1
|
Holmes JB, Torodii D, Balodis M, Cordova M, Hofstetter A, Paruzzo F, Nilsson Lill SO, Eriksson E, Berruyer P, Simões de Almeida B, Quayle M, Norberg S, Ankarberg AS, Schantz S, Emsley L. Atomic-level structure of the amorphous drug atuliflapon via NMR crystallography. Faraday Discuss 2025; 255:342-354. [PMID: 39291342 PMCID: PMC11409164 DOI: 10.1039/d4fd00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 09/19/2024]
Abstract
We determine the complete atomic-level structure of the amorphous form of the drug atuliflapon, a 5-lipooxygenase activating protein (FLAP) inhibitor, via chemical-shift-driven NMR crystallography. The ensemble of preferred structures allows us to identify a number of specific conformations and interactions that stabilize the amorphous structure. These include preferred hydrogen-bonding motifs with water and with other drug molecules, as well as conformations of the cyclohexane and pyrazole rings that stabilize structure by indirectly allowing for optimization of hydrogen bonding.
Collapse
Affiliation(s)
- Jacob B Holmes
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Daria Torodii
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Martins Balodis
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Albert Hofstetter
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Federico Paruzzo
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sten O Nilsson Lill
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Eriksson
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Bruno Simões de Almeida
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Mike Quayle
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Stefan Norberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Anna Svensk Ankarberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Tupikina EY, Sigalov MV, Alkhuder O, Tolstoy PM. Charge Relay Without Proton Transfer: Coupling of Two Short Hydrogen Bonds via Imidazole in Models of Catalytic Triad of Serine Protease Active Site. Chemphyschem 2024; 25:e202300970. [PMID: 38563616 DOI: 10.1002/cphc.202300970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
A homologous series of 20 substituted alcohol-imidazole-acetate model complexes imitating the charge relay system in Ser-His-Asp catalytic triad of serine proteases is considered quantum-chemically. We show qualitatively that the geometries of alcohol-imidazole and imidazole-acetate short hydrogen bonds are strongly coupled via the central imidazole and such complexes are capable of effectively relaying the charge from acetate to alcohol moiety upon relatively small concerted proton displacements. We hypothesize an alternative catalytic mechanism of serine proteases that does not require two complete proton transfers or hydrogen bond breakage between Ser and His residues.
Collapse
Affiliation(s)
- Elena Yu Tupikina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Mark V Sigalov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omar Alkhuder
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Peter M Tolstoy
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
3
|
Kuranova NN, Pimenov OA, Zavalishin MN, Gamov GA. Complexes of Gold(III) with Hydrazones Derived from Pyridoxal: Stability, Structure, and Nature of UV-Vis Spectra. Int J Mol Sci 2024; 25:5046. [PMID: 38732264 PMCID: PMC11084471 DOI: 10.3390/ijms25095046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Pyridoxal and pyridoxal 5'-phosphate are aldehyde forms of B6 vitamin that can easily be transformed into each other in the living organism. The presence of a phosphate group, however, provides the related compounds (e.g., hydrazones) with better solubility in water. In addition, the phosphate group may sometimes act as a binding center for metal ions. In particular, a phosphate group can be a strong ligand for a gold(III) ion, which is of interest for researchers for the anti-tumor and antimicrobial potential of gold(III). This paper aims to answer whether the phosphate group is involved in the complex formation between gold(III) and hydrazones derived from pyridoxal 5'-phosphate. The answer is negative, since the comparison of the stability constants determined for the gold(III) complexes with pyridoxal- and pyridoxal 5'-phosphate-derived hydrazones showed a negligible difference. In addition, quantum chemical calculations confirmed that the preferential coordination of two series of phosphorylated and non-phosphorylated hydrazones to gold(III) ion is similar. The preferential protonation modes for the gold(III) complexes were also determined using experimental and calculated data.
Collapse
Affiliation(s)
| | | | | | - George A. Gamov
- Department of General Chemical Technology, Ivanovo State University of Chemistry and Technology, Sheremetevskii pr. 7, Ivanovo 153000, Russia; (N.N.K.); (O.A.P.); (M.N.Z.)
| |
Collapse
|
4
|
Li X, Sun X. 1,3-Proton Transfer of Pyridoxal 5'-Phosphate Schiff Base in the Branched-Chain Aminotransferase: Concerted or Stepwise Mechanism? J Phys Chem B 2024; 128:77-85. [PMID: 38131279 DOI: 10.1021/acs.jpcb.3c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The branched-chain aminotransferase from Mycobacterium tuberculosis (MtIlvE) is a pyridoxal 5'-phosphate (PLP) dependent enzyme, and it is essential for the synthesis of the branched-chain amino acids. Ketimine is an important intermediate in the catalytic process. We have investigated the mechanism of ketimine formation and the energy landscape using the multiple computational methods. It is found that the 1,3-proton transfer involved in ketimine formation occurs through a stepwise process rather than a one-step process. Lys204 is identified as a key residue for ligand binding and as a base that abstracts the Cα proton from the PLP-Glu Schiff base, yielding a carbanionic intermediate. The first proton transfer is the rate-limiting step with an energy barrier of 17.8 kcal mol-1. Our study disclosed the detailed pathway of the proton transfer from external aldimine to ketimine, providing novel insights into the catalytic mechanism of other PLP-dependent enzymes.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences, Changchun Normal University, Changchun 130023, People's Republic of China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
5
|
Rastogi S, Chandra A. Free Energy Landscapes of the Tautomeric Interconversion of Pyridoxal 5'-Phosphate Aldimines at the Active Site of Ornithine Decarboxylase in Aqueous Media. J Phys Chem B 2023; 127:8139-8149. [PMID: 37721415 DOI: 10.1021/acs.jpcb.3c04142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The pyridoxal 5'-phosphate (PLP) acts as a coenzyme for a large number of biochemical reactions. It exists in mainly two bound forms at the active site of the concerned enzyme: the internal aldimine, in which the PLP is bound with the ϵ-amino group of lysine at the active site, and the external aldimine, where the PLP is bound to the substrate amino acid. Both the internal and external aldimines have Schiff base linkage (N-H-O) and can exist in two tautomeric structures of ketoenamine and enolimine forms. In this work, we have investigated the free energy landscape for the tautomeric proton transfer in the internal and external aldimines at the active site of the ornithine decarboxylase enzyme in an aqueous medium. We performed hybrid quantum-classical metadynamics and force field-based molecular dynamics simulations, which revealed that the ketoenamine tautomer is more stable than the enolimine form. The QM/MM metadynamics calculations show that the free energy difference between the ketoenamine and enolimine forms for the internal aldimine is 3.9 kcal/mol, and it is found to be 5.8 kcal/mol for the external aldimine, with the ketoenamine form being more stable in both cases. The results are further supported by calculations of the binding free energies from classical simulations and static quantum chemical calculations in different environments. We have also analyzed the configurational structure of the microenvironment at the active site in order to have better insights into the interactions of the active site residues with the PLP in its two tautomeric forms.
Collapse
Affiliation(s)
- Shreya Rastogi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
6
|
Chen X, Ferchaud N, Briozzo P, Machover D, Simonson T. PLP-Dependent Enzyme Methionine γ-Lyase: Insights into the Michaelis Complex from Molecular Dynamics and Free Energy Simulations. Biochemistry 2023; 62:2791-2801. [PMID: 37668546 DOI: 10.1021/acs.biochem.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Methionine γ-lyase (MGL) breaks down methionine, with the help of its cofactor pyridoxal-5'-phosphate (PLP), or vitamin B6. Methionine depletion is damaging for cancer cells but not normal cells, so MGL is of interest as a therapeutic protein. To increase our understanding and help engineer improved activity, we focused on the reactive, Michaelis complex M between MGL, covalently bound PLP, and substrate Met. M is not amenable to crystallography, as it proceeds to products. Experimental activity measurements helped exclude a mechanism that would bypass M . We then used molecular dynamics and alchemical free energy simulations to elucidate its structure and dynamics. We showed that the PLP phosphate has a pKa strongly downshifted by the protein, whether Met is present or not. Met binding affects the structure surrounding the reactive atoms. With Met, the Schiff base linkage between PLP and a nearby lysine shifts from a zwitterionic, keto form to a neutral, enol form that makes it easier for Met to approach its labile, target atom. The Met ligand also stabilizes the correct orientation of the Schiff base, more strongly than in simulations without Met, and in agreement with structures in the Protein Data Bank, where the Schiff base orientation correlates with the presence or absence of a co-bound anion or substrate analogue in the active site. Overall, the Met ligand helps organize the active site for the enzyme reaction by reducing fluctuations and shifting protonation states and conformational populations.
