1
|
Nezhat CR, Oskotsky TT, Robinson JF, Fisher SJ, Tsuei A, Liu B, Irwin JC, Gaudilliere B, Sirota M, Stevenson DK, Giudice LC. Real world perspectives on endometriosis disease phenotyping through surgery, omics, health data, and artificial intelligence. NPJ WOMEN'S HEALTH 2025; 3:8. [PMID: 39926583 PMCID: PMC11802455 DOI: 10.1038/s44294-024-00052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025]
Abstract
Endometriosis is an enigmatic disease whose diagnosis and management are being transformed through innovative surgical, molecular, and computational technologies. Integrating single-cell and other omic disease data with clinical and surgical metadata can identify multiple disease subtypes with translation to novel diagnostics and therapeutics. Herein, we present real-world perspectives on endometriosis and the importance of multidisciplinary collaboration in informing molecular, epidemiologic, and cell-specific data in the clinical and surgical contexts.
Collapse
Affiliation(s)
- Camran R. Nezhat
- Center for Special Minimally Invasive and Robotic Surgery, Camran Nezhat Institute, Stanford University Medical Center, University of California, San Francisco, Woodside, CA 94061 USA
| | - Tomiko T. Oskotsky
- Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois St, Floor 2, San Francisco, CA 94158 USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 513 Parnassus Ave, Rm. 1621, San Francisco, CA 94143 USA
| | - Susan J. Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 35 Medical Center Way, Box 0665, San Francisco, CA 94143 USA
| | - Angie Tsuei
- Center for Special Minimally Invasive and Robotic Surgery, Camran Nezhat Institute, Woodside, CA 94061 USA
| | - Binya Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 513 Parnassus Avenue Room 1600 HSE, San Francisco, CA 94143 USA
| | - Juan C. Irwin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 513 Parnassus Avenue Room 1600 HSE, San Francisco, CA 94143 USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Pain, and Perioperative Medicine, and (courtesy) Pediatrics, Stanford University, 3174 Porter Dr, Palo Alto, CA 94304 USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois St, Floor 2, San Francisco, CA 94158 USA
| | - David K. Stevenson
- Department of Pediatrics, Stanford University, 453 Quarry Rd, Palo Alto, CA 94304 USA
| | - Linda C. Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 513 Parnassus Avenue Room 1600 HSE, San Francisco, CA 94143 USA
| |
Collapse
|
2
|
Cai XH, Zhao SQ, Zhang K, Liu WT. Progress in research of proteomics related to digestive system tumor markers. Shijie Huaren Xiaohua Zazhi 2024; 32:716-726. [DOI: 10.11569/wcjd.v32.i10.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The incidence and mortality of digestive system tumors are high. Even though the number of methods for tumor diagnosis and treatment is increasing, most of these tumors still cannot be diagnosed early, and their prognosis is poor. The lack of effective biomarkers and therapeutic targets is the reason why they cannot be diagnosed early and treated effectively. With the continuous development of proteomics technology, proteomics has become increasingly valuable in exploring the mechanisms of tumorigenesis and searching for biomarkers and drug targets. This article reviews the application progress of proteomics technology in screening of biomarkers for digestive system tumors, with an aim to provide new ideas for early diagnosis, prognosis, and treatment of digestive system tumors.
Collapse
Affiliation(s)
- Xiao-Han Cai
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Si-Qi Zhao
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kai Zhang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wen-Tian Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
3
|
Tanhehco YC. Functional biomarkers for sickle cell disease. Transfusion 2024; 64:1593-1596. [PMID: 39189052 DOI: 10.1111/trf.17992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
See article on page 1752–1761, in this issue
Collapse
|
4
|
Liu M, Wen Z, Zhang T, Zhang L, Liu X, Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front Immunol 2024; 15:1417758. [PMID: 38983854 PMCID: PMC11231912 DOI: 10.3389/fimmu.2024.1417758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.
Collapse
Affiliation(s)
- Meijin Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Zhenzhen Wen
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Tingting Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Linghan Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Xiaoyan Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Maoyuan Wang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, GanZhou, China
| |
Collapse
|
5
|
Rais Y, Drabovich AP. Identification and Quantification of Human Relaxin Proteins by Immunoaffinity-Mass Spectrometry. J Proteome Res 2024; 23:2013-2027. [PMID: 38739617 DOI: 10.1021/acs.jproteome.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The human relaxins belong to the Insulin/IGF/Relaxin superfamily of peptide hormones, and their physiological function is primarily associated with reproduction. In this study, we focused on a prostate tissue-specific relaxin RLN1 (REL1_HUMAN protein) and a broader tissue specificity RLN2 (REL2_HUMAN protein). Due to their structural similarity, REL1 and REL2 proteins were collectively named a 'human relaxin protein' in previous studies and were exclusively measured by immunoassays. We hypothesized that the highly selective and sensitive immunoaffinity-selected reaction monitoring (IA-SRM) assays would reveal the identity and abundance of the endogenous REL1 and REL2 in biological samples and facilitate the evaluation of these proteins for diagnostic applications. High levels of RLN1 and RLN2 transcripts were found in prostate and breast cancer cell lines by RT-PCR. However, no endogenous prorelaxin-1 or mature REL1 were detected by IA-SRM in cell lines, seminal plasma, or blood serum. The IA-SRM assay of REL2 demonstrated its undetectable levels (<9.4 pg/mL) in healthy control female and male sera and relatively high levels of REL2 in maternal sera across different gestational weeks (median 331 pg/mL; N = 120). IA-SRM assays uncovered potential cross-reactivity and nonspecific binding for relaxin immunoassays. The developed IA-SRM assays will facilitate the investigation of the physiological and pathological roles of REL1 and REL2 proteins.
