine by direct binding assays if the aforementioned lipids can bind tear lipocalin. Lipids were screened for ability to displace DAUDA from tear lipocalin in a fluorescence displacement assay. Di- and tri-glycerides, squalene, OAHFA, wax and cholesterol esters did not displace DAUDA from tear lipocalin. However, ceramides displaced DAUDA. Apparent dissociation constants for ceramide-tear lipocalin complexes using fluorescent analogs were measured consistently in the submicromolar range with 3 methods, linear spectral summation, high speed centrifugal precipitation and standard fluorescence assays. At the relatively small concentrations in tears, all ceramides were complexed to tear lipocalin. The lack of binding of di- and tri-glycerides, squalene, OAHFA, as well as wax and cholesterol esters to tear lipocalin is consonant with residence of these lipids near the air interface.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
4
|
Correlating the Effects of Antimicrobial Preservatives on Conformational Stability, Aggregation Propensity, and Backbone Flexibility of an IgG1 mAb. J Pharm Sci 2017; 106:1508-1518. [DOI: 10.1016/j.xphs.2017.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/23/2022]
|
5
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Exploring protein solution structure: Second moments of fluorescent spectra report heterogeneity of tryptophan rotamers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:909-920. [PMID: 26119357 PMCID: PMC4550534 DOI: 10.1016/j.saa.2015.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/11/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Trp fluorescent spectra appear as a log-normal function but are usually analyzed with λmax, full width at half maximum, and the first moment of incomplete spectra. Log-normal analyses have successfully separated fluorescence contributions from some multi-Trp proteins but deviations were observed in single Trp proteins. The possibility that disparate rotamer environments might account for these deviations was explored by moment spectral analysis of single Trp mutants spanning the sequence of tear lipocalin as a model. The analysis required full width Trp spectra. Composite spectra were constructed using log-normal analysis to derive the inaccessible blue edge, and the experimentally obtained spectra for the remainder. First moments of the composite spectra reflected the site-resolved secondary structure. Second moments were most sensitive for spectral deviations. A novel parameter, derived from the difference of the second moments of composite and simulated log-normal spectra correlated with known multiple heterogeneous rotamer conformations. Buried and restricted side chains showed the most heterogeneity. Analyses applied to other proteins further validated the method. The rotamer heterogeneity values could be rationalized by known conformational properties of Trp residues and the distribution of nearby charged groups according to the internal Stark effect. Spectral heterogeneity fits the rotamer model but does not preclude other contributing factors. Spectral moment analysis of full width Trp emission spectra is accessible to most laboratories. The calculations are informative of protein structure and can be adapted to study dynamic processes.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| | - Ben J Glasgow
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| |
Collapse
|
6
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Double tryptophan exciton probe to gauge proximal side chains in proteins: augmentation at low temperature. J Phys Chem B 2015; 119:3962-8. [PMID: 25693116 DOI: 10.1021/jp512864s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The circular dichroic (CD) exciton couplet between tryptophans and/or tyrosines offers the potential to probe distances within 10 Å in proteins. The exciton effect has been used with native chromophores in critical positions in a few proteins. Here, site-directed mutagenesis created double tryptophan probes for key sites of a protein (tear lipocalin). For tear lipocalin, the crystal and solution structures are concordant in both apo- and holo-forms. Double tryptophan substitutions were performed at sites that could probe conformation and were likely within 10 Å. Far-UV CD spectra of double Trp mutants were performed with controls that had noninteracting substituted tryptophans. Low temperature (77 K) was tested for augmentation of the exciton signal. Exciton coupling appeared with tryptophan substitutions at positions within loop A-B (28 and 31, 33), between loop A-B (28) and strand G (103 and 105), as well as between the strands B (35) and C (56). The CD exciton couplet signals were amplified 3-5-fold at 77 K. The results were concordant with close distances in crystal and solution structures. The exciton couplets had functional significance and correctly assigned the holo-conformation. The methodology creates an effective probe to identify proximal amino acids in a variety of motifs.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles , Los Angeles, California 90095, United States
| | | | | |
Collapse
|
7
