1
|
Singh S, Yadav PK, Singh AK. In-silico structural characterization and phylogenetic analysis of Nucleoside diphosphate kinase: A novel antiapoptotic protein of Porphyromonas gingivalis. J Cell Biochem 2023; 124:545-556. [PMID: 36815439 DOI: 10.1002/jcb.30389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
The Nucleoside diphosphate kinase (NDK) protein of Porphyromonas gingivalis (P. gingivalis) plays a crucial role in immune evasion and inhibition of apoptosis in host cells and has the potential to cause cancer. However, its structure has not yet been characterized. We used an in-silico approach to determine the 3D structure of the P. gingivalis NDK. Furthermore, structural characterization and functional annotation were performed using computational approaches. The 3D structure of NDK was predicted through homology modeling. The structural domains predicted for the model protein belong to the NDK family. Structural alignment of prokaryotic and eukaryotic NDKs with the model protein revealed the conservation of the domain region. Structure-based phylogenetic analysis depicted a significant evolutionary relationship between the model protein and the prokaryotic NDK. Functional annotation of the model confirmed structural homology, exhibiting similar enzymatic functions as NDK, including ATP binding and nucleoside diphosphate kinase activity. Furthermore, molecular dynamic (MD) simulation technique stabilized the model structure and provides a thermo-stable protein structure that can be used as a therapeutic target for further studies.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Piyush Kumar Yadav
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| |
Collapse
|
2
|
Dhingra N, Singh JB, Singh HL. Synthesis, spectroscopy, and density functional theory of organotin and organosilicon complexes of bioactive ligands containing nitrogen, sulfur donor atoms as antimicrobial agents: in vitro and in silico studies. Dalton Trans 2022; 51:8821-8831. [PMID: 35620880 DOI: 10.1039/d2dt01051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently inorganic-based metallodrugs provide an effective mechanism for the drugs on the choice of metal and its properties. Medicinal complex compounds provide an efficient platform for various pharmacological and therapeutic applications. Six new organotin and organosilicon complexes containing sulphur and nitrogen donor atoms were synthesised. These complexes of (E)-2-((4-methoxybenzylidene)amino)benzenethiol were characterized by elemental analyses, molecular weights, conductance measurements, infrared, electronic, and NMR spectroscopy. The data analysis indicated that the Schiff base contains bidentate nitrogen sulfur (NS) domains and was coordinated to silicon (Si) and tin (Sn) moieties via the imine-N and thiolic-S atoms, resulting in penta- and hexa-coordinated complexes in 1 : 1 and 1 : 2 ratios, respectively. The geometries around the Sn and Si atoms in complexes 1, 3, and 5 were five-coordinated and 2, 4, and 6 were six-coordinated octahedra, respectively. Density functional theory (DFT) was used to determine the optimal structural parameters. The antimicrobial activities of the ligand and its complexes were determined. These data indicate that metal complexes are more effective against bacteria and fungi in comparison to the free ligand. Molecular docking was performed to interpret the interaction of protein and various complexes and it was observed that compound 6 showed the highest binding affinity.
Collapse
Affiliation(s)
- Naveen Dhingra
- Department of Agriculture and Internal Quality Assurance Cell, Medi-Caps University, Pigdamber Road, Rau, Indore-453331, M.P., India
| | - J B Singh
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh-332311, Sikar, Raj., India. .,Department of Chemistry, Govt PG College Osian, Jodhapur-342303, India
| | - Har Lal Singh
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh-332311, Sikar, Raj., India.