Collapse
Affiliation(s)
- Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
6
|
Walter J, Eludin Z, Drabovich AP. Redefining serological diagnostics with immunoaffinity proteomics. Clin Proteomics 2023; 20:42. [PMID: 37821808 PMCID: PMC10568870 DOI: 10.1186/s12014-023-09431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Serological diagnostics is generally defined as the detection of specific human immunoglobulins developed against viral, bacterial, or parasitic diseases. Serological tests facilitate the detection of past infections, evaluate immune status, and provide prognostic information. Serological assays were traditionally implemented as indirect immunoassays, and their design has not changed for decades. The advantages of straightforward setup and manufacturing, analytical sensitivity and specificity, affordability, and high-throughput measurements were accompanied by limitations such as semi-quantitative measurements, lack of universal reference standards, potential cross-reactivity, and challenges with multiplexing the complete panel of human immunoglobulin isotypes and subclasses. Redesign of conventional serological tests to include multiplex quantification of immunoglobulin isotypes and subclasses, utilize universal reference standards, and minimize cross-reactivity and non-specific binding will facilitate the development of assays with higher diagnostic specificity. Improved serological assays with higher diagnostic specificity will enable screenings of asymptomatic populations and may provide earlier detection of infectious diseases, autoimmune disorders, and cancer. In this review, we present the major clinical needs for serological diagnostics, overview conventional immunoassay detection techniques, present the emerging immunoassay detection technologies, and discuss in detail the advantages and limitations of mass spectrometry and immunoaffinity proteomics for serological diagnostics. Finally, we explore the design of novel immunoaffinity-proteomic assays to evaluate cell-mediated immunity and advance the sequencing of clinically relevant immunoglobulins.
Collapse
Affiliation(s)
- Jonathan Walter
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zicki Eludin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
7
|
Xiong J, Fu F, Yu F, He X. Advances of exosomal miRNAs in the diagnosis and treatment of ovarian cancer. Discov Oncol 2023; 14:65. [PMID: 37160813 PMCID: PMC10169985 DOI: 10.1007/s12672-023-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Ovarian cancer is a tumor with the highest fatalities among female malignant tumors. This disease has no typical symptoms in its early stage, and most of the patients are in an advanced stage when being treated. The treatment effect is poor and it is easy to develop chemotherapy resistance. Therefore, it is particularly urgent to clarify the pathogenesis of ovarian cancer, explore its early diagnosis of biomarkers, and discover new treatment methods. As a carrier of intercellular information and genetic material transfer, exosomes are widely distributed in body fluids (e.g. blood and urine), which are regarded as latent tumor markers and take effects on tumor occurrence and invasion. Several articles have recently signified that exosomal miRNAs are widely implicated in the formation of the ovarian cancer tumor microenvironment, disease initiation and progression, and the generation of chemotherapy resistance. This article reviews the research on exosomal miRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Fen Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Feng Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China.
| |
Collapse
|
8
|
Zhang J, Kanoatov M, Jarvi K, Gauthier-Fisher A, Moskovtsev SI, Librach C, Drabovich AP. Germ cell-specific proteins AKAP4 and ASPX facilitate identification of rare spermatozoa in non-obstructive azoospermia. Mol Cell Proteomics 2023; 22:100556. [PMID: 37087050 DOI: 10.1016/j.mcpro.2023.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
Non-obstructive azoospermia (NOA), the most severe form of male infertility, could be treated with intra-cytoplasmic sperm injection, providing spermatozoa were retrieved with the microdissection testicular sperm extraction (mTESE). We hypothesized that testis- and germ cell-specific proteins would facilitate flow cytometry-assisted identification of rare spermatozoa in semen cell pellets of NOA patients, thus enabling non-invasive diagnostics prior to mTESE. Data mining, targeted proteomics, and immunofluorescent microscopy identified and verified a panel of highly testis-specific proteins expressed at the continuum of germ cell differentiation. Late germ cell-specific proteins AKAP4_HUMAN and ASPX_HUMAN (ACRV1 gene) revealed exclusive localization in spermatozoa tails and acrosomes, respectively. A multiplex imaging flow cytometry assay facilitated fast and unambiguous identification of rare but morphologically intact AKAP4+/ASPX+/Hoechst+ spermatozoa within debris-laden semen pellets of NOA patients. While the previously suggested markers for spermatozoa retrieval suffered from low diagnostic specificity, the multi-step gating strategy and visualization of AKAP4+/ASPX+/Hoechst+ cells with elongated tails and acrosome-capped nuclei facilitated fast and unambiguous identification of the mature intact spermatozoa. AKAP4+/ASPX+/Hoechst+ assay may emerge as a non-invasive test to predict retrieval of morphologically intact spermatozoa by mTESE, thus improving diagnostics and treatment of severe forms of male infertility.
