1
|
Freindorf M, Antonio JJ, Kraka E. Iron-histidine bonding in bishistidyl hemoproteins-A local vibrational mode study. J Comput Chem 2024; 45:574-588. [PMID: 38041830 DOI: 10.1002/jcc.27267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
We investigated the intrinsic strength of distal and proximal FeN bonds for both ferric and ferrous oxidation states of bishistidyl hemoproteins from bacteria, animals, human, and plants, including two cytoglobins, ten hemoglobins, two myoglobins, six neuroglobins, and six phytoglobins. As a qualified measure of bond strength, we used local vibrational force constants ka (FeN) based on local mode theory developed in our group. All calculations were performed with a hybrid QM/MM ansatz. Starting geometries were taken from available x-ray structures. ka (FeN) values were correlated with FeN bond lengths and covalent bond character. We also investigated the stiffness of the axial NFeN bond angle. Our results highlight that protein effects are sensitively reflected in ka (FeN), allowing one to compare trends in diverse protein groups. Moreover, ka (NFeN) is a perfect tool to monitor changes in the axial heme framework caused by different protein environments as well as different Fe oxidation states.
Collapse
Affiliation(s)
- Marek Freindorf
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| | - Juliana J Antonio
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| | - Elfi Kraka
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
2
|
Pathak PK, Yadav N, Kaladhar VC, Jaiswal R, Kumari A, Igamberdiev AU, Loake GJ, Gupta KJ. The emerging roles of nitric oxide and its associated scavengers-phytoglobins-in plant symbiotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:563-577. [PMID: 37843034 DOI: 10.1093/jxb/erad399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
A key feature in the establishment of symbiosis between plants and microbes is the maintenance of the balance between the production of the small redox-related molecule, nitric oxide (NO), and its cognate scavenging pathways. During the establishment of symbiosis, a transition from a normoxic to a microoxic environment often takes place, triggering the production of NO from nitrite via a reductive production pathway. Plant hemoglobins [phytoglobins (Phytogbs)] are a central tenant of NO scavenging, with NO homeostasis maintained via the Phytogb-NO cycle. While the first plant hemoglobin (leghemoglobin), associated with the symbiotic relationship between leguminous plants and bacterial Rhizobium species, was discovered in 1939, most other plant hemoglobins, identified only in the 1990s, were considered as non-symbiotic. From recent studies, it is becoming evident that the role of Phytogbs1 in the establishment and maintenance of plant-bacterial and plant-fungal symbiosis is also essential in roots. Consequently, the division of plant hemoglobins into symbiotic and non-symbiotic groups becomes less justified. While the main function of Phytogbs1 is related to the regulation of NO levels, participation of these proteins in the establishment of symbiotic relationships between plants and microorganisms represents another important dimension among the other processes in which these key redox-regulatory proteins play a central role.
Collapse
Affiliation(s)
- Pradeep Kumar Pathak
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Nidhi Yadav
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Rekha Jaiswal
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
3
|
Mathur S, Yadav SK, Yadav K, Bhatt S, Kundu S. A novel single sensor hemoglobin domain from the thermophilic cyanobacteria Thermosynechococcus elongatus BP-1 exhibits higher pH but lower thermal stability compared to globins from mesophilic organisms. Int J Biol Macromol 2023; 240:124471. [PMID: 37076076 DOI: 10.1016/j.ijbiomac.2023.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Thermosynechococcus elongatus-BP1 belongs to the class of photoautotrophic cyanobacterial organisms. The presence of chlorophyll a, carotenoids, and phycocyanobilin are the characteristics that categorize T. elongatus as a photosynthetic organism. Here, we report the structural and spectroscopic characteristics of novel hemoglobin (Hb) Synel Hb from T.elongatus, synonymous with Thermosynechococcus vestitus BP-1. The X-ray crystal structure (2.15 Å) of Synel Hb suggests the presence of a globin domain with a pre-A helix similar to the sensor domain (S) family of Hbs. The rich hydrophobic core accommodates heme in a penta-coordinated state and readily binds an extraneous ligand(imidazole). The absorption and circular dichroic spectral analysis of Synel Hb reiteratedthat the heme is in FeIII+ state with a predominantly α-helical structure similar to myoglobin. Synel Hb displays higher resistance to structural perturbations induced via external stresses like pH and guanidium hydrochloride, which is comparable to Synechocystis Hb. However, Synel Hb exhibited lower thermal stability compared to mesophilic hemoglobins. Overall, the data is suggestive of the structural sturdiness of Synel Hb, which probably corroborates its origin in extreme thermophilic conditions. The stable globin provides scope for further investigation and may lead to new insights with scope for engineering stability in hemoglobin-based oxygen carriers.