| |
Collapse
|
3
|
Abdel-Rahman LH, Basha MT, Al-Farhan BS, Shehata MR, Mohamed SK, Ramli Y. [Cu(dipicolinoylamide)(NO 3)(H 2O)] as anti-COVID-19 and antibacterial drug candidate: Design, synthesis, crystal structure, DFT and molecular docking. J Mol Struct 2022; 1247:131348. [PMID: 36406284 PMCID: PMC9640988 DOI: 10.1016/j.molstruc.2021.131348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
For first time the new N-picolinoypicolinlamide was obtained as in situ ligand during the reaction of 2,4,6-ris(2-pyridyl)-,3,5-triazine with aqueous solution of CuNO3·3H2O and formed the corresponding complex [Cu(dipicolinoylamide)(NO3)(H2O)]. The crystal structure of the obtained complex was determined by x-ray structure. The complex crystallizes in space group P21/n, a = 10.2782(9) Å, b = 7.5173(6) Å, c = 17.738(2) Å, α = 90.00°, β = 91.368(1)°, γ = 90.00°, V = 1370.1(2) Å3, Z = 4. The copper center has a distorted octahedral geometry. DFT calculations show good agreement between theoretical and X-ray data. The Molecular docking studies were executed to consider the nature of binding and binding affinity of the synthesized compounds with the receptor of COVID-19 main protease viral protein (PDB ID: 6lu7), the receptor of gram -ve bacteria (Escherichia coli, PDB ID: 1fj4) and the receptor of gram +ve bacteria (Staphylococcus aureus, PDB ID: 3q8u and Proteus PDB ID: 5i39) and with human DNA. Finally, in silico ADMET predictions was also examined.
Collapse
Affiliation(s)
| | - Maram T Basha
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia
| | - Badriah Saad Al-Farhan
- Chemistry Department, Faculty of Girls for Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed R Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 6GD, England
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
4
|
Agnihotri P, Shakya AK, Mishra AK, Pratap JV. Crystal structure and characterization of nucleoside diphosphate kinase from Vibrio cholerae. Biochimie 2021; 190:57-69. [PMID: 34242727 DOI: 10.1016/j.biochi.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 11/26/2022]
Abstract
Nucleoside diphosphate kinases (NDK) are ubiquitous enzymes that catalyse the transfer of the γ phosphate from nucleoside triphosphates (NTPs) to nucleoside diphosphate (NDPs), to maintain appropriate NTP levels in cells. NDKs are associated with signal transduction, cell development, proliferation, differentiation, tumor metastasis, apoptosis and motility. The critical role of NDK in bacterial virulence renders it a potential drug target. The present manuscript reports crystal structure and functional characterization of Vibrio cholerae NDK (VNDK). The 16 kDa VNDK was crystallized in a solution containing 30% PEG 4000, 100 mM Tris-HCl pH 8.5 and 200 mM sodium acetate in orthorhombic space group P212121 with unit cell parameters a = 48.37, b = 71.21, c = 89.14 Å, α = β = γ = 90° with 2 molecules in asymmetric unit. The crystal structure was solved by molecular replacement and refined to crystallographic Rfactor and Rfree values of 22.8% and 25.8% respectively. VNDK exists as both dimer and tetramer in solution as confirmed by size exclusion chromatography, glutaraldehyde crosslinking and small angle X-ray scattering while the crystal structure appears to be a dimer. The biophysical characterization states that VNDK has kinase and DNase activity with maximum stability at pH 8-9 and temperature up to 40 °C. VNDK shows elevated thermolability as compared to other NDK and shows preferential binding with GTP rationalized using computational studies.
Collapse
Affiliation(s)
- Pragati Agnihotri
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Anil Kumar Shakya
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Arjun K Mishra
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - J Venkatesh Pratap
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India.
