1
|
Shah S, Osuala KO, Brock EJ, Ji K, Sloane BF, Mattingly RR. Three-Dimensional Models: Biomimetic Tools That Recapitulate Breast Tissue Architecture and Microenvironment to Study Ductal Carcinoma In Situ Transition to Invasive Ductal Breast Cancer. Cells 2025; 14:220. [PMID: 39937011 PMCID: PMC11817749 DOI: 10.3390/cells14030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Diagnosis of ductal carcinoma in situ (DCIS) presents a challenge as we cannot yet distinguish between those lesions that remain dormant from cases that may progress to invasive ductal breast cancer (IDC) and require therapeutic intervention. Our overall interest is to develop biomimetic three-dimensional (3D) models that more accurately recapitulate the structure and characteristics of pre-invasive breast cancer in order to study the underlying mechanisms driving malignant progression. These models allow us to mimic the microenvironment to investigate many aspects of mammary cell biology, including the role of the extracellular matrix (ECM), the interaction between carcinoma-associated fibroblasts (CAFs) and epithelial cells, and the dynamics of cytoskeletal reorganization. In this review article, we outline the significance of 3D culture models as reliable pre-clinical tools that mimic the in vivo tumor microenvironment and facilitate the study of DCIS lesions as they progress to invasive breast cancer. We also discuss the role of CAFs and other stromal cells in DCIS transition as well as the clinical significance of emerging technologies like tumor-on-chip and co-culture models.
Collapse
Affiliation(s)
- Seema Shah
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.S.); (E.J.B.)
| | | | - Ethan J. Brock
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.S.); (E.J.B.)
| | - Kyungmin Ji
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bonnie F. Sloane
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.S.); (E.J.B.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
2
|
Sourouni M, Opitz C, Radke I, Kiesel L, Tio J, Götte M, von Wahlde M. Establishment of a
3D
co‐culture model to investigate the role of primary fibroblasts in ductal carcinoma in situ of the breast. Cancer Rep (Hoboken) 2022; 6:e1771. [PMID: 36534078 PMCID: PMC10075300 DOI: 10.1002/cnr2.1771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) is a precursor form of breast cancer. 13%-50% of these lesions will progress to invasive breast cancer, but the individual progression risk cannot be estimated. Therefore, all patients receive the same therapy, resulting in potential overtreatment of a large proportion of patients. AIMS The role of the tumor microenvironment (TME) and especially of fibroblasts appears to be critical in DCIS development and a better understanding of their role may aid individualized treatment. METHODS AND RESULTS Primary fibroblasts isolated from benign or malignant punch biopsies of the breast and MCF10DCIS.com cells were seeded in a 3D cell culture system. The fibroblasts were cultured in a type I collagen layer beneath a Matrigel layer with MCF10DCIS.com cells. Dye-quenched (DQ) fluorescent collagen I and IV were used in collagen and Matrigel layer respectively to demonstrate proteolysis. Confocal microscopy was performed on day 2, 7, and 14 to reveal morphological changes, which could indicate the transition to an invasive phenotype. MCF10DCIS.com cells form smooth, round spheroids in co-culture with non-cancer associated fibroblasts (NAFs). Spheroids in co-culture with tumor-associated fibroblasts (TAFs) appear irregularly shaped and with an uneven surface; similar to spheroids formed from invasive cells. Therefore, these morphological changes represent the progression of an in situ to an invasive phenotype. In addition, TAFs show a higher proteolytic activity compared to NAFs. The distance between DCIS cells and fibroblasts decreases over time. CONCLUSION The TAFs seem to play an important role in the progression of DCIS to invasive breast cancer. The better characterization of the TME could lead to the identification of DCIS lesions with high or low risk of progression. This could enable personalized oncological therapy, prevention of overtreatment and individualized hormone replacement therapy after DCIS.