Collapse
Affiliation(s)
- Shruti Mathur
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India; Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi 110007, India
| | - Sanjeev Kumar Yadav
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Kajal Yadav
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India; Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi 110007, India; Birla Institute of Technology and Science Pilani, K.K.Birla Goa Campus, Goa 403726, India.
| |
Collapse
|
4
|
De Simone G, di Masi A, Tundo GR, Coletta M, Ascenzi P. Nitrite Reductase Activity of Ferrous Nitrobindins: A Comparative Study. Int J Mol Sci 2023; 24:ijms24076553. [PMID: 37047528 PMCID: PMC10094804 DOI: 10.3390/ijms24076553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Nitrobindins (Nbs) are all-β-barrel heme proteins spanning from bacteria to Homo sapiens. They inactivate reactive nitrogen species by sequestering NO, converting NO to HNO2, and promoting peroxynitrite isomerization to NO3−. Here, the nitrite reductase activity of Nb(II) from Mycobacterium tuberculosis (Mt-Nb(II)), Arabidopsis thaliana (At-Nb(II)), Danio rerio (Dr-Nb(II)), and Homo sapiens (Hs-Nb(II)) is reported. This activity is crucial for the in vivo production of NO, and thus for the regulation of blood pressure, being of the utmost importance for the blood supply to poorly oxygenated tissues, such as the eye retina. At pH 7.3 and 20.0 °C, the values of the second-order rate constants (i.e., kon) for the reduction of NO2− to NO and the concomitant formation of nitrosylated Mt-Nb(II), At-Nb(II), Dr-Nb(II), and Hs-Nb(II) (Nb(II)-NO) were 7.6 M−1 s−1, 9.3 M−1 s−1, 1.4 × 101 M−1 s−1, and 5.8 M−1 s−1, respectively. The values of kon increased linearly with decreasing pH, thus indicating that the NO2−-based conversion of Nb(II) to Nb(II)-NO requires the involvement of one proton. These results represent the first evidence for the NO2 reductase activity of Nbs(II), strongly supporting the view that Nbs are involved in NO metabolism. Interestingly, the nitrite reductase reactivity of all-β-barrel Nbs and of all-α-helical globins (e.g., myoglobin) was very similar despite the very different three-dimensional fold; however, differences between all-α-helical globins and all-β-barrel Nbs suggest that nitrite reductase activity appears to be controlled by distal steric barriers, even though a more complex regulatory mechanism can be also envisaged.