Collapse
Affiliation(s)
| | - Mirzo Kanoatov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Sergey I Moskovtsev
- CReATe Fertility Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Picard B, Cougoul A, Couvreur S, Bonnet M. Relationships between the abundance of 29 proteins and several meat or carcass quality traits in two bovine muscles revealed by a combination of univariate and multivariate analyses. J Proteomics 2023; 273:104792. [PMID: 36535620 DOI: 10.1016/j.jprot.2022.104792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
We aimed to evaluate the relationships between meat or carcass properties and the abundance of 29 proteins quantified in two muscles, Longissimus thoracis and Rectus abdominis, of Rouge des Prés cows. The relative abundance of the proteins was evaluated using a high throughput immunological method: the Reverse Phase Protein array. A combination of univariate and multivariate analyses has shown that small HSPs (CRYAB, HSPB6), fast glycolytic metabolic and structural proteins (MYH1, ENO3, ENO1, TPI1) when assayed both in RA and LT, were related to meat tenderness, marbling, ultimate pH, as well as carcass fat-to-lean ratio or conformation score. In addition to some small HSP, ALDH1A1 and TRIM72 contributed to the molecular signature of muscular and carcass adiposity. MYH1 and HSPA1A were among the top proteins related to carcass traits. We thus shortened the list to 10 putative biomarkers to be considered in future tools to manage both meat and carcass properties. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is the first proteomics study that aims to evaluate putative biomarkers of both meat and carcass qualities that are of economic importance for the beef industry. Second, the relationship between the abundance of proteins and the carcass or meat traits were evaluated by a combination of univariate and multivariate analyses on 48 cows that are representative of the biological variability of the traits. Third, we provide a short list of ten proteins to be tested in a larger population to feed the pipeline of biomarker discovery.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Arnaud Cougoul
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Sébastien Couvreur
- École Supérieure d'Agricultures, USC ESA-INRAE 1481 Systèmes d'Elevage, 55 rue Rabelais - BP 30748 - 49007 Angers Cedex 01, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
10
|
Fu Z, Rais Y, Dara D, Jackson D, Drabovich AP. Rational Design and Development of SARS-CoV-2 Serological Diagnostics by Immunoprecipitation-Targeted Proteomics. Anal Chem 2022; 94:12990-12999. [PMID: 36095284 PMCID: PMC9523617 DOI: 10.1021/acs.analchem.2c01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Current design of serological tests utilizes conservative
immunoassay
approaches and is focused on fast and convenient assay development,
throughput, straightforward measurements, and affordability. Limitations
of common serological assays include semiquantitative measurements,
cross-reactivity, lack of reference standards, and no differentiation
between human immunoglobulin subclasses. In this study, we suggested
that a combination of immunoaffinity enrichments with targeted proteomics
would enable rational design and development of serological assays
of infectious diseases, such as COVID-19. Immunoprecipitation-targeted
proteomic assays allowed for sensitive and specific measurements of
NCAP_SARS2 protein with a limit of detection of 313 pg/mL in serum
and enabled differential quantification of anti-SARS-CoV-2 antibody
isotypes (IgG, IgA, IgM, IgD, and IgE) and individual subclasses (IgG1-4
and IgA1-2) in plasma and saliva. Simultaneous evaluation of the numerous
antigen–antibody subclass combinations revealed a receptor-binding
domain (RBD)-IgG1 as a combination with the highest diagnostic performance.
Further validation revealed that anti-RBD IgG1, IgG3, IgM, and IgA1
levels were significantly elevated in convalescent plasma, while IgG2,
IgG4, and IgA2 were not informative. Anti-RBD IgG1 levels in convalescent
(2138 ng/mL) vs negative (95 ng/mL) plasma revealed 385 ng/mL as a
cutoff to detect COVID-19 convalescent plasma. Immunoprecipitation-targeted
proteomic assays will facilitate improvement and standardization of
the existing serological tests, enable rational design of novel tests,
and offer tools for the comprehensive investigation of immunoglobulin
subclass cooperation in immune response.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Delaram Dara
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Dana Jackson
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
11
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
12
|
Rais Y, Fu Z, Drabovich AP. Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clin Proteomics 2021; 18:19. [PMID: 34384361 PMCID: PMC8358260 DOI: 10.1186/s12014-021-09325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023] Open
Abstract
Molecular diagnostics of the coronavirus disease of 2019 (COVID-19) now mainly relies on the measurements of viral RNA by RT-PCR, or detection of anti-viral antibodies by immunoassays. In this review, we discussed the perspectives of mass spectrometry-based proteomics as an analytical technique to identify and quantify proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and to enable basic research and clinical studies on COVID-19. While RT-PCR and RNA sequencing are indisputably powerful techniques for the detection of SARS-CoV-2 and identification of the emerging mutations, proteomics may provide confirmatory diagnostic information and complimentary biological knowledge on protein abundance, post-translational modifications, protein-protein interactions, and the functional impact of the emerging mutations. Pending advances in sensitivity and throughput of mass spectrometry and liquid chromatography, shotgun and targeted proteomic assays may find their niche for the differential quantification of viral proteins in clinical and environmental samples. Targeted proteomic assays in combination with immunoaffinity enrichments also provide orthogonal tools to evaluate cross-reactivity of serology tests and facilitate development of tests with the nearly perfect diagnostic specificity, this enabling reliable testing of broader populations for the acquired immunity. The coronavirus pandemic of 2019-2021 is another reminder that the future global pandemics may be inevitable, but their impact could be mitigated with the novel tools and assays, such as mass spectrometry-based proteomics, to enable continuous monitoring of emerging viruses, and to facilitate rapid response to novel infectious diseases.