Collapse
Affiliation(s)
- Xingyu Chen
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Palaiseau 91128, France
| | - Nathan Ferchaud
- Institut Jean-Pierre Bourgin, INRAE-AgroParisTech, University Paris-Saclay, Versailles 78026, France
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRAE-AgroParisTech, University Paris-Saclay, Versailles 78026, France
| | - David Machover
- INSERM U935-UA09, University Paris-Saclay, Hôpital Paul-Brousse, 12, Avenue Paul Vaillant-Couturier, 94800 Villejuif, France
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Palaiseau 91128, France
| |
Collapse
|
7
|
Le Corre L, Padovani D. Mechanism-based and computational modeling of hydrogen sulfide biogenesis inhibition: interfacial inhibition. Sci Rep 2023; 13:7287. [PMID: 37142727 PMCID: PMC10160035 DOI: 10.1038/s41598-023-34405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that participates in various signaling functions in health and diseases. The tetrameric cystathionine γ-lyase (CSE) contributes to H2S biogenesis and several investigations provide evidence on the pharmacological modulation of CSE as a potential target for the treatment of a multitude of conditions. D-penicillamine (D-pen) has recently been reported to selectively impede CSE-catalyzed H2S production but the molecular bases for such inhibitory effect have not been investigated. In this study, we report that D-pen follows a mixed-inhibition mechanism to inhibit both cystathionine (CST) cleavage and H2S biogenesis by human CSE. To decipher the molecular mechanisms underlying such a mixed inhibition, we performed docking and molecular dynamics (MD) simulations. Interestingly, MD analysis of CST binding reveals a likely active site configuration prior to gem-diamine intermediate formation, particularly H-bond formation between the amino group of the substrate and the O3' of PLP. Similar analyses realized with both CST and D-pen identified three potent interfacial ligand-binding sites for D-pen and offered a rational for D-pen effect. Thus, inhibitor binding not only induces the creation of an entirely new interacting network at the vicinity of the interface between enzyme subunits, but it also exerts long range effects by propagating to the active site. Overall, our study paves the way for the design of new allosteric interfacial inhibitory compounds that will specifically modulate H2S biogenesis by cystathionine γ-lyase.
Collapse
Affiliation(s)
- Laurent Le Corre
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006, Paris, France
| | - Dominique Padovani
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006, Paris, France.
| |
Collapse
|
8
|
Abstract
ConspectusOne of the fundamental goals of chemists is to develop highly efficient methods for producing optically active compounds, given their wide range of applications in chemistry, pharmaceutical industry, chemical biology, and material science. Biomimetic asymmetric catalysis, which imitates the structures and functions of enzymes, has emerged as an extremely attractive strategy for producing chiral compounds. This field has drawn tremendous research interest and has led to various protocols for constructing complex molecular scaffolds. The Vitamin B6 family, including pyridoxal, pyridoxamine, pyridoxine, and the corresponding phosphorylated derivatives, serves as the cofactors to catalyze more than 200 enzymatic functions, accounting for ∼4% of all enzyme activities. Although significant progress has been made in simulating the biological roles of vitamin B6 during the past several decades, its extraordinary catalytic power has not yet been successfully applied into asymmetric synthesis. In recent years, our group has been devoted to developing vitamin B6-based biomimetic asymmetric catalysis using chiral pyridoxals/pyridoxamines as catalysts. We are particularly interested in mimicking the processes of enzymatic transamination and biological aldol reaction of glycine, respectively, developing asymmetric biomimetic transamination and carbonyl catalysis enabled α-C-H transformation of primary amines. Using a chiral α,α-diarylprolinol-derived pyridoxal as the catalyst, we reported the first chiral pyridoxal catalyzed asymmetric transamination of α-keto acids in 2015. A significant breakthrough in biomimetic transamination was achieved by using an axially chiral biaryl pyridoxamine catalyst that bears a lateral amine side arm. The amine side arm acts as an intramolecular base, accelerating the transamination and proving highly effective for transamination of α-keto acids and α-keto amides. In addition, we discovered the catalytic power of chiral pyridoxals as carbonyl catalysts for asymmetric biomimetic Mannich/aldol reactions of glycinates. These chiral pyridoxals also enabled more α-C-H conversions of glycinates, such as asymmetric 1,4-addition toward α,β-unsaturated esters and asymmetric α-allylation with Morita-Baylis-Hillman acetates. Moreover, carbonyl catalysis can be further applied to highly challenging primary amines with inert α-C-H bonds, such as propargylamines and benzylamines, which represents a powerful strategy for direct asymmetric α-C-H functionalization of various primary amines without protection of the NH2 group. These biomimetic/bioinspired transformations provide efficient new protocols for the synthesis of chiral amines. Herein, we summarize our recent efforts on the development of the vitamin B6-based biomimetic asymmetric catalysis.
Collapse
Affiliation(s)
- Xiao Xiao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
9
|
Mulay P, Chen C, Krishna V. Enzyme-independent catabolism of cysteine with pyridoxal-5'-phosphate. Sci Rep 2023; 13:312. [PMID: 36609609 PMCID: PMC9822980 DOI: 10.1038/s41598-022-26966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Pyridoxal-5'-phosphate (PLP) is a versatile cofactor that assists in different types of enzymatic reactions. PLP has also been reported to react with substrates and catalyze some of these reactions independent of enzymes. One such catalytic reaction is the breakdown of cysteine to produce hydrogen sulfide (H2S) in the presence of multivalent metal ions. However, the enzyme-independent catalytic activity of PLP in catabolizing cysteine in the absence of multivalent ions is unknown. In this study, we show that PLP reacts with cysteine to form a thiazolidine product, which is supported by quantum chemical calculations of the absorption spectrum. The reaction of PLP with cysteine is dependent on ionic strength and pH. The thiazolidine product slowly decomposes to produce H2S and the PLP regenerates to its active form with longer reaction times (> 24 h), suggesting that PLP can act as a catalyst. We propose an enzyme-independent plausible reaction mechanism for PLP catalyzed cysteine breakdown to produce H2S, which proceeds through the formation of thiazolidine ring intermediates that later hydrolyzes slowly to regenerate the PLP. This work demonstrates that PLP catalyzes cysteine breakdown in the absence of enzymes, base, and multivalent metal ions to produce H2S.