Collapse
Affiliation(s)
| | | | - Grazia R. Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, 00133 Roma, Italy
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, 00146 Roma, Italy
| |
Collapse
|
5
|
Conformational Dynamics of Phytoglobin BvPgb1.2 from Beta vulgaris ssp. vulgaris. Int J Mol Sci 2023; 24:ijms24043973. [PMID: 36835381 PMCID: PMC9961634 DOI: 10.3390/ijms24043973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Plant hemoglobins, often referred to as phytoglobins, play important roles in abiotic stress tolerance. Several essential small physiological metabolites can be bound to these heme proteins. In addition, phytoglobins can catalyze a range of different oxidative reactions in vivo. These proteins are often oligomeric, but the degree and relevance of subunit interactions are largely unknown. In this study, we delineate which residues are involved in dimer formation of a sugar beet phytoglobin type 1.2 (BvPgb1.2) using NMR relaxation experiments. E. coli cells harboring a phytoglobin expression vector were cultivated in isotope-labeled (2H, 13C and 15N) M9 medium. The triple-labeled protein was purified to homogeneity using two chromatographic steps. Two forms of BvPgb1.2 were examined, the oxy-form and the more stable cyanide-form. Using three-dimensional triple-resonance NMR experiments, sequence-specific assignments for CN-bound BvPgb1.2 were achieved for 137 backbone amide cross-peaks in the 1H-15N TROSY spectrum, which amounts to 83% of the total number of 165 expected cross-peaks. A large proportion of the non-assigned residues are located in α-helixes G and H, which are proposed to be involved in protein dimerization. Such knowledge around dimer formation will be instrumental for developing a better understanding of phytoglobins' roles in planta.
Collapse
|
6
|
Uppal S, Khan MA, Kundu S. Stability and Folding of the Unusually Stable Hemoglobin from Synechocystis is Subtly Optimized and Dependent on the Key Heme Pocket Residues. Protein Pept Lett 2021; 28:164-182. [PMID: 32533815 DOI: 10.2174/0929866527666200613220245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
AIMS The aim of our study is to understand the biophysical traits that govern the stability and folding of Synechocystis hemoglobin, a unique cyanobacterial globin that displays unusual traits not observed in any of the other globins discovered so far. BACKGROUND For the past few decades, classical hemoglobins such as vertebrate hemoglobin and myoglobin have been extensively studied to unravel the stability and folding mechanisms of hemoglobins. However, the expanding wealth of hemoglobins identified in all life forms with novel properties, like heme coordination chemistry and globin fold, have added complexity and challenges to the understanding of hemoglobin stability, which has not been adequately addressed. Here, we explored the unique truncated and hexacoordinate hemoglobin from the freshwater cyanobacterium Synechocystis sp. PCC 6803 known as "Synechocystis hemoglobin (SynHb)". The "three histidines" linkages to heme are novel to this cyanobacterial hemoglobin. OBJECTIVE Mutational studies were employed to decipher the residues within the heme pocket that dictate the stability and folding of SynHb. METHODS Site-directed mutants of SynHb were generated and analyzed using a repertoire of spectroscopic and calorimetric tools. RESULTS The results revealed that the heme was stably associated to the protein under all denaturing conditions with His117 playing the anchoring role. The studies also highlighted the possibility of existence of a "molten globule" like intermediate at acidic pH in this exceptionally thermostable globin. His117 and other key residues in the heme pocket play an indispensable role in imparting significant polypeptide stability. CONCLUSION Synechocystis hemoglobin presents an important model system for investigations of protein folding and stability in general. The heme pocket residues influenced the folding and stability of SynHb in a very subtle and specific manner and may have been optimized to make this Hb the most stable known as of date. Other: The knowledge gained hereby about the influence of heme pocket amino acid side chains on stability and expression is currently being utilized to improve the stability of recombinant human Hbs for efficient use as oxygen delivery vehicles.
Collapse
Affiliation(s)
- Sheetal Uppal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Mohd Asim Khan
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| |
Collapse
|
7
|
Astegno A, Conter C, Bertoldi M, Dominici P. Structural Insights into the Heme Pocket and Oligomeric State of Non-Symbiotic Hemoglobins from Arabidopsis thaliana. Biomolecules 2020; 10:E1615. [PMID: 33260415 PMCID: PMC7761212 DOI: 10.3390/biom10121615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana are hexacoordinate heme-proteins that likely have different biological roles, in view of diverse tissue localization, expression pattern, and ligand binding properties. Herein, we expand upon previous biophysical studies on these isoforms, focusing on their oligomeric states and circular dichroism (CD) characteristics. We found that AHb1 exists in solution in a concentration-dependent monomer-dimer equilibrium, while AHb2 is present only as a monomer. The quaternary structure of AHb1 affects its degree of hexacoordination with the formation of the dimer that enhances pentacoordination. Accordingly, the mutant of a conserved residue within the dimeric interface, AHb1-T45A, which is mostly monomeric in solution, has an equilibrium that is shifted toward a hexacoordinate form compared to the wild-type protein. CD studies further support differences in the globin's structure and heme moiety. The Soret CD spectra for AHb2 are opposite in sense to those for AHb1, reflecting different patterns of heme-protein side chain contacts in the two proteins. Moreover, the smaller contribution of the heme to the near-UV CD in AHb2 compared to AHb1 suggests a weaker heme-protein association in AHb2. Our data corroborate the structural diversity of AHb1 and AHb2 and confirm the leghemoglobin-like structural properties of AHb2.