Collapse
Affiliation(s)
- Marina Sourouni
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Carl Opitz
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Isabel Radke
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Ludwig Kiesel
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Joke Tio
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Martin Götte
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Marie‐Kristin von Wahlde
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| |
Collapse
|
3
|
Luo Y, Li L, Chen X, Gou H, Yan K, Xu Y. Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol 2021; 41:19-29. [PMID: 34486916 DOI: 10.1080/08830185.2021.1974856] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lactate used to be considered as a waste product of glucose metabolism. However, accumulating evidence has revealed its crucial role in regulating various biological and pathological processes. Hypoxia, inflammation, viral infection, and tumor promote the production of lactate. Then lactate activates G protein-coupled receptor 81 (GPR81) or shuttles across membranes by monocarboxylate-transporters (MCTs) to execute its intricate effects. Many studies highlighted the function of lactate in regulating dendritic cells, monocytes, natural killer cells, mast cells, T cells, tumor cells, fibroblasts, macrophages polarization, and the differentiation of Th1, Th17, MDSCs, Tregs; all of which play a role in maintaining the immune homeostasis of the host when challenged with the noxious stimuli. In this review, we summarized the influence of lactate in diverse tissue-specific cells, and discuss their effects on viral infection, acute inflammation, chronic inflammation, sepsis, and tumor immunosuppression. The goal of this review is to expose that lactate has a double-edged effect on host immunity and accompanying inflammatory reactions, which could be a potentially effective target for treating the tumor and multiple infectious diseases.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Huiqing Gou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ke Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Kolegova ES, Kakurina GV, Shashova EE, Yunusova NV, Spirina LV, Sidenko EA, Kostromitskiy DN, Dobrodeev AY, Kondakova IV. Relationship of intracellular proteolysis with CAP1 and cofilin1 in non-small-cell lung cancer. J Biosci 2021. [DOI: 10.1007/s12038-021-00177-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Dykes SS, Gray AL, Coleman DT, Saxena M, Stephens CA, Carroll JL, Pruitt K, Cardelli JA. The Arf-like GTPase Arl8b is essential for three-dimensional invasive growth of prostate cancer in vitro and xenograft formation and growth in vivo. Oncotarget 2018; 7:31037-52. [PMID: 27105540 PMCID: PMC5058737 DOI: 10.18632/oncotarget.8832] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/31/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer is a multistep process that requires cells to respond appropriately to the tumor microenvironment, both in early proliferative stages and in later invasive disease. Arl8b is a lysosome localized Arf-like GTPase that controls the spatial distribution of lysosomes via recruitment of kinesin motors. Common features of the tumor microenvironment such as acidic extracellular pH and various growthfactors stimulate lysosome trafficking to the cell periphery (anterograde), which is critical for tumor invasion by facilitating the release of lysosomal proteases to promote matrix remodeling. Herein we report for the first time that Arl8b regulates anterograde lysosome trafficking in response to hepatocyte growth factor, epidermal growth factor, and acidic extracellular pH. Depletion of Arl8b results in juxtanuclear lysosome aggregation, and this effect corresponds with both diminished invasive growth and proteolytic extracellular matrix degradation in a three-dimensional model of prostate cancer. Strikingly, we found that depletion of Arl8b abolishes the ability of prostate cancer cells to establish subcutaneous xenografts in mice. We present evidence that Arl8b facilitates lipid hydrolysis to maintain efficient metabolism for a proliferative capacity in low nutrient environments, suggesting a likely explanation for the complete inability of Arl8b-depleted tumor cells to grow in vivo. In conclusion, we have identified two mechanisms by which Arl8b regulates cancer progression: 1) through lysosome positioning and protease release leading to an invasive phenotype and 2) through control of lipid metabolism to support cellular proliferation. These novel roles highlight that Arl8b is a potential target for the development of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Samantha S Dykes
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Alana L Gray
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - David T Coleman