Collapse
Affiliation(s)
- Prajakatta Mulay
- grid.239578.20000 0001 0675 4725Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Cindy Chen
- grid.239578.20000 0001 0675 4725Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Vijay Krishna
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Gamov G, Kiselev A, Zavalishin M, Yarullin D. Formation and hydrolysis of pyridoxal-5’-phosphate hydrazones and Schiff bases: Prediction of equilibrium and rate constants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Crespi AF, Vega D, Sánchez VM, Rodríguez-Castellón E, Lázaro-Martínez JM. Shared Hydrogen Atom Location and Chemical Composition in Picolinic Acid and Pyridoxal Hydrochloride Derivatives Determined by X-ray Crystallography. J Org Chem 2022; 87:13427-13438. [PMID: 36075104 DOI: 10.1021/acs.joc.2c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new single-crystal structures were isolated for picolinic acid (2), the trifluoroacetate salt of picolinic acid (1), and pyridoxal hydrochloride (3). These compounds displayed unconventional crystallographic features that must be considered when structural refinements are carried out. Thus, the generated Fourier differences map obtained with the diffraction data collected at 100 K was crucial to visualize electron densities, which were balanced by either one hydrogen atom or a hydrogen atom with an occupancy factor of 1/2 located between either two carboxylate moieties, two phenolic oxygen atoms, or two pyridinic nitrogen atoms. Moreover, NMR studies were conducted to analyze the bulk chemical composition of single crystals of 2-pyridinecarboxylic acid obtained from the gem-diol/hemiacetal forms and the polymerization products after the treatment of 2-pyridinecarboxaldehyde with TFA:H2O (1) or a diluted Cu(NO3)2 solution (2). The quantitative yield of the pyridoxal hydrochloride crystalline material (3) obtained from a diluted CuCl2 solution was exhaustively characterized by solid-state NMR methods. These methods allowed the resolution of the signals corresponding to the protons of the hydroxyl moiety of the intramolecular hemiacetal group and the phenolic hydrogen. Theoretical calculations using DFT methods were done to complement the atomic location of the hydrogen atoms obtained from the X-ray analysis.
Collapse
Affiliation(s)
- Ayelén F Crespi
- Departamento de Ciencias Químicas, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Daniel Vega
- Universidad Nacional de General San Martín, San Martín, Buenos Aires B1650, Argentina.,Departamento de Física de la Materia Condensada, San Martín, Comisión Nacional de Energía Atómica, Buenos Aires 8250, Argentina
| | - Verónica M Sánchez
- Universidad Nacional de General San Martín, San Martín, Buenos Aires B1650, Argentina.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-UBA-CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | | | - Juan M Lázaro-Martínez
- Departamento de Ciencias Químicas, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| |
Collapse
|
12
|
Drago VN, Dajnowicz S, Parks JM, Blakeley MP, Keen DA, Coquelle N, Weiss KL, Gerlits O, Kovalevsky A, Mueser TC. An N⋯H⋯N low-barrier hydrogen bond preorganizes the catalytic site of aspartate aminotransferase to facilitate the second half-reaction. Chem Sci 2022; 13:10057-10065. [PMID: 36128223 PMCID: PMC9430417 DOI: 10.1039/d2sc02285k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes have been extensively studied for their ability to fine-tune PLP cofactor electronics to promote a wide array of chemistries. Neutron crystallography offers a straightforward approach to studying the electronic states of PLP and the electrostatics of enzyme active sites, responsible for the reaction specificities, by enabling direct visualization of hydrogen atom positions. Here we report a room-temperature joint X-ray/neutron structure of aspartate aminotransferase (AAT) with pyridoxamine 5'-phosphate (PMP), the cofactor product of the first half reaction catalyzed by the enzyme. Between PMP NSB and catalytic Lys258 Nζ amino groups an equally shared deuterium is observed in an apparent low-barrier hydrogen bond (LBHB). Density functional theory calculations were performed to provide further evidence of this LBHB interaction. The structural arrangement and the juxtaposition of PMP and Lys258, facilitated by the LBHB, suggests active site preorganization for the incoming ketoacid substrate that initiates the second half-reaction.
Collapse
Affiliation(s)
- Victoria N Drago
- Department of Chemistry and Biochemistry, University of Toledo Toledo OH 43606 USA
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Steven Dajnowicz
- Department of Chemistry and Biochemistry, University of Toledo Toledo OH 43606 USA
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin 71 Avenue des Martyrs 38000 Grenoble France
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus Didcot OX11 0QX UK
| | - Nicolas Coquelle
- Large Scale Structures Group, Institut Laue-Langevin 71 Avenue des Martyrs 38000 Grenoble France
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University Athens TN 37303 USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Timothy C Mueser
- Department of Chemistry and Biochemistry, University of Toledo Toledo OH 43606 USA
| |
Collapse
|
13
|
Rozanov ES, Grazhdan KV, Kiselev AN, Gamov GA. Protolytic Equilibrium Constants in Aqueous Solutions of Pyridoxal-5'-Phosphate Hydrazone and L-Tyrosine. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Chen X, Briozzo P, Machover D, Simonson T. A Computational Model for the PLP-Dependent Enzyme Methionine γ-Lyase. Front Mol Biosci 2022; 9:886358. [PMID: 35558556 PMCID: PMC9087591 DOI: 10.3389/fmolb.2022.886358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal-5′-phosphate (PLP) is a cofactor in the reactions of over 160 enzymes, several of which are implicated in diseases. Methionine γ-lyase (MGL) is of interest as a therapeutic protein for cancer treatment. It binds PLP covalently through a Schiff base linkage and digests methionine, whose depletion is damaging for cancer cells but not normal cells. To improve MGL activity, it is important to understand and engineer its PLP binding. We develop a simulation model for MGL, starting with force field parameters for PLP in four main states: two phosphate protonation states and two tautomeric states, keto or enol for the Schiff base moiety. We used the force field to simulate MGL complexes with each form, and showed that those with a fully-deprotonated PLP phosphate, especially keto, led to the best agreement with MGL structures in the PDB. We then confirmed this result through alchemical free energy simulations that compared the keto and enol forms, confirming a moderate keto preference, and the fully-deprotonated and singly-protonated phosphate forms. Extensive simulations were needed to adequately sample conformational space, and care was needed to extrapolate the protonation free energy to the thermodynamic limit of a macroscopic, dilute protein solution. The computed phosphate pKa was 5.7, confirming that the deprotonated, −2 form is predominant. The PLP force field and the simulation methods can be applied to all PLP enzymes and used, as here, to reveal fine details of structure and dynamics in the active site.
Collapse
Affiliation(s)
- Xingyu Chen
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRAE-AgroParisTech, University Paris-Saclay, Paris, France
| | - David Machover
- INSERM U935-UA09, University Paris-Saclay, Hôpital Paul-Brousse, Paris, France
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
- *Correspondence: Thomas Simonson,
| |
Collapse
|
15
|
Soniya K, Chandra A. Free Energy Landscape and Proton Transfer Pathways of the Transimination Reaction at the Active site of the Serine Hydroxymethyltransferase Enzyme in Aqueous Medium. J Phys Chem B 2021; 125:11848-11856. [PMID: 34696588 DOI: 10.1021/acs.jpcb.1c05864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a ubiquitous enzyme belonging to the fold type I or aspartate aminotransferase (AspAT) family of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. Like other PLP-dependent enzymes, SHMT also undergoes the so-called transimination reaction before exhibiting its enzymatic activity. The transimination process constitutes an important pre-step for all PLP-dependent enzymes, where an internal aldimine of the PLP-enzyme complex gets converted to an external aldimine of the substrate-PLP complex at the active site of the enzyme. In case of the transimination reaction involving SHMT, the PLP molecule bound to the active site lysine residue of SHMT (internal aldimine) gets detached from the enzyme by a serine substrate to produce an external aldimine complex, where the PLP is now bound to the serine substrate. In the current study, the free energy surfaces and reaction pathways of different steps of the transimination reaction at the active site of SHMT are investigated by employing hybrid quantum mechanical/molecular mechanical (QM/MM) simulations combined with metadynamics methods of rare event sampling. It is found that the process of transimination involving serine and PLP at the active site of the SHMT enzyme takes place through different elementary steps such as the formation of the first geminal diamine intermediate (GDI1), transfer of a proton from the substrate serine to the phenolic oxygen of PLP, followed by another proton transfer from PLP to the amine nitrogen of lysine with the formation of the second geminal diamine intermediate (GDI2), and finally, detachment of the active site lysine residue from PLP to produce the external aldimine.