Collapse
Affiliation(s)
- Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Hirtz C, O'Flynn R, Voisin PM, Deville de Périère D, Lehmann S, Guedes S, Amado F, Ferreira R, Trindade F, Vitorino R. The potential impact of salivary peptides in periodontitis. Crit Rev Clin Lab Sci 2021; 58:479-492. [PMID: 33849374 DOI: 10.1080/10408363.2021.1907298] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontitis is a complex immune-inflammatory condition characterized by the disruption of the periodontal ligament and subsequent formation of periodontal pockets, and by alveolar bone loss, often resulting in tooth loss. A myriad of factors, namely, genetic, metabolic, immunological, and inflammatory, is associated with progression of periodontitis. Periodontitis is also associated with systemic conditions such as neoplastic disorders, obesity, and diabetes. The current diagnosis of this disease relies on clinical measurements such as clinical attachment loss and probing depth, which have poor precision due to patient, operator and probe-related factors. Thus, there is a need to develop reliable, objective, and reproducible biomarkers for early diagnosis of periodontitis. In this regard, saliva, with contributions from the gingival crevicular fluid, holds great potential. However, most of the information on biomarkers of periodontium-related salivary proteins has come from studies on the molecular pathogenesis of periodontitis. In periodontitis, a more holistic approach, such as the use of -omics technologies, for biomarker discovery, is needed. Herein, we review the biomarkers proposed to date for the assessment of periodontitis, with emphasis on the role of salivary peptides in periodontitis and their assessment by high-throughput saliva proteomics. We also discuss the challenges pertaining to the identification of new periodontitis biomarkers in saliva.
Collapse
Affiliation(s)
- Christophe Hirtz
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Robin O'Flynn
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | | | | | - Sylvain Lehmann
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Sofia Guedes
- REQUIMTE-QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- REQUIMTE-QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- REQUIMTE-QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,UnIC - Unidade de Investigação & Desenvolvimento Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rui Vitorino
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,UnIC - Unidade de Investigação & Desenvolvimento Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Shehzad A, Islam SU, Shahzad R, Khan S, Lee YS. Extracellular vesicles in cancer diagnostics and therapeutics. Pharmacol Ther 2021; 223:107806. [PMID: 33465400 DOI: 10.1016/j.pharmthera.2021.107806] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Cancer promotion, development, and malignant transformation is greatly influenced by cell-to-cell interactions in a complex tissue microenvironment. Cancer and stromal cells secrete soluble factors, as well as deport membrane-encapsulated structures, which actively contribute and mediate cell-to-cell interaction within a tumor microenvironment (TME). These membrane structures are recognized as extracellular vesicles (EVs), which include exosomes and microvesicles. They can carry and transport regulatory molecules such as oncogenic proteins, coding and non-coding RNAs, DNA, and lipids between neighboring cells and to distant sites. EVs mediate crucial pathophysiological effects such as the formation of premetastatic niches and the progression of malignancies. There is compelling evidence that cancer cells exhibit a significant amount of EVs, which can be released into the surrounding body fluids, compared with nonmalignant cells. EVs therefore have the potential to be used as disease indicator for the diagnosis and prognosis of cancers, as well as for facilitating research into the underlying mechanism and biomolecular basis of these diseases. Because of their ability to transport substances, followed by their distinct immunogenicity and biocompatibility, EVs have been used to carry therapeutically-active molecules such as RNAs, proteins, short and long peptides, and various forms of drugs. In this paper, we summarize new advancement in the biogenesis and physiological roles of EVs, and underpin their functional impacts in the process of cancer growth and metastasis. We further highlight the therapeutic roles of EVs in the treatment, prevention, and diagnosis of human malignancies.
Collapse
Affiliation(s)
- Adeeb Shehzad
- Department of Biomedical Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Salman Ul Islam
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Raheem Shahzad
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Young Sup Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
15
|
Abstract
An overview of noteworthy new methods of biomarker determination based on surface-enhanced Raman scattering (SERS) is presented. Biomarkers can be used to identify the occurrence and development of diseases, which furthers the understanding of biological processes in the body. Accurate detection of a disease-specific biomarker is helpful for the identification, early diagnosis and prevention of a disease and for monitoring during treatment. The search for and discovery of valuable biomarkers have become important research hotspots. Different diseases have different biomarkers, some of which are involved in metabolic processes. Therefore, the fingerprint characteristics and band intensities in SERS spectra have been used to identify metabolites and analyze markers. As a promising technique, SERS has been widely used for the quantitative and qualitative determination of different types of biomarkers for different diseases. SERS techniques provide new technologies for the diagnosis of disease-related markers and determining the basis for clinical treatment. Herein, several SERS-based methods with excellent sensitivity and selectivity for the determination of biomarkers for tumors, viruses, Alzheimer’s disease, cardiac muscle tissue injury, and cell activity are highlighted.