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Madhurima Saxena
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, LA, USA.,Current address: Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles A Stephens
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - Jennifer L Carroll
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Kevin Pruitt
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, LA, USA.,Current address: Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - James A Cardelli
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
6
|
Valdez J, Cook CD, Ahrens CC, Wang AJ, Brown A, Kumar M, Stockdale L, Rothenberg D, Renggli K, Gordon E, Lauffenburger D, White F, Griffith L. On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks. Biomaterials 2017; 130:90-103. [PMID: 28371736 DOI: 10.1016/j.biomaterials.2017.03.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023]
Abstract
Methods to parse paracrine epithelial-stromal communication networks are a vital need in drug development, as disruption of these networks underlies diseases ranging from cancer to endometriosis. Here, we describe a modular, synthetic, and dissolvable extracellular matrix (MSD-ECM) hydrogel that fosters functional 3D epithelial-stromal co-culture, and that can be dissolved on-demand to recover cells and paracrine signaling proteins intact for subsequent analysis. Specifically, synthetic polymer hydrogels, modified with cell-interacting adhesion motifs and crosslinked with peptides that include a substrate for cell-mediated proteolytic remodeling, can be rapidly dissolved by an engineered version of the microbial transpeptidase Sortase A (SrtA) if the crosslinking peptide includes a SrtA substrate motif and a soluble second substrate. SrtA-mediated dissolution affected only 1 of 31 cytokines and growth factors assayed, whereas standard protease degradation methods destroyed about half of these same molecules. Using co-encapsulated endometrial epithelial and stromal cells as one model system, we show that the dynamic cytokine and growth factor response of co-cultures to an inflammatory cue is richer and more nuanced when measured from SrtA-dissolved gel microenvironments than from the culture supernate. This system employs accessible, reproducible reagents and facile protocols; hence, has potential as a tool in identifying and validating therapeutic targets in complex diseases.
Collapse
Affiliation(s)
- Jorge Valdez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christi D Cook
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline Chopko Ahrens
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alex J Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander Brown
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Manu Kumar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linda Stockdale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Rothenberg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kasper Renggli
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Forest White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linda Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Abadjian MCZ, Edwards WB, Anderson CJ. Imaging the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:229-257. [PMID: 29275475 DOI: 10.1007/978-3-319-67577-0_15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment consists of tumor, stromal, and immune cells, as well as extracellular milieu. Changes in numbers of these cell types and their environments have an impact on cancer growth and metastasis. Non-invasive imaging of aspects of the tumor microenvironment can provide important information on the aggressiveness of the cancer, whether or not it is metastatic, and can also help to determine early response to treatment. This chapter provides an overview on non-invasive in vivo imaging in humans and mouse models of various cell types and physiological parameters that are unique to the tumor microenvironment. Current clinical imaging and research investigation are in the areas of nuclear imaging (positron emission tomography (PET) and single photon emission computed tomography (SPECT)), magnetic resonance imaging (MRI) and optical (near infrared (NIR) fluorescence) imaging. Aspects of the tumor microenvironment that have been imaged by PET, MRI and/or optical imaging are tumor associated inflammation (primarily macrophages and T cells), hypoxia, pH changes, as well as enzymes and integrins that are highly prevalent in tumors, stroma and immune cells. Many imaging agents and strategies are currently available for cancer patients; however, the investigation of novel avenues for targeting aspects of the tumor microenvironment in pre-clinical models of cancer provides the cancer researcher with a means to monitor changes and evaluate novel treatments that can be translated into the clinic.