Collapse
Affiliation(s)
- Kumari Soniya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
16
|
Asymmetric biomimetic transamination of α-keto amides to peptides. Nat Commun 2021; 12:5174. [PMID: 34462436 PMCID: PMC8405696 DOI: 10.1038/s41467-021-25449-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Peptides are important compounds with broad applications in many areas. Asymmetric transamination of α-keto amides can provide an efficient strategy to synthesize peptides, however, the process has not been well developed yet and still remains a great challenge in both enzymatic and catalytic chemistry. For biological transamination, the high activity is attributed to manifold structural and electronic factors of transaminases. Based on the concept of multiple imitation of transaminases, here we report N-quaternized axially chiral pyridoxamines 1 for enantioselective transamination of α-keto amides, to produce various peptides in good yields with excellent enantio- and diastereoselectivities. The reaction is especially attractive for the synthesis of peptides made of unnatural amino acids since it doesn’t need great efforts to make chiral unnatural amino acids before amide bond formation. Asymmetric transamination of α-keto amides could provide an efficient strategy to synthesise peptides, but has not been well developed yet. Here, the authors design chiral pyridoxamine catalyst and realize the asymmetric biomimetic transamination of α-keto amides, providing access to various peptides with excellent enantiopurities.
Collapse
|
17
|
Actual Symmetry of Symmetric Molecular Adducts in the Gas Phase, Solution and in the Solid State. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This review discusses molecular adducts, whose composition allows a symmetric structure. Such adducts are popular model systems, as they are useful for analyzing the effect of structure on the property selected for study since they allow one to reduce the number of parameters. The main objectives of this discussion are to evaluate the influence of the surroundings on the symmetry of these adducts, steric hindrances within the adducts, competition between different noncovalent interactions responsible for stabilizing the adducts, and experimental methods that can be used to study the symmetry at different time scales. This review considers the following central binding units: hydrogen (proton), halogen (anion), metal (cation), water (hydrogen peroxide).
Collapse
|
18
|
Shenderovich IG. 1,3,5-Triaza-7-Phosphaadamantane (PTA) as a 31P NMR Probe for Organometallic Transition Metal Complexes in Solution. Molecules 2021; 26:molecules26051390. [PMID: 33806666 PMCID: PMC7961616 DOI: 10.3390/molecules26051390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the rigid structure of 1,3,5-triaza-7-phosphaadamantane (PTA), its 31P chemical shift solely depends on non-covalent interactions in which the molecule is involved. The maximum range of change caused by the most common of these, hydrogen bonding, is only 6 ppm, because the active site is one of the PTA nitrogen atoms. In contrast, when the PTA phosphorus atom is coordinated to a metal, the range of change exceeds 100 ppm. This feature can be used to support or reject specific structural models of organometallic transition metal complexes in solution by comparing the experimental and Density Functional Theory (DFT) calculated values of this 31P chemical shift. This approach has been tested on a variety of the metals of groups 8-12 and molecular structures. General recommendations for appropriate basis sets are reported.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
19
|
Modeling of Solute-Solvent Interactions Using an External Electric Field-From Tautomeric Equilibrium in Nonpolar Solvents to the Dissociation of Alkali Metal Halides. Molecules 2021; 26:molecules26051283. [PMID: 33652943 PMCID: PMC7956811 DOI: 10.3390/molecules26051283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
An implicit account of the solvent effect can be carried out using traditional static quantum chemistry calculations by applying an external electric field to the studied molecular system. This approach allows one to distinguish between the effects of the macroscopic reaction field of the solvent and specific solute-solvent interactions. In this study, we report on the dependence of the simulation results on the use of the polarizable continuum approximation and on the importance of the solvent effect in nonpolar solvents. The latter was demonstrated using experimental data on tautomeric equilibria between the pyridone and hydroxypyridine forms of 2,6-di-tert-butyl-4-hydroxy-pyridine in cyclohexane and chloroform.
Collapse
|
20
|
Reviglio AL, Martínez FA, Montero MDA, Garro-Linck Y, Aucar GA, Sperandeo NR, Monti GA. Accurate location of hydrogen atoms in hydrogen bonds of tizoxanide from the combination of experimental and theoretical models. RSC Adv 2021; 11:7644-7652. [PMID: 35423249 PMCID: PMC8695048 DOI: 10.1039/d0ra10609g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
To obtain detailed information about the position of hydrogen atoms in hydrogen bonds, HBs, of crystalline organic molecular compounds is not an easy task. In this work we propose a combination of ssNMR experimental data with theoretical procedures to get such information. Furthermore, the combination of experimental and theoretical models provides us with well-defined grounds to analyse the strength of π-stacking interactions between layers of hydrogen bonded molecules. Two different theoretical models were considered, both approaches being quite different. The first one is a solid-state model, so that the periodicity of a crystalline system underlies calculations of the electronic energy, the electronic density and NMR parameters. The other one is a molecular model in which molecules are taken as isolated monomers, dimers and tetramers. These two models were applied to the tizoxanide, TIZ, molecular crystal though it can widely be applied to any other molecular crystal. By the application of the quantum molecular model it was possible to learn about the way the intermolecular HBs affect the position of hydrogen atoms that belong to HBs in TIZ. This molecule has two intermolecular HBs that stabilize the structure of a basic dimer, but it also has an intramolecular HB in each monomer whose position should be optimized together with the other ones. We found that by doing this it is possible to obtain reliable results of calculations of NMR spectroscopic parameters. Working with the solid-state model we found that any local variation of the TIZ crystalline structure is correlated with the variation of the values of the NMR parameters of each nucleus. The excellent agreement between experimental and calculated chemical shifts leads to the conclusion that the N10-H10 bond distance should be (1.00 ± 0.02) Å.
Collapse
Affiliation(s)
- Ana L Reviglio
- FAMAF, UNC Córdoba Argentina
- Instituto de Física Enrique Gaviola (IFEG), CONICET-UNC Córdoba Argentina
| | - Fernando A Martínez
- Institute of Modelling and Innovation on Technology (IMIT), CONICET-UNNE Corrientes Argentina
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina Corrientes Argentina
| | - Marcos D A Montero
- Institute of Modelling and Innovation on Technology (IMIT), CONICET-UNNE Corrientes Argentina
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina Corrientes Argentina
| | - Yamila Garro-Linck
- FAMAF, UNC Córdoba Argentina
- Instituto de Física Enrique Gaviola (IFEG), CONICET-UNC Córdoba Argentina
| | - Gustavo A Aucar
- Institute of Modelling and Innovation on Technology (IMIT), CONICET-UNNE Corrientes Argentina
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina Corrientes Argentina
| | - Norma R Sperandeo
- Departamento de Ciencias Farmacéuticas, FCQ, UNC Córdoba Argentina
- UNITEFA-CONICET Córdoba Argentina
| | - Gustavo A Monti
- FAMAF, UNC Córdoba Argentina
- Instituto de Física Enrique Gaviola (IFEG), CONICET-UNC Córdoba Argentina
| |
Collapse
|
21
|
Gayathri SC, Manoj N. Crystallographic Snapshots of the Dunathan and Quinonoid Intermediates provide Insights into the Reaction Mechanism of Group II Decarboxylases. J Mol Biol 2020; 432:166692. [PMID: 33122004 DOI: 10.1016/j.jmb.2020.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023]
Abstract
PLP-dependent enzymes catalyze a plethora of chemical reactions affecting diverse physiological functions. Here we report the structural determinants of the reaction mechanism in a Group II PLP-dependent decarboxylase by assigning two early intermediates. The in-crystallo complexes of the PLP bound form, and the Dunathan and quinonoid intermediates, allowed direct observation of the active site interactions. The structures reveal that a subtle rearrangement of a conserved Arg residue in concert with a water-mediated interaction with the carboxylate of the Dunathan intermediate, appears to directly stabilize the alignment and facilitate the release of CO2 to yield the quinonoid. Modeling indicates that the conformational change of a dynamic catalytic loop to a closed form controls a conserved network of hydrogen bond interactions between catalytic residues to protonate the quinonoid. Our results provide a structural framework to elucidate mechanistic roles of residues that govern reaction specificity and catalysis in PLP-dependent decarboxylation.