Collapse
|
16
|
Bleker de Oliveira M, Koshkin V, Liu G, Krylov SN. Analytical Challenges in Development of Chemoresistance Predictors for Precision Oncology. Anal Chem 2020; 92:12101-12110. [PMID: 32790291 DOI: 10.1021/acs.analchem.0c02644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemoresistance, i.e., tumor insensitivity to chemotherapy, shortens life expectancy of cancer patients. Despite the availability of new treatment options, initial systemic regimens for solid tumors are dominated by a set of standard chemotherapy drugs, and alternative therapies are used only when a patient has demonstrated chemoresistance clinically. Chemoresistance predictors use laboratory parameters measured on tissue samples to predict the patient's response to chemotherapy and help to avoid application of chemotherapy to chemoresistant patients. Despite thousands of publications on putative chemoresistance predictors, there are only about a dozen predictors that are sufficiently accurate for precision oncology. One of the major reasons for inaccuracy of predictors is inaccuracy of analytical methods utilized to measure their laboratory parameters: an inaccurate method leads to an inaccurate predictor. The goal of this study was to identify analytical challenges in chemoresistance-predictor development and suggest ways to overcome them. Here we describe principles of chemoresistance predictor development via correlating a clinical parameter, which manifests disease state, with a laboratory parameter. We further classify predictors based on the nature of laboratory parameters and analyze advantages and limitations of different predictors using the reliability of analytical methods utilized for measuring laboratory parameters as a criterion. Our eventual focus is on predictors with known mechanisms of reactions involved in drug resistance (drug extrusion, drug degradation, and DNA damage repair) and using rate constants of these reactions to establish accurate and robust laboratory parameters. Many aspects and conclusions of our analysis are applicable to all types of disease biomarkers built upon the correlation of clinical and laboratory parameters.
Collapse
Affiliation(s)
- Mariana Bleker de Oliveira
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto M3J 1P3, Canada
| | - Vasilij Koshkin
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto M3J 1P3, Canada
| | - Geoffrey Liu
- Department of Medicine, Medical Oncology, Princess Margaret Cancer Centre, Toronto M5G 2M9, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto M3J 1P3, Canada
| |
Collapse
|
17
|
Bonnet M, Soulat J, Bons J, Léger S, De Koning L, Carapito C, Picard B. Quantification of biomarkers for beef meat qualities using a combination of Parallel Reaction Monitoring- and antibody-based proteomics. Food Chem 2020; 317:126376. [DOI: 10.1016/j.foodchem.2020.126376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022]
|
18
|
Li D, Song Q, Li T, Shu C, Ji S, Su C, Su Y, Ding L. An LC-MS/MS method for protein detection based on a mass barcode and dual-target recognition strategy. RSC Adv 2020; 10:16094-16100. [PMID: 35493641 PMCID: PMC9052937 DOI: 10.1039/d0ra01783c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
A mass barcode mediated signal amplification strategy was developed and applied to the determination of protein. A new compound, N'-((2-aminopyridin-3-yl)methylene)-5-(1,2-dithiolan-3-yl)pentanehydrazide (TAPA), was synthesized from the linker and the signal barcode, and used as the bonding barcode. For the realization of signal transduction, TAPAs and the target catcher aptamers, were both modified on gold nanoparticles (AuNPs) to establish the relationship between TAPAs and the target. Owing to the fact that the amount of TAPAs was much greater than the target, the signal of the target was not only transduced to the signal of the mass barcodes, but also amplified greatly. Thrombin, an important biomarker for coagulation abnormality diseases, was selected as a model analyte. Two kinds of thrombin recognition aptamers, aptamer 29 (apt29) and aptamer 15 (apt15), were modified onto the magnetic beads (MBs) and AuNPs, respectively. The modified AuNPs were further functionalized with lots of TAPA and formed apt15-AuNPs-TAPA. MBs-apt29 and apt15-AuNPs-TAPA could both recognize the target thrombin and form the sandwich complex (MBs-apt29/thrombin/apt15-AuNPs-TAPA). After the complex was separated by an extra magnetic field, NaClO oxidant solution was added to release the signal barcodes, 2-Amino-3-pyridinecarboxaldehyde (APA), which were then collected after centrifuging and analyzed by LC-MS/MS. Under optimized conditions, the mass response intensity was proportional to thrombin concentration in the range of 0.05-10 nM, with a 0.007 nM detection limit. This method was applied to the determination of thrombin in spiked serum samples, and the average recoveries ranged from 89.6% to 110.4%, which confirmed the applicability of this method.