Collapse
Affiliation(s)
- Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (A.A.); (C.C.)
| | - Carolina Conter
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (A.A.); (C.C.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy;
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (A.A.); (C.C.)
| |
Collapse
|
8
|
Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. Plant hemoglobins: a journey from unicellular green algae to vascular plants. THE NEW PHYTOLOGIST 2020; 227:1618-1635. [PMID: 31960995 DOI: 10.1111/nph.16444] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 05/17/2023]
Abstract
Globins (Glbs) are widely distributed in archaea, bacteria and eukaryotes. They can be classified into proteins with 2/2 or 3/3 α-helical folding around the heme cavity. Both types of Glbs occur in green algae, bryophytes and vascular plants. The Glbs of angiosperms have been more intensively studied, and several protein structures have been solved. They can be hexacoordinate or pentacoordinate, depending on whether a histidine is coordinating or not at the sixth position of the iron atom. The 3/3 Glbs of class 1 and the 2/2 Glbs (also called class 3 in plants) are present in all angiosperms, whereas the 3/3 Glbs of class 2 have been only found in early angiosperms and eudicots. The three Glb classes are expected to play different roles. Class 1 Glbs are involved in hypoxia responses and modulate NO concentration, which may explain their roles in plant morphogenesis, hormone signaling, cell fate determination, nutrient deficiency, nitrogen metabolism and plant-microorganism symbioses. Symbiotic Glbs derive from class 1 or class 2 Glbs and transport O2 in nodules. The physiological roles of class 2 and class 3 Glbs are poorly defined but could involve O2 and NO transport and/or metabolism, respectively. More research is warranted on these intriguing proteins to determine their non-redundant functions.
Collapse
Affiliation(s)
- Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
| | - Inmaculada Yruela
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, East Campus, University of Nebraska-Lincoln, Lincoln, NE, 86583, USA
| | - Pilar Catalán
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, 22071, Huesca, Spain
| | - Mark S Hargrove
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
9
|
Fruncillo S, Trande M, Blanford CF, Astegno A, Wong LS. A Method for Metal/Protein Stoichiometry Determination Using Thin-Film Energy Dispersive X-ray Fluorescence Spectroscopy. Anal Chem 2019; 91:11502-11506. [DOI: 10.1021/acs.analchem.9b03319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Matteo Trande
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
10
|
Sugar beet hemoglobins: reactions with nitric oxide and nitrite reveal differential roles for nitrogen metabolism. Biochem J 2019; 476:2111-2125. [PMID: 31285352 PMCID: PMC6668756 DOI: 10.1042/bcj20190154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
In contrast with human hemoglobin (Hb) in red blood cells, plant Hbs do not transport oxygen, instead research points towards nitrogen metabolism. Using comprehensive and integrated biophysical methods we characterized three sugar beet Hbs: BvHb1.1, BvHb1.2 and BvHb2. Their affinities for oxygen, CO, and hexacoordination were determined. Their role in nitrogen metabolism was studied by assessing their ability to bind NO, to reduce nitrite (NiR, nitrite reductase), and to form nitrate (NOD, NO dioxygenase). Results show that BvHb1.2 has high NOD-like activity, in agreement with the high nitrate levels found in seeds where this protein is expressed. BvHb1.1, on the other side, is equally capable to bind NO as to form nitrate, its main role would be to protect chloroplasts from the deleterious effects of NO. Finally, the ubiquitous, reactive, and versatile BvHb2, able to adopt 'open and closed forms', would be part of metabolic pathways where the balance between oxygen and NO is essential. For all proteins, the NiR activity is relevant only when nitrite is present at high concentrations and both NO and oxygen are absent. The three proteins have distinct intrinsic capabilities to react with NO, oxygen and nitrite; however, it is their concentration which will determine the BvHbs' activity.