Collapse
Affiliation(s)
- Subash Chellam Gayathri
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
22
|
Gamov G, Meshkov A, Zavalishin M, Khokhlova AY, Gashnikova A, Aleksandriiskii V, Sharnin V. Protonation of hydrazones derived from pyridoxal 5′-phosphate: Thermodynamic and structural elucidation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Li Z, Zhao Y, Zhou H, Luo HB, Zhan CG. Catalytic Roles of Coenzyme Pyridoxal-5'-phosphate (PLP) in PLP-dependent Enzymes: Reaction Pathway for Methionine-γ-lyase-catalyzed L-methionine Depletion. ACS Catal 2020; 10:2198-2210. [PMID: 33344000 DOI: 10.1021/acscatal.9b03907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pyridoxal-5'-phosphate (PLP), the active form of vitamin B6, is an important and versatile coenzyme involved in a variety of enzymatic reactions, accounting for about 4% of all classified activities. However, the detailed catalytic reaction pathways for PLP-dependent enzymes remain to be explored. Methionine-γ-lyase (MGL), a promising alternative anti-tumor agent to conventional chemotherapies whose catalytic mechanism is highly desired for guiding further development of re-engineered enzymes, was used as a representative PLP-dependent enzyme, and the catalytic mechanism for L-Met elimination by MGL was explored at the first-principles quantum mechanical/molecular mechanical (QM/MM) level with umbrella sampling. The QM/MM calculations revealed that the enzymatic reaction pathway consists of 4 stages for a total of 19 reaction steps with five intermediates captured in available crystal structures. Furthermore, the more comprehensive role of PLP was revealed. Besides the commonly known role of "electron sink", coenzyme PLP can also assist proton transfer and temporarily store the excess proton generated in some intermediate states by using its hydroxyl group and phosphate group. Thus, PLP is participated in most of the 19 steps. This study not only provided a theoretical basis for further development and re-engineering MGL as a potential anti-tumor agent, but also revealed the comprehensive role of PLP which could be used to explore the mechanisms of other PLP-dependent enzymes.
Collapse
Affiliation(s)
- Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Yunsong Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People’s Republic of China
| | - Huifang Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People’s Republic of China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People’s Republic of China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
24
|
Schubert M, Limbach HH, Elguero J. Synthesis of 15 N-labelled 3,5-dimethylpyridine. J Labelled Comp Radiopharm 2019; 62:914-919. [PMID: 31677176 PMCID: PMC6973028 DOI: 10.1002/jlcr.3807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
15N‐labelled pyridines are liquid‐ and solid‐state nuclear magnetic resonance (NMR) probes for chemical and biological environments because their 15N chemical shifts are sensitive to hydrogen‐bond and protonation states. By variation of the type and number of substituents, different target pyridines can be synthesized exhibiting different pKa values and molecular volumes. Various synthetic routes have been described in the literature, starting from different precursors or modification of other 15N‐labelled pyridines. In this work, we have explored the synthesis of 15N 15N‐labelled pyridines using a two‐step process via the synthesis of alkoxy‐3,4‐dihydro‐2H‐pyran as precursor exhibiting already the desired pyridine substitution pattern. As an example, we have synthesized 3,5‐dimethylpyridine‐15N (lutidine‐15N) as demonstrated by 15N‐NMR spectroscopy. That synthesis starts from methacrolein, propenyl ether, and 15N‐labelled NH4Cl as nitrogen source.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany.,Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Institute of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - José Elguero
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
25
|
Structural insights into the mechanism of internal aldimine formation and catalytic loop dynamics in an archaeal Group II decarboxylase. J Struct Biol 2019; 208:137-151. [PMID: 31445086 DOI: 10.1016/j.jsb.2019.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023]
Abstract
Formation of the internal aldimine (LLP) is the first regulatory step that activates pyridoxal 5'-phosphate (PLP) dependent enzymes. The process involves a nucleophilic attack on PLP by an active site Lys residue, followed by proton transfers resulting in a carbinolamine (CBA) intermediate that undergoes dehydration to form the aldimine. Despite a general understanding of the pathway, the structural basis of the mechanistic roles of specific residues in each of these steps is unclear. Here we determined the crystal structure of the LLP form (holo-form) of a Group II PLP-dependent decarboxylase from Methanocaldococcus jannaschii (MjDC) at 1.7 Å resolution. By comparing the crystal structure of MjDC in the LLP form with that of the pyridoxal-P (non-covalently bound aldehyde) form, we demonstrate structural evidence for a water-mediated mechanism of LLP formation. A conserved extended hydrogen-bonding network around PLP coupled to the pyridinyl nitrogen influences activation and catalysis by affecting the electronic configuration of PLP. Furthermore, the two cofactor bound forms revealed open and closed conformations of the catalytic loop (CL) in the absence of a ligand, supporting a hypothesis for a regulatory link between LLP formation and CL dynamics. The evidence suggests that activation of Group II decarboxylases involves a complex interplay of interactions between the electronic states of PLP, the active site micro-environment and CL dynamics.
Collapse
|
26
|
Soniya K, Awasthi S, Nair NN, Chandra A. Transimination Reaction at the Active Site of Aspartate Aminotransferase: A Proton Hopping Mechanism through Pyridoxal 5′-Phosphate. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kumari Soniya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shalini Awasthi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
27
|
Santatiwongchai J, Gleeson D, Gleeson MP. Theoretical Evaluation of the Reaction Mechanism of Serine Hydroxymethyltransferase. J Phys Chem B 2019; 123:407-418. [PMID: 30522268 DOI: 10.1021/acs.jpcb.8b10196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylene THF. SHMT is a folate pathway enzyme and is therefore of considerable medical interest due to its role as an important intervention point for antimalarial, anticancer, and antibacterial treatments. Despite considerable experimental effort, the precise reaction mechanism of SHMT remains unclear. In this study, we explore the mechanism of SHMT to determine the roles of active site residues and the nature and the sequence of chemical steps. Molecular dynamics (MD) methods were employed to generate a suitable starting structure which then underwent analysis using hybrid quantum mechanical/molecular mechanical (QM/MM) simulations. The QM region consisted of 12 key residues, two substrates, and explicit solvent. Our results show that the catalytic reaction proceeds according to a retro-aldol synthetic process with His129 acting as the general base in the reaction. The rate-determining step involves the cleavage of the PLP-serine aldimine Cα-Cβ bond and the formation of formaldehyde in line with experimental evidence. The pyridyl ring of the PLP-serine aldimine substrate exists in deprotonated form, being stabilized directly by Asp208 via a strong H-bond, as well as through interactions with Arg371, Lys237, and His211, and with the surrounding protein which was electrostatically embedded. This knowledge has the potential to impact the design and development of new inhibitors.