| |
Collapse
|
5
|
Nguyen S, Jovcevski B, Pukala TL, Bruning JB. Nucleoside selectivity of Aspergillus fumigatus nucleoside-diphosphate kinase. FEBS J 2020; 288:2398-2417. [PMID: 33089641 DOI: 10.1111/febs.15607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Aspergillus fumigatus infections are rising at a disconcerting rate in tandem with antifungal resistance rates. Efforts to develop novel antifungals have been hindered by the limited knowledge of fundamental biological and structural mechanisms of A. fumigatus propagation. Biosynthesis of NTPs, the building blocks of DNA and RNA, is catalysed by NDK. An essential enzyme in A. fumigatus, NDK poses as an attractive target for novel antifungals. NDK exhibits broad substrate specificity across species, using both purines and pyrimidines, but the selectivity of such nucleosides in A. fumigatus NDK is unknown, impeding structure-guided inhibitor design. Structures of NDK in unbound- and NDP-bound states were solved, and NDK activity was assessed in the presence of various NTP substrates. We present the first instance of a unique substrate binding mode adopted by CDP and TDP specific to A. fumigatus NDK that illuminates the structural determinants of selectivity. Analysis of the oligomeric state reveals that A. fumigatus NDK adopts a hexameric assembly in both unbound- and NDP-bound states, contrary to previous reports suggesting it is tetrameric. Kinetic analysis revealed that ATP exhibited the greatest turnover rate (321 ± 33.0 s-1 ), specificity constant (626 ± 110.0 mm-1 ·s-1 ) and binding free energy change (-37.0 ± 3.5 kcal·mol-1 ). Comparatively, cytidine nucleosides displayed the slowest turnover rate (53.1 ± 3.7 s-1 ) and lowest specificity constant (40.2 ± 4.4 mm-1 ·s-1 ). We conclude that NDK exhibits nucleoside selectivity whereby adenine nucleosides are used preferentially compared to cytidine nucleosides, and these insights can be exploited to guide drug design. ENZYMES: Nucleoside-diphosphate kinase (EC 2.7.4.6). DATABASE: Structural data are available in the PDB database under the accession numbers: Unbound-NDK (6XP4), ADP-NDK (6XP7), GDP-NDK (6XPS), IDP-NDK (6XPU), UDP-NDK (6XPT), CDP-NDK (6XPW), TDP-NDK (6XPV).
Collapse
Affiliation(s)
- Stephanie Nguyen
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Australia
| | - Blagojce Jovcevski
- Adelaide Proteomics Centre, School of Physical Sciences, The University of Adelaide, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Australia
| | - Tara L Pukala
- Adelaide Proteomics Centre, School of Physical Sciences, The University of Adelaide, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Australia
| |
Collapse
|
6
|
Kimura M, Akanuma S. Reconstruction and Characterization of Thermally Stable and Catalytically Active Proteins Comprising an Alphabet of ~ 13 Amino Acids. J Mol Evol 2020; 88:372-381. [PMID: 32201904 DOI: 10.1007/s00239-020-09938-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
While extant organisms synthesize proteins using approximately 20 kinds of genetically coded amino acids, the earliest protein synthesis system is likely to have been much simpler, utilizing a reduced set of amino acids. However, which types of building blocks were involved in primordial protein synthesis remains unclear. Herein, we reconstructed three convergent sequences of an ancestral nucleoside diphosphate kinase, each comprising a 10 amino acid "alphabet," and found that two of these variants folded into soluble and stable tertiary structures. Therefore, an alphabet consisting of 10 amino acids contains sufficient information for creating stable proteins. Furthermore, re-incorporation of a few more amino acid types into the active site of the 10 amino acid variants improved the catalytic activity, although the specific activity was not as high as that of extant proteins. Collectively, our results provide experimental support for the idea that robust protein scaffolds can be built with a subset of the current 20 amino acids that might have existed abundantly in the prebiotic environment, while the other amino acids, especially those with functional sidechains, evolved to contribute to efficient enzyme catalysis.