Collapse
Affiliation(s)
| | - W Barry Edwards
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carolyn J Anderson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Dykes SS, Gao C, Songock WK, Bigelow RL, Woude GV, Bodily JM, Cardelli JA. Zinc finger E-box binding homeobox-1 (Zeb1) drives anterograde lysosome trafficking and tumor cell invasion via upregulation of Na+/H+ Exchanger-1 (NHE1). Mol Carcinog 2016; 56:722-734. [PMID: 27434882 DOI: 10.1002/mc.22528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
Abstract
Tumor cell invasion through the extracellular matrix is facilitated by the secretion of lysosome-associated proteases. As a common mechanism for secretion, lysosomes must first traffic to the cell periphery (anterograde trafficking), consistent with invasive cells often containing lysosomes closer to the plasma membrane compared to non-invasive cells. Epithelial to mesenchymal transition (EMT) is a transcriptionally driven program that promotes an invasive phenotype, and Zeb1 is one transcription factor that activates the mesenchymal gene expression program. The role of lysosome trafficking in EMT-driven invasion has not been previously investigated. We found that cells with increased levels of Zeb1 displayed lysosomes located closer to the cell periphery and demonstrated increased protease secretion and invasion in 3-dimensional (3D) cultures compared to their epithelial counterparts. Additionally, preventing anterograde lysosome trafficking via pharmacological inhibition of Na+/H+ exchanger 1 (NHE1) or shRNA depletion of ADP-ribosylation like protein 8b (Arl8b) reversed the invasive phenotype of mesenchymal cells, thus supporting a role for lysosome positioning in EMT-mediated tumor cell invasion. Immunoblot revealed that expression of Na+/H+ exchanger 1 correlated with Zeb1 expression. Furthermore, we found that the transcription factor Zeb1 binds to the Na+/H+ exchanger 1 promoter, suggesting that Zeb1 directly controls Na+/H+ transcription. Collectively, these results provide insight into a novel mechanism regulating Na+/H+ exchanger 1 expression and support a role for anterograde lysosome trafficking in Zeb1-driven cancer progression. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samantha S Dykes
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - ChongFeng Gao
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan
| | - William K Songock
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - Rebecca L Bigelow
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - George Vande Woude
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Jason M Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - James A Cardelli
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| |
Collapse
|
9
|
Khoo BL, Chaudhuri PK, Ramalingam N, Tan DSW, Lim CT, Warkiani ME. Single-cell profiling approaches to probing tumor heterogeneity. Int J Cancer 2016; 139:243-55. [PMID: 26789729 DOI: 10.1002/ijc.30006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/10/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
Tumor heterogeneity is a major hindrance in cancer classification, diagnosis and treatment. Recent technological advances have begun to reveal the true extent of its heterogeneity. Single-cell analysis (SCA) is emerging as an important approach to detect variations in morphology, genetic or proteomic expression. In this review, we revisit the issue of inter- and intra-tumor heterogeneity, and list various modes of SCA techniques (cell-based, nucleic acid-based, protein-based, metabolite-based and lipid-based) presently used for cancer characterization. We further discuss the advantages of SCA over pooled cell analysis, as well as the limitations of conventional techniques. Emerging trends, such as high-throughput sequencing, are also mentioned as improved means for cancer profiling. Collectively, these applications have the potential for breakthroughs in cancer treatment.
Collapse
Affiliation(s)
- Bee Luan Khoo
- Mechanobiology Institute, National University of Singapore.,BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | | | | | - Daniel Shao Weng Tan
- Division of Medical Oncology, National Cancer Centre Singapore.,Cancer Stem Cell Biology, Genome Institute of Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore.,BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.,Department of Biomedical Engineering, National University of Singapore
| | - Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.,School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
|
11
|
Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 2014; 15:1125-37. [PMID: 24204192 DOI: 10.1593/neo.13946] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022] Open
Abstract
One of the noncellular microenvironmental factors that contribute to malignancy of solid tumors is acidic peritumoral pH. We have previously demonstrated that extracellular acidosis leads to localization of the cysteine pro-tease cathepsin B on the tumor cell membrane and its secretion. The objective of the present study was to determine if an acidic extracellular pH such as that observed in vivo (i.e., pHe 6.8) affects the activity of proteases, e.g., cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional (3D) cultures. For these studies, we used 1) 3D reconstituted basement membrane overlay cultures of human carcinomas, 2) live cell imaging assays to assess proteolysis, and 3) in vivo imaging of active tumor proteases. At pHe 6.8, there were increases in pericellular active cysteine cathepsins and in degradation of dye-quenched collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of bound probe decreased in tumors in bicarbonate-treated mice, a treatment previously shown to increase peritumoral pHe and reduce local invasion of the tumors. Our results are consistent with the acid-mediated invasion hypothesis and with a role for cathepsin B in promoting degradation of a basement membrane protein substrate, i.e., type IV collagen, in an acidic peritumoral environment.