Collapse
Affiliation(s)
- Jirapat Santatiwongchai
- Department of Chemistry, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand
| | - Duangkamol Gleeson
- Department of Chemistry, Faculty of Science , King Mongkut's Institute of Technology Ladkrabang , Bangkok 10520 , Thailand
| | - M Paul Gleeson
- Department of Chemistry, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand.,Department of Biomedical Engineering, Faculty of Engineering , King Mongkut's Institute of Technology Ladkrabang , Bangkok 10520 , Thailand
| |
Collapse
|
28
|
A complete structural characterization of the desferrioxamine E biosynthetic pathway from the fire blight pathogen Erwinia amylovora. J Struct Biol 2018; 202:236-249. [DOI: 10.1016/j.jsb.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
|
29
|
Soniya K, Chandra A. Free energy landscapes of prototropic tautomerism in pyridoxal 5′-phosphate schiff bases at the active site of an enzyme in aqueous medium. J Comput Chem 2018; 39:1629-1638. [DOI: 10.1002/jcc.25338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Kumari Soniya
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| | - Amalendu Chandra
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| |
Collapse
|
30
|
Jitonnom J, Hannongbua S. Theoretical study of the arabinan hydrolysis by an inverting GH43 arabinanase. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2017.1422212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jitrayut Jitonnom
- Division of Chemistry, School of Science, University of Phayao, Phayao, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
31
|
Renzi P, Hioe J, Gschwind RM. Enamine/Dienamine and Brønsted Acid Catalysis: Elusive Intermediates, Reaction Mechanisms, and Stereoinduction Modes Based on in Situ NMR Spectroscopy and Computational Studies. Acc Chem Res 2017; 50:2936-2948. [PMID: 29172479 PMCID: PMC6300316 DOI: 10.1021/acs.accounts.7b00320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Over the years, the field of enantioselective organocatalysis has
seen unparalleled growth in the development of novel synthetic applications
with respect to mechanistic investigations. Reaction optimization
appeared to be rather empirical than rational. This offset between
synthetic development and mechanistic understanding was and is generally
due to the difficulties in detecting reactive intermediates and the
inability to experimentally evaluate transition states. Thus, the
first key point for mechanistic studies is detecting elusive intermediates
and characterizing them in terms of their structure, stability, formation
pathways, and kinetic properties. The second key point is evaluating
the importance of these intermediates and their properties in the
transition state. In the past 7 years, our group has addressed
the problems with
detecting elusive intermediates in organocatalysis by means of NMR
spectroscopy and eventually theoretical calculations. Two main activation
modes were extensively investigated: secondary amine catalysis and,
very recently, Brønsted acid catalysis. Using these examples,
we discuss potential methods to stabilize intermediates via intermolecular
interactions; to elucidate their structures, formation pathways and
kinetics; to change the kinetics of the reactions; and to address
their relevance in transition states. The elusive enamine in proline-catalyzed
aldol reactions is used as an example of the stabilization of intermediates
via inter- and intramolecular interactions; the determination of kinetics
on its formation pathway is discussed. Classical structural characterization
of intermediates is described using prolinol and prolinol ether enamines
and dienamines. The Z/E dilemma
for the second double bond of the dienamines shows how the kinetics
of a reaction can be changed to allow for the detection of reaction
intermediates. We recently started to investigate substrate–catalyst
complexes in the field of Brønsted acid catalysis. These studies
on imine/chiral phosphoric acid complexes show that an appropriate
combination of highly developed NMR and theoretical methods can provide
detailed insights into the complicated structures, exchange kinetics,
and H-bonding properties of chiral ion pairs. Furthermore, the merging
of these structural investigations and photoisomerization even allowed
the active transition state combinations to be determined for the
first time on the basis of experimental data only, which is the gold
standard in mechanistic investigations and was previously thought
to be exclusively the domain of theoretical calculations. Thus,
this Account summarizes our recent mechanistic work in the
field of organocatalysis and explains the potential methods for addressing
the central questions in mechanistic studies: stabilization of intermediates,
elucidation of structures and formation pathways, and addressing transition
state combinations experimentally.
Collapse
Affiliation(s)
- Polyssena Renzi
- Institut für Organische Chemie, Universität Regensburg, D-95053 Regensburg, Germany
| | - Johnny Hioe
- Institut für Organische Chemie, Universität Regensburg, D-95053 Regensburg, Germany
| | - Ruth M. Gschwind
- Institut für Organische Chemie, Universität Regensburg, D-95053 Regensburg, Germany
| |
Collapse
|
32
|
Gurinov AA, Denisov GS, Borissova AO, Goloveshkin AS, Greindl J, Limbach HH, Shenderovich IG. NMR Study of Solvation Effect on the Geometry of Proton-Bound Homodimers of Increasing Size. J Phys Chem A 2017; 121:8697-8705. [PMID: 29064692 DOI: 10.1021/acs.jpca.7b09285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen bond geometries in the proton-bound homodimers of quinoline and acridine derivatives in an aprotic polar solution have been experimentally studied using 1H NMR at 120 K. The reported results show that an increase of the dielectric permittivity of the medium results in contraction of the N···N distance. The degree of contraction depends on the homodimer's size and its substituent-specific solvation features. Neither of these effects can be reproduced using conventional implicit solvent models employed in computational studies. In general, the N···N distance in the homodimers of pyridine, quinoline, and acridine derivatives decreases in the sequence gas phase > solid state > polar solvent.
Collapse
Affiliation(s)
- Andrei A Gurinov
- Institute of Chemistry and Biochemistry, Free University Berlin , Takustrasse 3, 14195 Berlin, Germany.,The Imaging and Characterization Core Lab, King Abdullah University of Science and Technology , Al-Khawarizimi Building 01, Thuwal 23955-6900, Saudi Arabia
| | - Gleb S Denisov
- Institute of Physics, St. Petersburg State University , Ulyanovskaya str. 1, 198504 St. Petersburg, Russian Federation
| | - Alexandra O Borissova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991, Vavilov Str., 28, Moscow, Russia
| | - Alexander S Goloveshkin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991, Vavilov Str., 28, Moscow, Russia
| | - Julian Greindl
- Institute of Organic Chemistry, University of Regensburg , Universitaetstrasse 31, 93053 Regensburg, Germany
| | - Hans-Heinrich Limbach
- Institute of Chemistry and Biochemistry, Free University Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Ilya G Shenderovich
- Institute of Chemistry and Biochemistry, Free University Berlin , Takustrasse 3, 14195 Berlin, Germany.,Institute of Organic Chemistry, University of Regensburg , Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
33
|
Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme. Nat Commun 2017; 8:955. [PMID: 29038582 PMCID: PMC5643538 DOI: 10.1038/s41467-017-01060-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Enzymes dependent on pyridoxal 5′-phosphate (PLP, the active form of vitamin B6) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substrate analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. Quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase. Pyridoxal 5’-phosphate (PLP) is a ubiquitous co factor for diverse enzymes, among them aspartate aminotransferase. Here the authors use neutron crystallography, which allows the visualization of the positions of hydrogen atoms, and computation to characterize the catalytic mechanism of the enzyme.
Collapse
|
34
|
Wu CH, Ito K, Buytendyk AM, Bowen KH, Wu JI. Enormous Hydrogen Bond Strength Enhancement through π-Conjugation Gain: Implications for Enzyme Catalysis. Biochemistry 2017. [PMID: 28635262 DOI: 10.1021/acs.biochem.7b00395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surprisingly large resonance-assistance effects may explain how some enzymes form extremely short, strong hydrogen bonds to stabilize reactive oxyanion intermediates and facilitate catalysis. Computational models for several enzymic residue-substrate interactions reveal that when a π-conjugated, hydrogen bond donor (XH) forms a hydrogen bond to a charged substrate (Y-), XH can become significantly more π-electron delocalized, and this "extra" stabilization may boost the [XH···Y-] hydrogen bond strength by ≥15 kcal/mol. This reciprocal relationship departs from the widespread pKa concept (i.e., the idea that short, strong hydrogen bonds form when the interacting moieties have matching pKa values), which has been the rationale for enzymic acid-base reactions. The findings presented here provide new insight into how short, strong hydrogen bonds could form in enzymes.