Collapse
Affiliation(s)
- Madoka Kimura
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
7
|
Pahonțu E, Proks M, Shova S, Lupașcu G, Ilieș D, Bărbuceanu Ș, Socea L, Badea M, Păunescu V, Istrati D, Gulea A, Drăgănescu D, Pîrvu CED. Synthesis, characterization, molecular docking studies andin vitroscreening of new metal complexes with Schiff base as antimicrobial and antiproliferative agents. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elena Pahonțu
- General and Inorganic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Maria Proks
- Functional Sciences Department, Faculty of MedicineUniversity of Medicine and Pharmacy ‘Victor Babeș’, ‘Pius Brinzeu’, County Emergency Clinical Hospital, Oncogen Institute 156 Liviu Rebreanu 300723 Timișoara Romania
| | - Sergiu Shova
- Institute of Macromolecular Chemistry ‘Petru Poni’ 41A Grigore Ghica Voda Alley 700487 Iași Romania
| | - Gina Lupașcu
- Physiology Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Diana‐Carolina Ilieș
- Organic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Ștefania‐Felicia Bărbuceanu
- Organic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Laura‐Ileana Socea
- Organic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Mihaela Badea
- Inorganic Chemistry Department, Faculty of ChemistryUniversity of Bucharest 23 Dumbrava Rosie Street 020462 Bucharest Romania
| | - Virgil Păunescu
- Functional Sciences Department, Faculty of MedicineUniversity of Medicine and Pharmacy ‘Victor Babeș’, ‘Pius Brinzeu’, County Emergency Clinical Hospital, Oncogen Institute 156 Liviu Rebreanu 300723 Timișoara Romania
| | - Dorin Istrati
- Department of Therapeutic DentistryFaculty of Dentistry ‘Nicolae Testemiţanu’, State University of Medicine and Pharmacy 165 Stefan cel Mare si Sfant Street 2009 Chişinău Moldova
| | - Aurelian Gulea
- Laboratory of Advanced Materials in Biofarmaceuticals and TechnicsMoldova State University 60 Mateevici Street 2009 Chisinau Moldova
| | - Doina Drăgănescu
- Pharmaceutical Physics Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Cristina Elena Dinu Pîrvu
- Physical and Colloidal Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| |
Collapse
|
8
|
Characterization of crystal structure and key residues of Aspergillus fumigatus nucleoside diphosphate kinase. Biochem Biophys Res Commun 2019; 511:148-153. [PMID: 30773256 DOI: 10.1016/j.bbrc.2019.01.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 11/20/2022]
Abstract
Aspergillus fumigatus is a major pathogen of invasive pulmonary aspergillosis with high mortality rate. The nucleoside diphosphate kinase of A. fumigatus, AfNDK (also called SwoH) is essential for its viability, however, its structural characteristic was unknown. In this study, we solved the crystal structure of AfNDK and found that it exists predominantly in form of tetramer in solution. Oligomeric form rather than dimeric form was essential for its kinase activity. The Arg30 and the C terminal amino acids were crucial for dimer-dimer interaction and the viability of A. fumigatus. Mutation V83F might make the secondary structure α5 helix protrude outward so that the whole protein structure became unstable at higher temperature, which might subsequently result to the inviability of A. fumigatus under 44 °C. In conclusion, the crystal structure of AfNDK was for the first time analyzed and the stability of the tetrameric form with dimer-dimer interaction were crucial for its function in A. fumigatus.
Collapse
|
9
|
Abou-Dobara MI, Omar NF, Diab MA, El-Sonbati AZ, Morgan SM, El-Mogazy MA. Allyl rhodanine azo dye derivatives: Potential antimicrobials target d-alanyl carrier protein ligase and nucleoside diphosphate kinase. J Cell Biochem 2019; 120:1667-1678. [PMID: 30187946 DOI: 10.1002/jcb.27473] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
3-Allyl-5-(4-arylazo)-2-thioxothiazolidine-4-one (HLn ) ligands (where n = 1 to 3) were hypothesized to have antimicrobial activities mediated through inhibition of new antimicrobial targets. The ligands (HLn ) were synthesized and characterized by infrared (IR) and 1 H nuclear magnetic resonance (1 H NMR) spectra. The ligands (HLn ) were in silico screened to their potential inhibition to models of d-alanyl carrier protein ligase (DltA) (from Bacillus cereus, PDB code 3FCE) and nucleoside diphosphate kinase (NDK) (from Staphylococcus aureus; PDB code 3Q8U). HL3 ligand has the best energy and mode of binding to both NDK and DltA, even though its binding to DltA was stronger than that to NDK. In antimicrobial activity of HL3 ligand, morphological and cytological changes in HL3 -treated bacteria agreed with the in silico results. The HL3 ligand showed significant antimicrobial activity against B. cereus, S. aureus, and Fusarium oxysporium. The HL3 -treated bacterial cells appeared malformed and incompletely separated. Its cell walls appeared electron-lucent and ruptured. They contained more mesosomes than normal cells. It was found that the HL3 ligand represented as a bactericide against B. cereus and S. aureusby blocking target DltA, and may target NDK.