Collapse
Affiliation(s)
- Duo Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Qinxin Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Tengfei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Shunli Ji
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Chang Su
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University Nanjing 211166 China
| | - Yuwen Su
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University Nanjing 211166 China
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| |
Collapse
|
19
|
Drabovich AP, Saraon P, Drabovich M, Karakosta TD, Dimitromanolakis A, Hyndman ME, Jarvi K, Diamandis EP. Multi-omics Biomarker Pipeline Reveals Elevated Levels of Protein-glutamine Gamma-glutamyltransferase 4 in Seminal Plasma of Prostate Cancer Patients. Mol Cell Proteomics 2019; 18:1807-1823. [PMID: 31249104 PMCID: PMC6731075 DOI: 10.1074/mcp.ra119.001612] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 11/06/2022] Open
Abstract
Seminal plasma, because of its proximity to prostate, is a promising fluid for biomarker discovery and noninvasive diagnostics. In this study, we investigated if seminal plasma proteins could increase diagnostic specificity of detecting primary prostate cancer and discriminate between high- and low-grade cancers. To select 147 most promising biomarker candidates, we combined proteins identified through five independent experimental or data mining approaches: tissue transcriptomics, seminal plasma proteomics, cell line secretomics, tissue specificity, and androgen regulation. A rigorous biomarker development pipeline based on selected reaction monitoring assays was designed to evaluate the most promising candidates. As a result, we qualified 76, and verified 19 proteins in seminal plasma of 67 negative biopsy and 152 prostate cancer patients. Verification revealed a prostate-specific, secreted and androgen-regulated protein-glutamine gamma-glutamyltransferase 4 (TGM4), which predicted prostate cancer on biopsy and outperformed age and serum Prostate-Specific Antigen (PSA). A machine-learning approach for data analysis provided improved multi-marker combinations for diagnosis and prognosis. In the independent verification set measured by an in-house immunoassay, TGM4 protein was upregulated 3.7-fold (p = 0.006) and revealed AUC = 0.66 for detecting prostate cancer on biopsy for patients with serum PSA ≥4 ng/ml and age ≥50. Very low levels of TGM4 (120 pg/ml) were detected in blood serum. Collectively, our study demonstrated rigorous evaluation of one of the remaining and not well-explored prostate-specific proteins within the medium-abundance proteome of seminal plasma. Performance of TGM4 warrants its further investigation within the distinct genomic subtypes and evaluation for the inclusion into emerging multi-biomarker panels.
Collapse
Affiliation(s)
- Andrei P Drabovich
- ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5T 3L9 Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, M5T 3L9 Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada.
| | - Punit Saraon
- ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5T 3L9 Canada
| | | | - Theano D Karakosta
- §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, M5T 3L9 Canada
| | | | - M Eric Hyndman
- **Department of Surgery, Division of Urology, Southern Alberta Institute of Urology, University of Calgary, Calgary, AB T2V 1P9, Canada
| | - Keith Jarvi
- ‡‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada; §§Department of Surgery, Division of Urology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, M5T 3L9 Canada.
| | - Eleftherios P Diamandis
- ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5T 3L9 Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, M5T 3L9 Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada; ‡‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada.
| |
Collapse
|
20
|
Rhode H, Muckova P, Büchler R, Wendler S, Tautkus B, Vogel M, Moore T, Grosskreutz J, Klemm A, Nabity M. A next generation setup for pre-fractionation of non-denatured proteins reveals diverse albumin proteoforms each carrying several post-translational modifications. Sci Rep 2019; 9:11733. [PMID: 31409882 PMCID: PMC6692309 DOI: 10.1038/s41598-019-48278-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Proteomic biomarker search requires the greatest analytical reproducibility and detailed information on altered proteoforms. Our protein pre-fractionation applies orthogonal native chromatography and conserves important features of protein variants such as native molecular weight, charge and major glycans. Moreover, we maximized reproducibility of sample pre-fractionation and preparation before mass spectrometry by parallelization and automation. In blood plasma and cerebrospinal fluid (CSF), most proteins, including candidate biomarkers, distribute into a multitude of chromatographic clusters. Plasma albumin, for example, divides into 15-17 clusters. As an example of our technique, we analyzed these albumin clusters from healthy volunteers and from dogs and identified cluster-typical modification patterns. Renal disease further modifies these patterns. In human CSF, we found only a subset of proteoforms with fewer modifications than in plasma. We infer from this example that our method can be used to identify and characterize distinct proteoforms and, optionally, enrich them, thereby yielding the characteristics of proteoform-selective biomarkers.
