1
|
Abstract
The folding of proteins into their native structure is crucial for the functioning of all biological processes. Molecular chaperones are guardians of the proteome that assist in protein folding and prevent the accumulation of aberrant protein conformations that can lead to proteotoxicity. ATP-independent chaperones do not require ATP to regulate their functional cycle. Although these chaperones have been traditionally regarded as passive holdases that merely prevent aggregation, recent work has shown that they can directly affect the folding energy landscape by tuning their affinity to various folding states of the client. This review focuses on emerging paradigms in the mechanism of action of ATP-independent chaperones and on the various modes of regulating client binding and release.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin Wu
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Kim J, Choi D, Park C, Ryu KS. Backbone resonance assignments of the Escherichia coli 62 kDa protein, Hsp31. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:159-163. [PMID: 28258548 DOI: 10.1007/s12104-017-9739-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Dimeric Hsp31 protein was first characterized as a holding chaperone of Escherichia coli (E. coli), and has been suggested as having protease activity due to the presence of a potential catalytic triad, Cys185, His186, and Asp214. However, it has recently been reported that Hsp31 displays a relatively strong glyoxalase III activity that can decompose reactive carbonyl species (methylglyoxal and glyoxal) in the absence of additional cofactor. Hsp31 is a representative member of the DJ-1/ThiJ/PfpI protein superfamily, and the importance of DJ-1 protein in Parkinson's disease has been well known. The structural flexibility of the long loop region, which encompasses from the P- to the A-domain, is important for the chaperone activity of Hsp31. The backbone chemical shifts (CSs) would be useful for studying the structural changes of Hsp31 that are critical for the holding chaperone activity, and also for deciphering the switching mechanism between the glyoxalase III and the chaperone. Here, we report the backbone CSs (HN, N, CO, Cα, and Cβ) of the deuterated Hsp31 protein (62 kDa). The CS analysis showed that the predicted regions of secondary structures are in good agreement with those observed in the previous crystal structure of Hsp31.
Collapse
Affiliation(s)
- Jihong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, Republic of Korea
| | - Dongwook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, Republic of Korea
- New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-Ro, Osong-Eup, Heungdeok-Gu, Cheongju-Si, Chungcheongbuk-Do, 28160, Republic of Korea
| | - Chankyu Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Kyoung-Seok Ryu
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, Republic of Korea.
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Das S, Roy Chowdhury S, Dey S, Sen U. Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity. PLoS One 2017; 12:e0172629. [PMID: 28235098 PMCID: PMC5325305 DOI: 10.1371/journal.pone.0172629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/07/2017] [Indexed: 11/23/2022] Open
Abstract
Vibrio cholerae experiences a highly hostile environment at human intestine which triggers the induction of various heat shock genes. The hchA gene product of V. cholerae O395, referred to a hypothetical intracellular protease/amidase VcHsp31, is one such stress-inducible homodimeric protein. Our current study demonstrates that VcHsp31 is endowed with molecular chaperone, amidopeptidase and robust methylglyoxalase activities. Through site directed mutagenesis coupled with biochemical assays on VcHsp31, we have confirmed the role of residues in the vicinity of the active site towards amidopeptidase and methylglyoxalase activities. VcHsp31 suppresses the aggregation of insulin in vitro in a dose dependent manner. Through crystal structures of VcHsp31 and its mutants, grown at various temperatures, we demonstrate that VcHsp31 acquires two (Type-I and Type-II) dimeric forms. Type-I dimer is similar to EcHsp31 where two VcHsp31 monomers associate in eclipsed manner through several intersubunit hydrogen bonds involving their P-domains. Type-II dimer is a novel dimeric organization, where some of the intersubunit hydrogen bonds are abrogated and each monomer swings out in the opposite directions centering at their P-domains, like twisting of wet cloth. Normal mode analysis (NMA) of Type-I dimer shows similar movement of the individual monomers. Upon swinging, a dimeric surface of ~400Å2, mostly hydrophobic in nature, is uncovered which might bind partially unfolded protein substrates. We propose that, in solution, VcHsp31 remains as an equilibrium mixture of both the dimers. With increase in temperature, transformation to Type-II form having more exposed hydrophobic surface, occurs progressively accounting for the temperature dependent increase of chaperone activity of VcHsp31.