Collapse
Affiliation(s)
- Mohamed I Abou-Dobara
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Noha F Omar
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Mostafa A Diab
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Adel Z El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Shaimaa M Morgan
- Environmental Monitoring Laboratory, Ministry of Health, Port Said, Egypt
| | | |
Collapse
|
10
|
Dumais M, Davies DR, Lin T, Staker BL, Myler PJ, Van Voorhis WC. Structure and analysis of nucleoside diphosphate kinase from Borrelia burgdorferi prepared in a transition-state complex with ADP and vanadate moieties. Acta Crystallogr F Struct Biol Commun 2018; 74:373-384. [PMID: 29870023 PMCID: PMC5987747 DOI: 10.1107/s2053230x18007392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/16/2018] [Indexed: 01/13/2023] Open
Abstract
Nucleoside diphosphate kinases (NDKs) are implicated in a wide variety of cellular functions owing to their enzymatic conversion of NDP to NTP. NDK from Borrelia burgdorferi (BbNDK) was selected for functional and structural analysis to determine whether its activity is required for infection and to assess its potential for therapeutic inhibition. The Seattle Structural Genomics Center for Infectious Diseases (SSGCID) expressed recombinant BbNDK protein. The protein was crystallized and structures were solved of both the apoenzyme and a liganded form with ADP and vanadate ligands. This provided two structures and allowed the elucidation of changes between the apo and ligand-bound enzymes. Infectivity studies with ndk transposon mutants demonstrated that NDK function was important for establishing a robust infection in mice, and provided a rationale for therapeutic targeting of BbNDK. The protein structure was compared with other NDK structures found in the Protein Data Bank and was found to have similar primary, secondary, tertiary and quaternary structures, with conserved residues acting as the catalytic pocket, primarily using His132 as the phosphohistidine-transfer residue. Vanadate and ADP complexes model the transition state of this phosphoryl-transfer reaction, demonstrating that the pocket closes when bound to ADP, while allowing the addition or removal of a γ-phosphate. This analysis provides a framework for the design of potential therapeutics targeting BbNDK inhibition.
Collapse
Affiliation(s)
- Mitchell Dumais
- Department of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| | | | - Tao Lin
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Bart L. Staker
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle, Washington, USA
| | - Peter J. Myler
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle, Washington, USA
- Department of Biomedical Informatics and Health Education, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Wesley C. Van Voorhis
- Department of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Discovery of novel inhibitors for Leishmania nucleoside diphosphatase kinase (NDK) based on its structural and functional characterization. J Comput Aided Mol Des 2017; 31:547-562. [DOI: 10.1007/s10822-017-0022-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
12
|
Pyrrole-indolinone SU11652 targets the nucleoside diphosphate kinase from Leishmania parasites. Biochem Biophys Res Commun 2017; 488:461-465. [PMID: 28499874 DOI: 10.1016/j.bbrc.2017.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/18/2023]
Abstract
Nucleoside diphosphate kinases (NDKs) are key enzymes in the purine-salvage pathway of trypanosomatids and have been associated with the maintenance of host-cell integrity for the benefit of the parasite, being potential targets for rational drug discovery and design. The NDK from Leishmania major (LmNDK) and mutants were expressed and purified to homogeneity. Thermal shift assays were employed to identify potential inhibitors for LmNDK. Calorimetric experiments, site-directed mutagenesis and molecular docking analysis were performed to validate the interaction and to evaluate the structural basis of ligand recognition. Furthermore, the anti-leishmanial activity of the newly identified and validated compound was tested in vitro against different Leishmania species. The molecule SU11652, a Sunitinib analog, was identified as a potential inhibitor for LmNDK and structural studies indicated that this molecule binds to the active site of LmNDK in a similar conformation to nucleotides, mimicking natural substrates. Isothermal titration calorimetry experiments combined with site-directed mutagenesis revealed that the residues H50 and H117, considered essential for catalysis, play an important role in ligand binding. In vitro cell studies showed that SU11652 had similar efficacy to Amphotericin b against some Leishmania species. Together, our results indicate the pyrrole-indolinone SU11652 as a promising scaffold for the rational design of new drugs targeting the enzyme NDK from Leishmania parasites.