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Restoration of structural stability and ligand binding after removal of the conserved disulfide bond in tear lipocalin. Biochem Biophys Res Commun 2014; 452:1004-8. [PMID: 25223802 PMCID: PMC4219327 DOI: 10.1016/j.bbrc.2014.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 11/20/2022]
Abstract
Disulfide bonds play diverse structural and functional roles in proteins. In tear lipocalin (TL), the conserved sole disulfide bond regulates stability and ligand binding. Probing protein structure often involves thiol selective labeling for which removal of the disulfide bonds may be necessary. Loss of the disulfide bond may destabilize the protein so strategies to retain the native state are needed. Several approaches were tested to regain the native conformational state in the disulfide-less protein. These included the addition of trimethylamine N-oxide (TMAO) and the substitution of the Cys residues of disulfide bond with residues that can either form a potential salt bridge or others that can create a hydrophobic interaction. TMAO stabilized the protein relaxed by removal of the disulfide bond. In the disulfide-less mutants of TL, 1.0M TMAO increased the free energy change (ΔG(0)) significantly from 2.1 to 3.8kcal/mol. Moderate recovery was observed for the ligand binding tested with NBD-cholesterol. Because the disulfide bond of TL is solvent exposed, the substitution of the disulfide bond with a potential salt bridge or hydrophobic interaction did not stabilize the protein. This approach should work for buried disulfide bonds. However, for proteins with solvent exposed disulfide bonds, the use of TMAO may be an excellent strategy to restore the native conformational states in disulfide-less analogs of the proteins.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States
| | - Ben J Glasgow
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| |
Collapse
|
8
|
Bovine α1-acid glycoprotein, a thermostable version of its human counterpart: Insights from Fourier transform infrared spectroscopy and in silico modelling. Biochimie 2014; 102:19-28. [DOI: 10.1016/j.biochi.2014.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
|
9
|
Staudinger T, Redl B, Glasgow BJ. Antibacterial activity of rifamycins for M. smegmatis with comparison of oxidation and binding to tear lipocalin. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:750-8. [PMID: 24530503 PMCID: PMC3992280 DOI: 10.1016/j.bbapap.2014.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 11/19/2022]
Abstract
A mutant of Mycobacterium smegmatis is a potential class I model substitute for Mycobacterium tuberculosis. Because not all of the rifamycins have been tested in this organism, we determined bactericidal profiles for the 6 major rifamycin derivatives. The profiles closely mirrored those established for M. tuberculosis. Rifalazil was confirmed to be the most potent rifamycin. Because the tuberculous granuloma presents a harshly oxidizing environment we explored the effects of oxidation on rifamycins. Mass spectrometry confirmed that three of the six major rifamycins showed autoxidation in the presence of trace metals. Oxidation could be monitored by distinctive changes including isosbestic points in the ultraviolet-visible spectrum. Oxidation of rifamycins abrogated anti-mycobacterial activity in M. smegmatis. Protection from autoxidation was conferred by binding susceptible rifamycins to tear lipocalin, a promiscuous lipophilic protein. Rifalazil was not susceptible to autoxidation but was insoluble in aqueous solution. Solubility was enhanced when complexed to tear lipocalin and was accompanied by a spectral red shift. The positive solvatochromism was consistent with robust molecular interaction and binding. Other rifamycins also formed a complex with lipocalin, albeit to a lesser extent. Protection from oxidation and enhancement of solubility with protein binding may have implications for delivery of select rifamycin derivatives.
Collapse
Affiliation(s)
- Tamara Staudinger
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Rm. B-279, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Rm. B-279, Los Angeles, CA 90095, USA; Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Bernhard Redl
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Ben J Glasgow
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Rm. B-279, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Rm. B-279, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Probing tertiary structure of proteins using single Trp mutations with circular dichroism at low temperature. J Phys Chem B 2014; 118:986-95. [PMID: 24404774 PMCID: PMC3983331 DOI: 10.1021/jp4120145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Trp is the most spectroscopically
informative aromatic amino acid
of proteins. However, the near-UV circular dichroism (CD) spectrum
of Trp is complicated because the intensity and sign of 1La and 1Lb bands vary independently.
To resolve vibronic structure and gain site-specific information from
complex spectra, deconvolution was combined with cooling and site-directed
tryptophan substitution. Low temperature near-UV CD was used to probe
the local tertiary structure of a loop and α-helix in tear lipocalin.