Collapse
Affiliation(s)
- Samir Das
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sanghati Roy Chowdhury
- Crystallography and Molecular Biology Division Saha Institute of Nuclear Physics, Kolkata, India
| | - Sanjay Dey
- Department of Biotechnology, St. Xavier’s College, Kolkata
| | - Udayaditya Sen
- Crystallography and Molecular Biology Division Saha Institute of Nuclear Physics, Kolkata, India
- * E-mail:
| |
Collapse
|
4
|
Kim J, Choi D, Park C, Ryu KS. Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2015. [DOI: 10.6564/jkmrs.2015.19.3.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Tsai CJ, Aslam K, Drendel HM, Asiago JM, Goode KM, Paul LN, Rochet JC, Hazbun TR. Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process. J Biol Chem 2015; 290:24816-34. [PMID: 26306045 DOI: 10.1074/jbc.m115.678367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 12/17/2022] Open
Abstract
The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins.
Collapse
Affiliation(s)
- Chai-Jui Tsai
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Kiran Aslam
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Holli M Drendel
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Josephat M Asiago
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Kourtney M Goode
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Lake N Paul
- the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Jean-Christophe Rochet
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Tony R Hazbun
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| |
Collapse
|
6
|
Ko KY, Geornaras I, Byelashov OA, Paik HD, Kim KT, Sofos JN. Thermotolerance of Rifampicin-Resistant E
scherichia coli
O157:H7 Derivatives and Their Parental Strains in a Broth System. J Food Saf 2015. [DOI: 10.1111/jfs.12207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyung Yuk Ko
- Center for Meat Safety & Quality; Department of Animal Sciences; Colorado State University; Fort Collins CO 80523
- Division of Food Additives and Packaging; Department of Food Safety Evaluation; Ministry of Food Drug Safety; Cheongwon-gun Chungbuk Korea
| | - Ifigenia Geornaras
- Center for Meat Safety & Quality; Department of Animal Sciences; Colorado State University; Fort Collins CO 80523
| | - Oleksandr A. Byelashov
- Center for Meat Safety & Quality; Department of Animal Sciences; Colorado State University; Fort Collins CO 80523
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources; Konkuk University; Seoul Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources; Konkuk University; Seoul Korea
| | - John N. Sofos
- Center for Meat Safety & Quality; Department of Animal Sciences; Colorado State University; Fort Collins CO 80523
| |
Collapse
|
7
|
Zhao Q, Su Y, Wang Z, Chen C, Wu T, Huang Y. Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe. BMC Evol Biol 2014; 14:86. [PMID: 24758716 PMCID: PMC4021431 DOI: 10.1186/1471-2148-14-86] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive carbonyl species (RCS), such as methylglyoxal (MG) and glyoxal (GO), are synthesized as toxic metabolites in living systems. Mechanisms of RCS detoxification include the glutathione (GSH)-dependent system consisting of glyoxalase I (GLO1) and glyoxalase II (GLO2), and GSH-independent system involving glyoxalase III (GLO3). Hsp31 and DJ-1 proteins are weakly homologous to each other and belong to two different subfamilies of the DJ-1/Hsp31/PfpI superfamily. Recently, the Escherichia coli Hsp31 protein and the DJ-1 proteins from Arabidopsis thaliana and metazoans have been demonstrated to have GLO3 activity. RESULTS We performed a systematic survey of homologs of DJ-1 and Hsp31 in fungi. We found that DJ-1 proteins have a very limited distribution in fungi, whereas Hsp31 proteins are widely distributed among different fungal groups. Phylogenetic analysis revealed that fungal and metazoan DJ-1 proteins and bacterial YajL proteins are most closely related and together form a sister clade to bacterial and fungal Hsp31 proteins. We showed that two Schizosaccharomyces pombe Hsp31 proteins (Hsp3101 and Hsp3102) and one Saccharomyces cerevisiae Hsp31 protein (ScHsp31) displayed significantly higher in vitro GLO3 activity than S. pombe DJ-1 (SpDJ-1). Overexpression of hsp3101, hsp3102 and ScHSP31 could confer MG and GO resistance on either wild-type S. pombe cells or GLO1 deletion of S. pombe. S. pombe DJ-1 and Hsp31 proteins exhibit different patterns of subcellular localization. CONCLUSIONS Our results suggest that fungal Hsp31 proteins are the major GLO3 that may have some role in protecting cells from RCS toxicity in fungi. Our results also support the view that the GLO3 activity of Hsp31 proteins may have evolved independently from that of DJ-1 proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|