Collapse
|
11
|
Mot AC, Puscas C, Miclea P, Naumova-Letia G, Dorneanu S, Podar D, Dissmeyer N, Silaghi-Dumitrescu R. Redox control and autoxidation of class 1, 2 and 3 phytoglobins from Arabidopsis thaliana. Sci Rep 2018; 8:13714. [PMID: 30209406 PMCID: PMC6135765 DOI: 10.1038/s41598-018-31922-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/28/2018] [Indexed: 12/29/2022] Open
Abstract
Despite a recent increase in interest towards phytoglobins and their importance in plants, much is still unknown regarding their biochemical/biophysical properties and physiological roles. The present study presents data on three recombinant Arabidopsis phytoglobins in terms of their UV-vis and Raman spectroscopic characteristics, redox state control, redox potentials and autoxidation rates. The latter are strongly influenced by pH for all three hemoglobins - (with a fundamental involvement of the distal histidine), as well as by added anion concentrations - suggesting either a process dominated by nucleophilic displacement of superoxide for AtHb2 or an inhibitory effect for AtHb1 and AtHb3. Reducing agents, such as ascorbate and glutathione, are found to either enhance- (presumably via direct electron transfer or via allosteric regulation) or prevent autoxidation. HbFe3+ reduction was possible in the presence of high (presumably not physiologically relevant) concentrations of NADH, glutathione and ascorbate, with differing behaviors for the three globins. The iron coordination sphere is found to affect the autoxidation, redox state interconversion and redox potentials in these three phytoglobins.
Collapse
Affiliation(s)
- Augustin C Mot
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Babes-Bolyai University, 11 Arany Janos Street, RO-400028, Cluj-Napoca, Romania.
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 1 Mihail Kogalniceanu Street, RO-400084, Cluj-Napoca, Romania.
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany.
| | - Cristina Puscas
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 1 Mihail Kogalniceanu Street, RO-400084, Cluj-Napoca, Romania
| | - Patricia Miclea
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 1 Mihail Kogalniceanu Street, RO-400084, Cluj-Napoca, Romania
| | - Galaba Naumova-Letia
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 1 Mihail Kogalniceanu Street, RO-400084, Cluj-Napoca, Romania
| | - Sorin Dorneanu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 1 Mihail Kogalniceanu Street, RO-400084, Cluj-Napoca, Romania
| | - Dorina Podar
- Faculty of Biology and Geology, Babes-Bolyai University, 1 Mihail Kogalniceanu Street, RO-400084, Cluj-Napoca, Romania
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Radu Silaghi-Dumitrescu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 1 Mihail Kogalniceanu Street, RO-400084, Cluj-Napoca, Romania.