Collapse
|
13
|
Yamaguchi N, Yoshinaga M, Kamino K, Ueki T. Vanadium-Binding Ability of Nucleoside Diphosphate Kinase from the Vanadium-Rich Fan Worm, Pseudopotamilla occelata. Zoolog Sci 2016; 33:266-71. [PMID: 27268980 DOI: 10.2108/zs150188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polychaete fan worms and ascidians accumulate high levels of vanadium ions. Several vanadiumbinding proteins, known as vanabins, have been found in ascidians. However, no vanadium-binding factors have been isolated from the fan worm. In the present study, we sought to identify vanadiumbinding proteins in the branchial crown of the fan worm using immobilized metal ion affinity chromatography. A nucleoside diphosphate kinase (NDK) homolog was isolated and determined to be a vanadium-binding protein. Kinase activity of the NDK homologue, PoNDK, was suppressed by the addition of V(IV), but was unaffected by V(V). The effect of V(IV) on PoNDK precedes its activation by Mg(II). This is the first report to describe the relationship between NDK and V(IV). PoNDK is located in the epidermis of the branchial crown, and its distribution is very similar to that of vanadium. These results suggest that PoNDK is associated with vanadium accumulation and metabolism in P. occelata.
Collapse
Affiliation(s)
- Nobuo Yamaguchi
- 1 Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Mukaishima-cho 2445, Onomichi city, Hiroshima 722-0073, Japan
| | - Masafumi Yoshinaga
- 2 Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Japan
| | - Kei Kamino
- 3 National Institute of Technology and Evaluation, Kazusa-Kamatari 2-5-8, Kisarazu city, Chiba 292-0818, Japan
| | - Tatsuya Ueki
- 1 Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Mukaishima-cho 2445, Onomichi city, Hiroshima 722-0073, Japan.,4 Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
14
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
|
16
|
Summerton JC, Evanseck JD, Chapman MS. Hyperconjugation-mediated solvent effects in phosphoanhydride bonds. J Phys Chem A 2012; 116:10209-17. [PMID: 23009395 DOI: 10.1021/jp306607k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory and natural bond orbital analysis are used to explore the impact of solvent on hyperconjugation in methyl triphosphate, a model for "energy rich" phosphoanhydride bonds, such as found in ATP. As expected, dihedral rotation of a hydroxyl group vicinal to the phosphoanhydride bond reveals that the conformational dependence of the anomeric effect involves modulation of the orbital overlap between the donor and acceptor orbitals. However, a conformational independence was observed in the rotation of a solvent hydrogen bond. As one lone pair orbital rotates away from an optimal antiperiplanar orientation, the overall magnitude of the anomeric effect is compensated approximately by the other lone pair as it becomes more antiperiplanar. Furthermore, solvent modulation of the anomeric effect is not restricted to the antiperiplanar lone pair; hydrogen bonds involving gauche lone pairs also affect the anomeric interaction and the strength of the phosphoanhydride bond. Both gauche and anti solvent hydrogen bonds lengthen nonbridging O-P bonds, increasing the distance between donor and acceptor orbitals and decreasing orbital overlap, which leads to a reduction of the anomeric effect. Solvent effects are additive with greater reduction in the anomeric effect upon increasing water coordination. By controlling the coordination environment of substrates in an active site, kinases, phosphatases, and other enzymes important in metabolism and signaling may have the potential to modulate the stability of individual phosphoanhydride bonds through stereoelectronic effects.
Collapse
Affiliation(s)
- Jean C Summerton
- Department of Biochemistry & Molecular Biology, School of Medicine, Oregon Health & Science University, Mail Code L224, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | | | | |
Collapse
|