Collapse
Affiliation(s)
- Chia-Hua Wu
- Department of Chemistry, University of Houston , Houston, Texas 77204, United States
| | | | - Allyson M Buytendyk
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - K H Bowen
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Judy I Wu
- Department of Chemistry, University of Houston , Houston, Texas 77204, United States
| |
Collapse
|
35
|
Dajnowicz S, Parks JM, Hu X, Gesler K, Kovalevsky AY, Mueser TC. Direct evidence that an extended hydrogen-bonding network influences activation of pyridoxal 5'-phosphate in aspartate aminotransferase. J Biol Chem 2017; 292:5970-5980. [PMID: 28232482 DOI: 10.1074/jbc.m116.774588] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is a fundamental, multifunctional enzyme cofactor used to catalyze a wide variety of chemical reactions involved in amino acid metabolism. PLP-dependent enzymes optimize specific chemical reactions by modulating the electronic states of PLP through distinct active site environments. In aspartate aminotransferase (AAT), an extended hydrogen bond network is coupled to the pyridinyl nitrogen of the PLP, influencing the electrophilicity of the cofactor. This network, which involves residues Asp-222, His-143, Thr-139, His-189, and structural waters, is located at the edge of PLP opposite the reactive Schiff base. We demonstrate that this hydrogen bond network directly influences the protonation state of the pyridine nitrogen of PLP, which affects the rates of catalysis. We analyzed perturbations caused by single- and double-mutant variants using steady-state kinetics, high resolution X-ray crystallography, and quantum chemical calculations. Protonation of the pyridinyl nitrogen to form a pyridinium cation induces electronic delocalization in the PLP, which correlates with the enhancement in catalytic rate in AAT. Thus, PLP activation is controlled by the proximity of the pyridinyl nitrogen to the hydrogen bond microenvironment. Quantum chemical calculations indicate that Asp-222, which is directly coupled to the pyridinyl nitrogen, increases the pKa of the pyridine nitrogen and stabilizes the pyridinium cation. His-143 and His-189 also increase the pKa of the pyridine nitrogen but, more significantly, influence the position of the proton that resides between Asp-222 and the pyridinyl nitrogen. These findings indicate that the second shell residues directly enhance the rate of catalysis in AAT.
Collapse
Affiliation(s)
- Steven Dajnowicz
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606.,the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, and
| | - Jerry M Parks
- the University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Xiche Hu
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Korie Gesler
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Andrey Y Kovalevsky
- the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, and
| | - Timothy C Mueser
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606,
| |
Collapse
|
36
|
Sobczyk L, Chudoba D, Tolstoy PM, Filarowski A. Some Brief Notes on Theoretical and Experimental Investigations of Intramolecular Hydrogen Bonding. Molecules 2016; 21:E1657. [PMID: 27918442 PMCID: PMC6273268 DOI: 10.3390/molecules21121657] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022] Open
Abstract
A review of selected literature data related to intramolecular hydrogen bonding in ortho-hydroxyaryl Schiff bases, ortho-hydroxyaryl ketones, ortho-hydroxyaryl amides, proton sponges and ortho-hydroxyaryl Mannich bases is presented. The paper reports on the application of experimental spectroscopic measurements (IR and NMR) and quantum-mechanical calculations for investigations of the proton transfer processes, the potential energy curves, tautomeric equilibrium, aromaticity etc. Finally, the equilibrium between the intra- and inter-molecular hydrogen bonds in amides is discussed.
Collapse
Affiliation(s)
- Lucjan Sobczyk
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Str., 50-383 Wrocław, Poland.
| | - Dorota Chudoba
- Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
| | - Peter M Tolstoy
- Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504, Russia.
| | - Aleksander Filarowski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Str., 50-383 Wrocław, Poland.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
| |
Collapse
|
37
|
Caulkins BG, Young RP, Kudla RA, Yang C, Bittbauer T, Bastin B, Hilario E, Fan L, Marsella MJ, Dunn MF, Mueller LJ. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity. J Am Chem Soc 2016; 138:15214-15226. [PMID: 27779384 PMCID: PMC5129030 DOI: 10.1021/jacs.6b08937] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 12/22/2022]
Abstract
Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5'-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography-the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry-to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate Cα and positive charge at C4' of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites.
Collapse
Affiliation(s)
- Bethany G. Caulkins
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Robert P. Young
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Ryan A. Kudla
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Chen Yang
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Thomas
J. Bittbauer
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Baback Bastin
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Eduardo Hilario
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Li Fan
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Michael J. Marsella
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Michael F. Dunn
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Leonard J. Mueller
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
38
|
Gamov G, Zavalishin M, Khokhlova A, Sharnin V. Influence of aqueous dimethyl sulfoxide on pyridoxine protonation and tautomerization. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Gökcan H, Monard G, Sungur Konuklar FA. Molecular dynamics simulations of apo, holo, and inactivator bound GABA-at reveal the role of active site residues in PLP dependent enzymes. Proteins 2016; 84:875-91. [PMID: 26800298 DOI: 10.1002/prot.24991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 11/08/2022]
Abstract
The pyridoxal 5-phosphate (PLP) cofactor is a significant organic molecule in medicinal chemistry. It is often found covalently bound to lysine residues in proteins to form PLP dependent enzymes. An example of this family of PLP dependent enzymes is γ-aminobutyric acid aminotransferase (GABA-AT) which is responsible for the degradation of the neurotransmitter GABA. Its inhibition or inactivation can be used to prevent the reduction of GABA concentration in brain which is the source of several neurological disorders. As a test case for PLP dependent enzymes, we have performed molecular dynamics simulations of GABA-AT to reveal the roles of the protein residues and its cofactor. Three different states have been considered: the apoenzyme, the holoenzyme, and the inactive state obtained after the suicide inhibition by vigabatrin. Different protonation states have also been considered for PLP and two key active site residues: Asp298 and His190. Together, 24 independent molecular dynamics trajectories have been simulated for a cumulative total of 2.88 µs. Our results indicate that, unlike in aqueous solution, the PLP pyridine moiety is protonated in GABA-AT. This is a consequence of a pKa shift triggered by a strong charge-charge interaction with an ionic "diad" formed by Asp298 and His190 that would help the activation of the first half-reaction of the catalytic mechanism in GABA-AT: the conversion of PLP to free pyridoxamine phosphate (PMP). In addition, our MD simulations exhibit additional strong hydrogen bond networks between the protein and PLP: the phosphate group is held in place by the donation of at least three hydrogen bonds while the carbonyl oxygen of the pyridine ring interacts with Gln301; Phe181 forms a π-π stacking interaction with the pyridine ring and works as a gate keeper with the assistance of Val300. All these interactions are hypothesized to help maintain free PMP in place inside the protein active site to facilitate the second half-reaction in GABA-AT: the regeneration of PLP-bound GABA-AT (i.e., the holoenzyme). Proteins 2016; 84:875-891. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hatice Gökcan
- Universite De Lorraine, UMR 7565 SRSMC, Boulevard Des Aiguillettes B.P. 70239, Vandoeuvre-les-Nancy, 54506, France.,CNRS, UMR 7565 SRSMC, Boulevard Des Aiguillettes B.P. 70239, Vandoeuvre-les-Nancy, 54506, France.,Computational Science and Engineering Division, Informatics Institute, Ayazağa Campus, Maslak, Istanbul, 34496, Turkey
| | - Gerald Monard
- Universite De Lorraine, UMR 7565 SRSMC, Boulevard Des Aiguillettes B.P. 70239, Vandoeuvre-les-Nancy, 54506, France.,CNRS, UMR 7565 SRSMC, Boulevard Des Aiguillettes B.P. 70239, Vandoeuvre-les-Nancy, 54506, France
| | - F Aylin Sungur Konuklar
- Computational Science and Engineering Division, Informatics Institute, Ayazağa Campus, Maslak, Istanbul, 34496, Turkey
| |
Collapse
|
40
|
Kucherov S, Bureiko S, Denisov G. Anticooperativity of FHF hydrogen bonds in clusters of the type F− × (HF)n, RF × (HF)n and XF × (HF)n, R = alkyl and X = H, Br, Cl, F. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.10.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
41
|
Nanoparticle corona for proteins: mechanisms of interaction between dendrimers and proteins. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Catalytic roles of βLys87 in tryptophan synthase: (15)N solid state NMR studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1194-9. [PMID: 25688830 DOI: 10.1016/j.bbapap.2015.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
The proposed mechanism for tryptophan synthase shows βLys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4' for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ε-¹⁵N-lysine TS was prepared to access the protonation state of βLys87 using ¹⁵N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ε-amino group switches between protonated and neutral states as the β-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Guest Editors: Andrea Mozzarelli and Loredano Pollegioni.