| |
Collapse
|
12
|
Mukhi N, Kundu S, Kaur J. NO dioxygenase- and peroxidase-like activity of Arabidopsis phytoglobin 3 and its role in Sclerotinia sclerotiorum defense. Nitric Oxide 2017; 68:150-162. [PMID: 28315469 DOI: 10.1016/j.niox.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/17/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
Phytoglobin 3 appears to be ubiquitous in plants, yet there has been dearth of evidence for their potent physiological functions. Previous crystallographic studies suggest a potential NO dioxygenase like activity of Arabidopsis phytoglobin 3 (AHb3). The present work examined the in vivo function of AHb3 in plant physiology and its role in biotic stress using Arabidopsis- Sclerotinia sclerotorium pathosystem. The gene was found to be ubiquitously expressed in all plant tissues, with moderately increased expression in roots. Its expression was induced upon NO, H2O2 and biotic stress. A C-terminal tagged GFP version of the wild type protein revealed its enhanced accumulation in the guard cells. AHb3-GFP was found to be partitioned majorly into the nucleus while residual amounts were present in the cytoplasm. The loss of function AHb3 mutant exhibited reduced root length and fresh weight. AHb3 knockout lines also displayed enhanced susceptibility towards the S. sclerotiorum. Interestingly, these lines displayed enhanced ROS accumulation upon pathogen challenge as suggested by DAB staining. Furthermore, enhanced/decreased NO accumulation in AHb3 knockout/overexpression lines upon treatment with multiple NO donors suggests a potent NO dioxygenase like activity for the protein. Taken together, our data indicate that AHb3 play a crucial role in regulating root length as well as in mediating defense response against S. sclerotiorum, possibly by modulating NO and ROS levels.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
13
|
Penta- and hexa-coordinate ferric hemoglobins display distinct pH titration profiles measured by Soret peak shifts. Anal Biochem 2016; 510:120-128. [DOI: 10.1016/j.ab.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/14/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022]
|
14
|
Jokipii-Lukkari S, Kastaniotis AJ, Parkash V, Sundström R, Leiva-Eriksson N, Nymalm Y, Blokhina O, Kukkola E, Fagerstedt KV, Salminen TA, Läärä E, Bülow L, Ohlmeier S, Hiltunen JK, Kallio PT, Häggman H. Dual targeted poplar ferredoxin NADP(+) oxidoreductase interacts with hemoglobin 1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:138-149. [PMID: 27095407 DOI: 10.1016/j.plantsci.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/01/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Previous reports have connected non-symbiotic and truncated hemoglobins (Hbs) to metabolism of nitric oxide (NO), an important signalling molecule involved in wood formation. We have studied the capability of poplar (Populus tremula × tremuloides) Hbs PttHb1 and PttTrHb proteins alone or with a flavin-protein reductase to relieve NO cytotoxicity in living cells. Complementation tests in a Hb-deficient, NO-sensitive yeast (Saccharomyces cerevisiae) Δyhb1 mutant showed that neither PttHb1 nor PttTrHb alone protected cells against NO. To study the ability of Hbs to interact with a reductase, ferredoxin NADP(+) oxidoreductase PtthFNR was characterized by sequencing and proteomics. To date, by far the greatest number of the known dual-targeted plant proteins are directed to chloroplasts and mitochondria. We discovered a novel variant of hFNR that lacks the plastid presequence and resides in cytosol. The coexpression of PttHb1 and PtthFNR partially restored NO resistance of the yeast Δyhb1 mutant, whereas PttTrHb coexpressed with PtthFNR failed to rescue growth. YFP fusion proteins confirmed the interaction between PttHb1 and PtthFNR in plant cells. The structural modelling results indicate that PttHb1 and PtthFNR are able to interact as NO dioxygenase. This is the first report on dual targeting of central plant enzyme FNR to plastids and cytosol.