Collapse
|
12
|
Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 2014; 8:427-37. [PMID: 24677670 PMCID: PMC4205946 DOI: 10.1002/prca.201300105] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Proteases, including intracellular proteases, play roles at many different stages of malignant progression. Our focus here is cathepsin B, a lysosomal cysteine cathepsin. High levels of cathepsin B are found in a wide variety of human cancers, levels that often induce secretion and association of cathepsin B with the tumor cell membrane. In experimental models, such as transgenic models of murine pancreatic and mammary carcinomas, causal roles for cathepsin B have been demonstrated in initiation, growth/tumor cell proliferation, angiogenesis, invasion, and metastasis. Tumor growth in transgenic models is promoted by cathepsin B in tumor-associated cells, for example, tumor-associated macrophages, as well as in tumor cells. In transgenic models, the absence of cathepsin B has been associated with enhanced apoptosis, yet cathepsin B also has been shown to contribute to apoptosis. Cathepsin B is part of a proteolytic pathway identified in xenograft models of human glioma; targeting only cathepsin B in these tumors is less effective than targeting cathepsin B in combination with other proteases or protease receptors. Understanding the mechanisms responsible for increased expression of cathepsin B in tumors and association of cathepsin B with tumor cell membranes is needed to determine whether targeting cathepsin B could be of therapeutic benefit.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, Ml, USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Ml, USA
| |
Collapse
|
13
|
Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 2014; 14:314-28. [PMID: 24739578 DOI: 10.1038/nrc3724] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating biological imaging into early stages of the drug discovery process can provide invaluable readouts of drug activity within complex disease settings, such as cancer. Iterating this approach from initial lead compound identification in vitro to proof-of-principle in vivo analysis represents a key challenge in the drug discovery field. By embracing more complex and informative models in drug discovery, imaging can improve the fidelity and statistical robustness of preclinical cancer studies. In this Review, we highlight how combining advanced imaging with three-dimensional systems and intravital mouse models can provide more informative and disease-relevant platforms for cancer drug discovery.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| |
Collapse
|
14
|
Sarg MTM, El-Shaer SS. Efficient Utilization of 6-Aminouracil to Synthesize Fused and Related Heterocyclic Compounds and Their Evaluation as Prostate Cytotoxic Agents with Cathepsin B Inhibition. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojmc.2014.42003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Duncan R, Sat-Klopsch YN, Burger AM, Bibby MC, Fiebig HH, Sausville EA. Validation of tumour models for use in anticancer nanomedicine evaluation: the EPR effect and cathepsin B-mediated drug release rate. Cancer Chemother Pharmacol 2013; 72:417-27. [PMID: 23797686 PMCID: PMC3718995 DOI: 10.1007/s00280-013-2209-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
Purpose Intravenously (i.v.) administered nanomedicines have the potential for tumour targeting due to the enhanced permeability and retention (EPR) effect, but in vivo tumour models are rarely calibrated with respect to functional vascular permeability and/or mechanisms controlling intratumoural drug release. Here the effect of tumour type and tumour size on EPR-mediated tumour localisation and cathepsin B-mediated drug release was studied. Methods Evans Blue (10 mg/kg) and an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer–doxorubicin (Dox) conjugate (FCE28068) (5 mg/kg Dox-equiv) were used as probes and tumour levels (and Dox release) measured at 1 h after i.v. administration in a panel of murine and human xenograft tumours. Results Evans Blue and FCE28068 displayed similar tumour levels in the range of 2–18 % dose/g at 1 h for B16F10 and L1210. Approximately half of the tumour models evaluated exhibited tumour size-dependent accumulation of FCE28068; smaller tumours had the highest accumulation. Administration of free Dox (5 mg/kg) produced tumour levels of <2.5 % dose/g independent of tumour size. Whereas the degree of EPR-mediated targeting showed ~12-fold difference across the tumour models evaluated, Dox release from FCE28068 at 1 h displayed ~200-fold variation. Conclusions Marked heterogeneity was seen in terms of EPR effect and Dox release rate, underlining the need to carefully calibrate tumour models used to benchmark nanomedicines against known relevant standard agents and for optimal development of strategies for late pre-clinical and clinical development. Electronic supplementary material The online version of this article (doi:10.1007/s00280-013-2209-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruth Duncan