Upon cooling, the enhancement of the intensities of the near-UV CD
was not uniform, but depends on the position of Trp in the protein
structure. The most enhanced 1Lb band was observed
for Trp at position 124 in the α-helix segment matching the
known increased conformational mobility during ligand binding. Some
aspects of the CD spectra of W28 and W130 were successfully linked
to specific rotamers of Trp previously obtained from fluorescence
lifetime measurements. The discussion was based on a framework that
the magnitude of the energy differences in local conformations governs
the changes in the CD intensities at low temperature. The Trp CD spectral
classification of Strickland was modified to facilitate the recognition
of pseudo peaks. Near-UV CD spectra harbor abundant information about
the conformation of proteins that site directed Trp CD can report.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles , California 90095, United States
| | | | | |
Collapse
|
11
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Effect of short- and long-range interactions on trp rotamer populations determined by site-directed tryptophan fluorescence of tear lipocalin. PLoS One 2013; 8:e78754. [PMID: 24205305 PMCID: PMC3810256 DOI: 10.1371/journal.pone.0078754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/20/2013] [Indexed: 11/25/2022] Open
Abstract
In the lipocalin family, the conserved interaction between the main α-helix and the β-strand H is an ideal model to study protein side chain dynamics. Site-directed tryptophan fluorescence (SDTF) has successfully elucidated tryptophan rotamers at positions along the main alpha helical segment of tear lipocalin (TL). The rotamers assigned by fluorescent lifetimes of Trp residues corroborate the restriction expected based on secondary structure. Steric conflict constrains Trp residues to two (t, g−) of three possible χ1 (t, g−, g+) canonical rotamers. In this study, investigation focused on the interplay between rotamers for a single amino acid position, Trp 130 on the α-helix and amino acids Val 113 and Leu 115 on the H strand, i.e. long range interactions. Trp130 was substituted for Phe by point mutation (F130W). Mutations at positions 113 and 115 with combinations of Gly, Ala, Phe residues alter the rotamer distribution of Trp130. Mutations, which do not distort local structure, retain two rotamers (two lifetimes) populated in varying proportions. Replacement of either long range partner with a small amino acid, V113A or L115A, eliminates the dominance of the t rotamer. However, a mutation that distorts local structure around Trp130 adds a third fluorescence lifetime component. The results indicate that the energetics of long-range interactions with Trp 130 further tune rotamer populations. Diminished interactions, evident in W130G113A115, result in about a 22% increase of α-helix content. The data support a hierarchic model of protein folding. Initially the secondary structure is formed by short-range interactions. TL has non-native α-helix intermediates at this stage. Then, the long-range interactions produce the native fold, in which TL shows α-helix to β-sheet transitions. The SDTF method is a valuable tool to assess long-range interaction energies through rotamer distribution as well as the characterization of low-populated rotameric states of functionally important excited protein states.
Collapse
Affiliation(s)
- Oktay K. Gasymov
- Departments of Pathology and Laboratory Medicine and Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (OG); (BG)
| | - Adil R. Abduragimov
- Departments of Pathology and Laboratory Medicine and Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ben J. Glasgow
- Departments of Pathology and Laboratory Medicine and Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (OG); (BG)
| |
Collapse
|
12
|
Gasymov OK, Abduragimov AR, Glasgow BJ. A simple model-free method for direct assessment of fluorescent ligand binding by linear spectral summation. J Fluoresc 2013; 24:231-8. [PMID: 24043458 DOI: 10.1007/s10895-013-1290-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Fluorescent tagged ligands are commonly used to determine binding to proteins. However, bound and free ligand concentrations are not directly determined. Instead the response in a fluorescent ligand titration experiment is considered to be proportional to the extent of binding and, therefore, the maximum value of binding is scaled to the total protein concentration. Here, a simple model-free method is presented to be performed in two steps. In the first step, normalized bound and free spectra of the ligand are determined. In the second step, these spectra are used to fit composite spectra as the sum of individual components or linear spectral summation. Using linear spectral summation, free and bound 1-Anilinonaphthalene-8-Sulfonic Acid (ANS) fluorescent ligand concentrations are directly calculated to determine ANS binding to tear lipocalin (TL), an archetypical ligand binding protein. Error analysis shows that the parameters that determine bound and free ligand concentrations were recovered with high certainty. The linear spectral summation method is feasible when fluorescence intensity is accompanied by a spectral shift upon protein binding. Computer simulations of the experiments of ANS binding to TL indicate that the method is feasible when the fluorescence spectral shift between bound and free forms of the ligand is just 8 nm. Ligands tagged with environmentally sensitive fluorescent dyes, e.g., dansyl chromophore, are particularly suitable for this method.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