Collapse
Affiliation(s)
- Soile Jokipii-Lukkari
- Genetics and Physiology Department, University of Oulu, P.O. Box 3000, FI-90014, Finland
| | - Alexander J Kastaniotis
- The Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 5400, FI-90014, Finland
| | - Vimal Parkash
- The Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Robin Sundström
- The Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Nélida Leiva-Eriksson
- The Pure and Applied Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Yvonne Nymalm
- The Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Olga Blokhina
- The Department of Biosciences, University of Helsinki, Viikki Biocenter 3, P.O. Box 65, FI-00014, Finland
| | - Eija Kukkola
- The Department of Biosciences, University of Helsinki, Viikki Biocenter 3, P.O. Box 65, FI-00014, Finland
| | - Kurt V Fagerstedt
- The Department of Biosciences, University of Helsinki, Viikki Biocenter 3, P.O. Box 65, FI-00014, Finland
| | - Tiina A Salminen
- The Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Esa Läärä
- The Department of Mathematical Sciences, University of Oulu, P.O. Box 3000, FI-90014, Finland
| | - Leif Bülow
- The Pure and Applied Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Steffen Ohlmeier
- The Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 5400, FI-90014, Finland
| | - J Kalervo Hiltunen
- The Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 5400, FI-90014, Finland
| | - Pauli T Kallio
- The Institute of Microbiology, ETH-Zürich, CH-8093 Zürich, Switzerland
| | - Hely Häggman
- Genetics and Physiology Department, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| |
Collapse
|
15
|
Mukhi N, Dhindwal S, Uppal S, Kapoor A, Arya R, Kumar P, Kaur J, Kundu S. Structural and Functional Significance of the N- and C-Terminal Appendages in Arabidopsis Truncated Hemoglobin. Biochemistry 2016; 55:1724-40. [PMID: 26913482 DOI: 10.1021/acs.biochem.5b01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant hemoglobins constitute three distinct groups: symbiotic, nonsymbiotic, and truncated hemoglobins. Structural investigation of symbiotic and nonsymbiotic (class I) hemoglobins revealed the presence of a vertebrate-like 3/3 globin fold in these proteins. In contrast, plant truncated hemoglobins are similar to bacterial truncated hemoglobins with a putative 2/2 α-helical globin fold. While multiple structures have been reported for plant hemoglobins of the first two categories, for plant truncated globins only one structure has been reported of late. Here, we report yet another crystal structure of the truncated hemoglobin from Arabidopsis thaliana (AHb3) with two water molecules in the heme pocket, of which one is distinctly coordinated to the heme iron, unlike the only available crystal structure of AHb3 with a hydroxyl ligand. AHb3 was monomeric in its crystallographic asymmetric unit; however, dimer was evident in the crystallographic symmetry, and the globin indeed existed as a stable dimer in solution. The tertiary structure of the protein exhibited a bacterial-like 2/2 α-helical globin fold with an additional N-terminal α-helical extension and disordered C-termini. To address the role of these extended termini in AHb3, which is yet unknown, N- and C-terminal deletion mutants were created and characterized and molecular dynamics simulations performed. The C-terminal deletion had an insignificant effect on most properties but perturbed the dimeric equilibrium of AHb3 and significantly influenced azide binding kinetics in the ferric state. These results along with the disordered nature of the C-terminus indicated its putative role in intramolecular or intermolecular interactions probably regulating protein-ligand and protein-protein interactions. While the N-terminal deletion did not change the overall globin fold, stability, or ligand binding kinetics, it seemed to have influenced coordination at the heme iron, the hydration status of the active site, and the quaternary structure of AHb3. Evidence indicated that the N-terminus is the predominant factor regulating the quaternary interaction appropriate to physiological requirements, dynamics of the side chains in the heme pocket, and tunnel organization in the protein matrix.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Genetics, University of Delhi South Campus , New Delhi 110021, India
| | - Sonali Dhindwal
- Department of Biotechnology, Indian Institute of Technology , Roorkee, Uttarakhand 247667, India
| | - Sheetal Uppal
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| | - Abhijeet Kapoor
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| | - Richa Arya
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology , Roorkee, Uttarakhand 247667, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi South Campus , New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| |
Collapse
|
16
|
Ascenzi P, Sbardella D, Fiocchetti M, Santucci R, Coletta M. NO2−-mediated nitrosylation of ferrous microperoxidase-11. J Inorg Biochem 2015; 153:121-127. [DOI: 10.1016/j.jinorgbio.2015.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 11/29/2022]
|
17
|
Abstract
In the last few years, advances in algal research have identified the participation of haemoglobins in nitrogen metabolism and the management of reactive nitrogen and oxygen species. This chapter summarises the state of knowledge concerning algal haemoglobins with a focus on the most widely used model system, namely, Chlamydomonas reinhardtii. Genetic, physiologic, structural, and chemical information is compiled to provide a framework for further studies.
Collapse
Affiliation(s)
- Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|