- Centre for Polymer Therapeutics, The School of Pharmacy, 29-39 Brunswick Square, London, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Löser R, Bergmann R, Frizler M, Mosch B, Dombrowski L, Kuchar M, Steinbach J, Gütschow M, Pietzsch J. Synthesis and radiopharmacological characterisation of a fluorine-18-labelled azadipeptide nitrile as a potential PET tracer for in vivo imaging of cysteine cathepsins. ChemMedChem 2013; 8:1330-44. [PMID: 23785011 DOI: 10.1002/cmdc.201300135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/22/2013] [Indexed: 12/26/2022]
Abstract
A fluorinated cathepsin inhibitor based on the azadipeptide nitrile chemotype was prepared and selected for positron emission tomography (PET) tracer development owing to its high affinity for the oncologically relevant cathepsins L, S, K and B. Labelling with fluorine-18 was accomplished in an efficient and reliable two-step, one-pot radiosynthesis by using 2-[(18) F]fluoroethylnosylate as a prosthetic agent. The pharmacokinetic properties of the resulting radiotracer compound were studied in vitro, ex vivo and in vivo in normal rats by radiometabolite analysis and small-animal positron emission tomography. These investigations revealed rapid conjugate formation of the tracer with glutathione in the blood, which is associated with slow blood clearance. The potential of the developed (18) F-labelled probe to image tumour-associated cathepsin activity was investigated by dynamic small-animal PET imaging in nude mice bearing tumours derived from the human NCI-H292 lung carcinoma cell line. Computational analysis of the obtained image data indicated the time-dependent accumulation of the radiotracer in the tumours. The expression of the target enzymes in the tumours was confirmed by immunohistochemistry with specific antibodies. This indicates that azadipeptide nitriles have the potential to target thiol-dependent cathepsins in vivo despite their disadvantageous pharmacokinetics.
Collapse
Affiliation(s)
- Reik Löser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mohamed MM, Al-Raawi D, Sabet SF, El-Shinawi M. Inflammatory breast cancer: New factors contribute to disease etiology: A review. J Adv Res 2013; 5:525-36. [PMID: 25685520 PMCID: PMC4294279 DOI: 10.1016/j.jare.2013.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/16/2013] [Accepted: 06/07/2013] [Indexed: 12/11/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic and fatal form of breast cancer. In fact, IBC is characterized by specific morphological, phenotypic, and biological properties that distinguish it from non-IBC. The aggressive behavior of IBC being more common among young women and the low survival rate alarmed researchers to explore the disease biology. Despite the basic and translational studies needed to understand IBC disease biology and identify specific biomarkers, studies are limited by few available IBC cell lines, experimental models, and paucity of patient samples. Above all, in the last decade, researchers were able to identify new factors that may play a crucial role in IBC progression. Among identified factors are cytokines, chemokines, growth factors, and proteases. In addition, viral infection was also suggested to participate in the etiology of IBC disease. In this review, we present novel factors suggested by different studies to contribute to the etiology of IBC and the proposed new therapeutic insights.
Collapse
Affiliation(s)
- Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Diaa Al-Raawi
- Department of Zoology, Faculty of Science, Sana'a University, Yemen
| | - Salwa F Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
18
|
Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, Johnson J, Gatenby RA, Gillies RJ. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 2013; 73:1524-35. [PMID: 23288510 DOI: 10.1158/0008-5472.can-12-2796] [Citation(s) in RCA: 956] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H(+) diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal extracellular pH. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter-1 and the sodium-hydrogen exchanger-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis. Cancer Res; 73(5); 1524-35. ©2012 AACR.