Collapse
Affiliation(s)
- Heidrun Rhode
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany.
| | - Petra Muckova
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany
| | - Rita Büchler
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany.,Pharmachem Straße 1, Pharmachem Pößneck GmbH & Co. KG, 07381, Pößneck, Germany
| | - Sindy Wendler
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany.,Institute of Microbiology, Am Klinikum 1, University Hospital Jena, 07747, Jena, Germany
| | - Bärbel Tautkus
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany
| | - Michaela Vogel
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany
| | - Thomas Moore
- Analytik Jena, Konrad-Zuse-Str.1, 07745, Jena, Germany
| | - Julian Grosskreutz
- Department of Neurology, Am Klinikum 1, University Hospital Jena, 07747, Jena, Germany
| | - Andree Klemm
- KfH Kuratorium für Dialyse und Nierentransplantation e.V., Ernst-Ruska-Ring 19, 07745, Jena, Germany
| | - Mary Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine, 4467 TAMU, Texas A&M University, College Station, TX, 77843-4467, Texas, USA
| |
Collapse
|
21
|
Peffers MJ, Smagul A, Anderson JR. Proteomic analysis of synovial fluid: current and potential uses to improve clinical outcomes. Expert Rev Proteomics 2019; 16:287-302. [PMID: 30793992 DOI: 10.1080/14789450.2019.1578214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Synovial fluid (SF) is in close proximity to tissues which are primarily altered during articular disease and has significant potential to better understand the underlying disease pathogeneses of articular pathologies and biomarker discovery. Although development of mass spectrometry-based methods has allowed faster and higher sensitivity techniques, interrogation of the SF proteome has been hindered by its large protein concentration dynamic range, impeding quantification of lower abundant proteins. Areas covered: Recent advances have developed methodologies to reduce the large protein concentration dynamic range of SF and subsequently allow deeper exploration of the SF proteome. This review concentrates on methods to overcome biofluid complexity, mass spectrometry proteomics methodologies, extracellular vesicles proteomics and the application of advances within the field in clinical disease, including osteoarthritis, rheumatoid arthritis, spondyloarthritis and juvenile arthritis. A narrative review was conducted with articles searched using PubMed, 1991-2018. Expert opinion: The SF proteomics field faces various challenges, including the requirement for rigorous and standardised methods of sample collection/storage, the sensitivity and specificity of proteomic assays, techniques to combat the large protein concentration dynamic range and comprehensive data analysis to reduce falsely identified markers. Additionally, there are challenges in developing multi 'omic' integration techniques, with computational integration enhancing analysis.
Collapse
Affiliation(s)
- Mandy Jayne Peffers
- a Comparative Musculoskeletal Biology, Institute of Ageing and Chronic Disease , University of Liverpool , Liverpool , UK
| | - Aibek Smagul
- a Comparative Musculoskeletal Biology, Institute of Ageing and Chronic Disease , University of Liverpool , Liverpool , UK
| | - James Ross Anderson
- a Comparative Musculoskeletal Biology, Institute of Ageing and Chronic Disease , University of Liverpool , Liverpool , UK
| |
Collapse
|
22
|
Lorentzian A, Uzozie A, Lange PF. Origins and clinical relevance of proteoforms in pediatric malignancies. Expert Rev Proteomics 2019; 16:185-200. [PMID: 30700156 DOI: 10.1080/14789450.2019.1575206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Cancer changes the proteome in complex ways that reach well beyond simple changes in protein abundance. Genomic and transcriptional variations and post-translational protein modification create functional variants of a protein, known as proteoforms. Childhood cancers have fewer genomic alterations but show equally dramatic phenotypic changes as malignant cells in adults. Therefore, unraveling the complexities of the proteome is even more important in pediatric malignancies. Areas covered: In this review, the biological origins of proteoforms and technological advancements in the study of proteoforms are discussed. Particular emphasis is given to their implication in childhood malignancies and the critical role of cancer-specific proteoforms for the next generation of cancer therapies and diagnostics. Expert opinion: Recent advancements in technology have led to a better understanding of the underlying mechanisms of tumorigenesis. This has been critical for the development of more effective and less harmful treatments that are based on direct targeting of altered proteins and deregulated pathways. As proteome coverage and the ability to detect complex proteoforms increase, the most need for change is in data compilation and database availability to mediate high-level data analysis and allow for better functional annotation of proteoforms.
Collapse
Affiliation(s)
- Amanda Lorentzian
- a Department of Cell and Developmental Biology , University of British Columbia , Vancouver , BC , Canada.,b Michael Cuccione Childhood Cancer Research Program , BC Children's Hospital Research Institute , Vancouver , BC , Canada
| | - Anuli Uzozie
- b Michael Cuccione Childhood Cancer Research Program , BC Children's Hospital Research Institute , Vancouver , BC , Canada.,c Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , BC , Canada
| | - Philipp F Lange
- a Department of Cell and Developmental Biology , University of British Columbia , Vancouver , BC , Canada.,b Michael Cuccione Childhood Cancer Research Program , BC Children's Hospital Research Institute , Vancouver , BC , Canada.,c Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
23
|
Jedinak A, Loughlin KR, Moses MA. Approaches to the discovery of non-invasive urinary biomarkers of prostate cancer. Oncotarget 2018; 9:32534-32550. [PMID: 30197761 PMCID: PMC6126692 DOI: 10.18632/oncotarget.25946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. Prostate specific antigen (PSA) measured in blood has been used for decades as an aid for physicians to detect the presence of prostate cancer. However, the PSA test has limited sensitivity and specificity, leading to unnecessary biopsies, overdiagnosis and overtreatment of patients. For these reasons, there is an urgent need for more accurate PCa biomarkers that can detect PCa with high sensitivity and specificity. Urine is a unique source of potential protein biomarkers that can be measured in a non-invasive way. This review comprehensively summarizes state of the art approaches used in the discovery and validation of urinary biomarkers for PCa. Numerous strategies are currently being used in the discovery of urinary biomarkers for prostate cancer including gel-based separation techniques, mass spectrometry, activity-based proteomic assays and software approaches. Antibody-based approaches remain preferred method for validation of candidate biomarkers with rapidly advancing multiplex immunoassays and MS-based targeted approaches. In the last decade, there has been a dramatic acceleration in the development of new techniques and approaches in the discovery of protein biomarkers for prostate cancer including computational, statistical and data mining methods. Many urinary-based protein biomarkers have been identified and have shown significant promise in initial studies. Examples of these potential biomarkers and the methods utilized in their discovery are also discussed in this review.