13
|
Manikwar P, Majumdar R, Hickey JM, Thakkar SV, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Weis DD, Volkin DB. Correlating Excipient Effects on Conformational and Storage Stability of an IgG1 Monoclonal Antibody with Local Dynamics as Measured by Hydrogen/Deuterium-Exchange Mass Spectrometry. J Pharm Sci 2013; 102:2136-51. [DOI: 10.1002/jps.23543] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 03/18/2013] [Indexed: 12/23/2022]
|
14
|
Yeh PT, Casey R, Glasgow BJ. A novel fluorescent lipid probe for dry eye: retrieval by tear lipocalin in humans. Invest Ophthalmol Vis Sci 2013; 54:1398-410. [PMID: 23361507 DOI: 10.1167/iovs.12-10817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A fluorescent probe was used to identify mucin-depleted areas on the ocular surface and to test the hypothesis that tear lipocalin retrieves lipids from the eyes of normal and dry eye subjects. METHODS Fluorescein-labeled octadecyl ester, FODE, was characterized by mass spectrometry and absorbance spectrophotometry. The use of FODE to define mucin defects was studied with impression membranes under conditions that selectively deplete mucin. The kinetics of FODE removal from the ocular surface were analyzed by sampling tears from control and dry eye patients at various times. The tear protein-FODE complexes were isolated by gel filtration and ion exchange chromatographies, monitored with absorption and fluorescent spectroscopies, and analyzed by gel electrophoresis. Immunoprecipitation verified FODE complexed to tear lipocalin in tears. RESULTS FODE exhibits an isosbestic point at 473 nm, pKa of 7.5, and red shift relative to fluorescein. The low solubility of FODE in buffer is enhanced with 1% Tween 80 and ethanol. FODE adheres to the ocular surface of dry eye patients. FODE produces visible staining at the contact sites of membranes, which correlates with removal of mucin. Despite the fact that tear lipocalin is reduced in dry eye patients, FODE removal follows similar rapid exponential decay functions for all subjects. FODE is bound to tear lipocalin in tears. CONCLUSIONS Tear lipocalin retrieves lipid rapidly from the human ocular surface in mild to moderate dry eye disease and controls. With improvements in solubility, FODE may have potential as a fluorescent probe to identify mucin-depleted areas.
Collapse
Affiliation(s)
- Po-Ting Yeh
- Departments of Ophthalmology and Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California-Los Angeles, Jules Stein Eye Institute, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
15
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Cation-π interactions in lipocalins: structural and functional implications. Biochemistry 2012; 51:2991-3002. [PMID: 22439821 DOI: 10.1021/bi3002902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cation-π interaction impacts protein folding, structural stability, specificity, and molecular recognition. Cation-π interactions have been overlooked in the lipocalin family. To fill this gap, these interactions were analyzed in the 113 crystal and solution structures from the lipocalin family. The cation-π interactions link previously identified structurally conserved regions and reveal new motifs, which are beyond the reach of a sequence alignment algorithm. Functional and structural significance of the interactions were tested experimentally in human tear lipocalin (TL). TL, a prominent and promiscuous lipocalin, has a key role in lipid binding at the ocular surface. Ligand binding modulation through the loop AB at the "open" end of the barrel has been erroneously attributed solely to electrostatic interactions. Data revealed that the interloop cation-π interaction in the pair Phe28-Lys108 contributes significantly to stabilize the holo-conformation of the loop AB. Numerous energetically significant and conserved cation-π interactions were uncovered in TL and throughout the lipocalin family. Cation-π interactions, such as the highly conserved Trp17-Arg118 pair in TL, were educed in low temperature experiments of mutants with Trp to Tyr substitutions.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology and Jules Stein Eye Institute, University California at Los Angeles, California 90095, USA.
| | | | | |
Collapse
|