Collapse
Affiliation(s)
- Veronica Estrella
- Departments of Cancer Imaging and Metabolism, Radiology, and Analytic Microscopy Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Reinheckel T, Peters C, Krüger A, Turk B, Vasiljeva O. Differential Impact of Cysteine Cathepsins on Genetic Mouse Models of De novo Carcinogenesis: Cathepsin B as Emerging Therapeutic Target. Front Pharmacol 2012; 3:133. [PMID: 22798952 PMCID: PMC3394080 DOI: 10.3389/fphar.2012.00133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/24/2012] [Indexed: 12/12/2022] Open
Abstract
Lysosomal cysteine cathepsins belong to a family of 11 human proteolytic enzymes. Some of them correlate with progression in a variety of cancers and therefore are considered as potential therapeutic targets. Until recently, the contribution of individual cathepsins to tumorigenesis and tumor progression remained unknown. By crossing various types of mouse cancer models with mice where specific cathepsins have been ablated, we contributed to this gap of knowledge and will summarize the results in this report. The employed models are the Rip1-Tag2 model for pancreatic neuroendocrine tumors, the K14-HPV16 model for squamous skin and cervical cancers, and the MMTV-PyMT model for metastasizing breast cancer, the KPC model for pancreatic ductal adenocarcinoma, and the APC(min) mice developing early stages of intestinal neoplasia. All models harbor mutations in relevant tumor suppressors and/or cell-type specific expression of potent oncogenes, which initiate de novo carcinogenesis in the targeted tissues. In all these models deletion of cathepsin B led to suppression of the aggressiveness of the respective cancer phenotype. Cathepsin B is networking with other proteases as it was shown for cathepsin X/Z. In contrast, deletion of cathepsin L was beneficial in the RiP1-Tag2 model, but enhanced tumorigenesis in the APC(min), and the K14-HPV16 mice. A logical consequence of these results would be to further pursue selective inhibition of cathepsin B. Moreover, it became clear that cathepsins B and S derived from cells of the tumor microenvironment support cancer growth. Strikingly, delivery of broad spectrum cysteine cathepsin inhibitors in the tumor microenvironment disrupts the permissive ecosystem of the cancer and results in impaired growth or even in regression of the tumor. In addition, combination of cysteine cathepsin inhibition and standard chemotherapy improves the therapeutic response of the latter. Taken together, the next preclinical challenges for developing cathepsin inhibition as cancer therapy might be the improvement of inhibitor selectivity and targeted delivery to the tumor microenvironment and investigation of the biological context of the individual factors within the complex proteolytic network.
Collapse
Affiliation(s)
- Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Res 2011; 13:R115. [PMID: 22093547 PMCID: PMC3326557 DOI: 10.1186/bcr3058] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 12/14/2022] Open
Abstract
Introduction Inflammatory breast cancer (IBC) is an aggressive, metastatic and highly angiogenic form of locally advanced breast cancer with a relatively poor three-year survival rate. Breast cancer invasion has been linked to proteolytic activity at the tumor cell surface. Here we explored a role for active cathepsin B on the cell surface in the invasiveness of IBC. Methods We examined expression of the cysteine protease cathepsin B and the serine protease urokinase plasminogen activator (uPA), its receptor uPAR and caveolin-1 in two IBC cell lines: SUM149 and SUM190. We utilized a live cell proteolysis assay to localize in real time the degradation of type IV collagen by IBC cells. IBC patient biopsies were examined for expression of cathepsin B and caveolin-1. Results Both cell lines expressed comparable levels of cathepsin B and uPA. In contrast, levels of caveolin-1 and uPAR were greater in SUM149 cells. We observed that uPA, uPAR and enzymatically active cathepsin B were colocalized in caveolae fractions isolated from SUM149 cells. Using a live-cell proteolysis assay, we demonstrated that both IBC cell lines degrade type IV collagen. The SUM149 cells exhibit predominantly pericellular proteolysis, consistent with localization of proteolytic pathway constitutents to caveolar membrane microdomains. A functional role for cathepsin B was confirmed by the ability of CA074, a cell impermeable and highly selective cathepsin B inhibitor, to significantly reduce pericellular proteolysis and invasion by SUM149 cells. A statistically significant co-expression of cathepsin B and caveolin-1 was found in IBC patient biopsies, thus validating our in vitro data. Conclusion Our study is the first to show that the proteolytic activity of cathepsin B and its co-expression with caveolin-1 contributes to the aggressiveness of IBC.
Collapse
|