Collapse
|
43
|
Mai BK, Kim Y. Long-range proton relay shows an inverse linear free energy relationship depending on the pKa of the hydrogen-bonded wire. RSC Adv 2015. [DOI: 10.1039/c4ra15076g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The long-range proton transfer dependence on the pKa of hydroxyl molecules in hydrogen (H)-bonded wires was investigated using quantum mechanical calculations.
Collapse
Affiliation(s)
- Binh Khanh Mai
- Department of Applied Chemistry and Institute of Natural Sciences
- Kyung Hee University
- Yongin-Si
- Korea
| | - Yongho Kim
- Department of Applied Chemistry and Institute of Natural Sciences
- Kyung Hee University
- Yongin-Si
- Korea
| |
Collapse
|
44
|
|
45
|
Shenderovich IG, Lesnichin SB, Tu C, Silverman DN, Tolstoy PM, Denisov GS, Limbach HH. NMR studies of active-site properties of human carbonic anhydrase II by using (15) N-labeled 4-methylimidazole as a local probe and histidine hydrogen-bond correlations. Chemistry 2014; 21:2915-29. [PMID: 25521423 DOI: 10.1002/chem.201404083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/12/2014] [Indexed: 12/24/2022]
Abstract
By using a combination of liquid and solid-state NMR spectroscopy, (15) N-labeled 4-methylimidazole (4-MI) as a local probe of the environment has been studied: 1) in the polar, wet Freon CDF3 /CDF2 Cl down to 130 K, 2) in water at pH 12, and 3) in solid samples of the mutant H64A of human carbonic anhydrase II (HCA II). In the latter, the active-site His64 residue is replaced by alanine; the catalytic activity is, however, rescued by the presence of 4-MI. For the Freon solution, it is demonstrated that addition of water molecules not only catalyzes proton tautomerism but also lifts its quasidegeneracy. The possible hydrogen-bond clusters formed and the mechanism of the tautomerism are discussed. Information about the imidazole hydrogen-bond geometries is obtained by establishing a correlation between published (1) H and (15) N chemical shifts of the imidazole rings of histidines in proteins. This correlation is useful to distinguish histidines embedded in the interior of proteins and those at the surface, embedded in water. Moreover, evidence is obtained that the hydrogen-bond geometries of His64 in the active site of HCA II and of 4-MI in H64A HCA II are similar. Finally, the degeneracy of the rapid tautomerism of the neutral imidazole ring His64 reported by Shimahara et al. (J. Biol. Chem.- 2007, 282, 9646) can be explained with a wet, polar, nonaqueous active-site conformation in the inward conformation, similar to the properties of 4-MI in the Freon solution. The biological implications for the enzyme mechanism are discussed.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- University of Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany).
| | | | | | | | | | | | | |
Collapse
|
46
|
Caulkins B, Bastin B, Yang C, Neubauer TJ, Young RP, Hilario E, Huang YMM, Chang CEA, Fan L, Dunn MF, Marsella MJ, Mueller LJ. Protonation states of the tryptophan synthase internal aldimine active site from solid-state NMR spectroscopy: direct observation of the protonated Schiff base linkage to pyridoxal-5'-phosphate. J Am Chem Soc 2014; 136:12824-7. [PMID: 25148001 PMCID: PMC4183654 DOI: 10.1021/ja506267d] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Indexed: 11/29/2022]
Abstract
The acid-base chemistry that drives catalysis in pyridoxal-5'-phosphate (PLP)-dependent enzymes has been the subject of intense interest and investigation since the initial identification of PLP's role as a coenzyme in this extensive class of enzymes. It was first proposed over 50 years ago that the initial step in the catalytic cycle is facilitated by a protonated Schiff base form of the holoenzyme in which the linking lysine ε-imine nitrogen, which covalently binds the coenzyme, is protonated. Here we provide the first (15)N NMR chemical shift measurements of such a Schiff base linkage in the resting holoenzyme form, the internal aldimine state of tryptophan synthase. Double-resonance experiments confirm the assignment of the Schiff base nitrogen, and additional (13)C, (15)N, and (31)P chemical shift measurements of sites on the PLP coenzyme allow a detailed model of coenzyme protonation states to be established.
Collapse
Affiliation(s)
- Bethany
G. Caulkins
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Baback Bastin
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Chen Yang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Thomas J. Neubauer
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Robert P. Young
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Eduardo Hilario
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Yu-ming M. Huang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Li Fan
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Michael F. Dunn
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Michael J. Marsella
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Leonard J. Mueller
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
47
|
Dutta Banik S, Chandra A. A Hybrid QM/MM Simulation Study of Intramolecular Proton Transfer in the Pyridoxal 5′-Phosphate in the Active Site of Transaminase: Influence of Active Site Interaction on Proton Transfer. J Phys Chem B 2014; 118:11077-89. [DOI: 10.1021/jp506196m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016
| |
Collapse
|
48
|
Pang J, Scrutton NS, Sutcliffe MJ. Quantum Mechanics/Molecular Mechanics Studies on the Mechanism of Action of Cofactor Pyridoxal 5′-Phosphate in Ornithine 4,5-Aminomutase. Chemistry 2014; 20:11390-401. [DOI: 10.1002/chem.201402759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 02/02/2023]
|
49
|
Chan-Huot M, Dos A, Zander R, Sharif S, Tolstoy PM, Compton S, Fogle E, Toney MD, Shenderovich I, Denisov GS, Limbach HH. NMR Studies of Protonation and Hydrogen Bond States of Internal Aldimines of Pyridoxal 5′-Phosphate Acid–Base in Alanine Racemase, Aspartate Aminotransferase, and Poly-l-lysine. J Am Chem Soc 2013; 135:18160-75. [DOI: 10.1021/ja408988z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Monique Chan-Huot
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Ecole Normale Supérieure, Laboratoire des BioMolécules, 24 rue Lhomond, 75231 Cedex 05, Paris, France
| | - Alexandra Dos
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Reinhard Zander
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Shasad Sharif
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Peter M. Tolstoy
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Department
of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russian Federation
| | - Shara Compton
- Department
of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
- Department
of Chemistry, Widener University, One University Place, Chester, Pennsylvania 19013, United States
| | - Emily Fogle
- Department
of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Chemistry & Biochemistry, CalPoly, San Luis Obispo, California 93407, United States
| | - Michael D. Toney
- Department
of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ilya Shenderovich
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- University of Regensburg, Universitätsstr.
31, 93040 Regensburg, Germany
| | - Gleb S. Denisov
- Institute
of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | - Hans-Heinrich Limbach
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
50
|
Toney MD. Aspartate aminotransferase: an old dog teaches new tricks. Arch Biochem Biophys 2013; 544:119-27. [PMID: 24121043 DOI: 10.1016/j.abb.2013.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/28/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022]
Abstract
Aspartate aminotransferase (AAT) is a prototypical pyridoxal 5'-phosphate (PLP) dependent enzyme that catalyzes the reversible interconversion of l-aspartate and α-ketoglutarate with oxalacetate and l-glutamate via a ping-pong catalytic cycle in which the pyridoxamine 5'-phosphate enzyme form is an intermediate. There is a bountiful literature on AAT that spans approximately 60years, and much fundamental mechanistic information on PLP dependent reactions has been gained from its study. Here, we review our recent work on AAT, where we again used it as a test bed for fundamental concepts in PLP chemistry. First, we discuss the role that coenzyme protonation state plays in controlling reaction specificity, then ground state destabilization via hyperconjugation in the external aldimine intermediate is examined. The third topic is light enhancement of catalysis of Cα-H deprotonation by PLP in solution and in AAT, which occurs through a triplet state of the external aldimine intermediate. Lastly, we consider recent advances in our analyses of enzyme multiple sequence alignments for the purpose of predicting mutations that are required to interconvert structurally similar but catalytically distinct enzymes, and the application of our program JANUS to the conversion of AAT into tyrosine aminotransferase.
Collapse
Affiliation(s)
- Michael D Toney
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|