Collapse
Affiliation(s)
- Andrej Jedinak
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Kevin R Loughlin
- Department of Surgery, Harvard Medical School, Boston, MA, USA.,Department of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marsha A Moses
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Schiza C, Korbakis D, Panteleli E, Jarvi K, Drabovich AP, Diamandis EP. Discovery of a Human Testis-specific Protein Complex TEX101-DPEP3 and Selection of Its Disrupting Antibodies. Mol Cell Proteomics 2018; 17:2480-2495. [PMID: 30097533 DOI: 10.1074/mcp.ra118.000749] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/11/2018] [Indexed: 01/01/2023] Open
Abstract
TEX101 is a testis-specific protein expressed exclusively in male germ cells and is a validated biomarker of male infertility. Studies in mice suggest that TEX101 is a cell-surface chaperone which regulates, through protein-protein interactions, the maturation of proteins involved in spermatozoa transit and oocyte binding. Male TEX101-null mice are sterile. Here, we identified by co-immunoprecipitation-mass spectrometry the interactome of human TEX101 in testicular tissues and spermatozoa. The testis-specific cell-surface dipeptidase 3 (DPEP3) emerged as the top hit. We further validated the TEX101-DPEP3 complex by using hybrid immunoassays. Combinations of antibodies recognizing different epitopes of TEX101 and DPEP3 facilitated development of a simple immunoassay to screen for disruptors of TEX101-DPEP3 complex. As a proof-of-a-concept, we demonstrated that anti-TEX101 antibody T4 disrupted the native TEX101-DPEP3 complex. Disrupting antibodies may be used to study the human TEX101-DPEP3 complex, and to develop modulators for male fertility.
Collapse
Affiliation(s)
- Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Efstratia Panteleli
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
25
|
Mahendran SM, Oikonomopoulou K, Diamandis EP, Chandran V. Synovial fluid proteomics in the pursuit of arthritis mediators: An evolving field of novel biomarker discovery. Crit Rev Clin Lab Sci 2017; 54:495-505. [DOI: 10.1080/10408363.2017.1408561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shalini M. Mahendran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Katerina Oikonomopoulou
- Centre for Prognosis Studies in Rheumatic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Vinod Chandran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Centre for Prognosis Studies in Rheumatic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Martinez-Garcia E, Lopez-Gil C, Campoy I, Vallve J, Coll E, Cabrera S, Ramon Y Cajal S, Matias-Guiu X, Van Oostrum J, Reventos J, Gil-Moreno A, Colas E. Advances in endometrial cancer protein biomarkers for use in the clinic. Expert Rev Proteomics 2017; 15:81-99. [PMID: 29183259 DOI: 10.1080/14789450.2018.1410061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Endometrial cancer (EC) is the fourth most common cancer in women in developed countries. The identification of sensitive and specific biomarkers to improve early detection of EC is crucial for an appropriate management of this disease, in which 30% of patients are diagnosed only at advanced stages, which is associated with high levels of morbidity and mortality. Despite major efforts and investments made to identify EC biomarkers, no protein has yet reached the stage of clinical application. Areas covered: This review gathers the numerous candidate biomarkers for EC diagnosis proposed in proteomic studies published from 1978 to 2017. Additionally, we summarize limitations associated with the proteomic technologies and study designs employed in those articles. Finally, we address new perspectives in EC biomarker research, including the comprehensive knowledge of previously suggested candidate biomarkers in conjunction with novel mass spectrometry-based proteomic technologies with enhanced sensitivity and specificity not yet applied to EC studies and a directed clinical perspective in the study design. Expert commentary: These ingredients could be the recipe to accelerate the application of protein biomarkers in the clinic.
Collapse
Affiliation(s)
- Elena Martinez-Garcia
- a Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) , Universitat Autonoma de Barcelona, CIBERONC , Barcelona , Spain
| | - Carlos Lopez-Gil
- a Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) , Universitat Autonoma de Barcelona, CIBERONC , Barcelona , Spain
| | - Irene Campoy
- a Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) , Universitat Autonoma de Barcelona, CIBERONC , Barcelona , Spain
| | - Julia Vallve
- a Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) , Universitat Autonoma de Barcelona, CIBERONC , Barcelona , Spain
| | - Eva Coll
- a Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) , Universitat Autonoma de Barcelona, CIBERONC , Barcelona , Spain
| | - Silvia Cabrera
- b Gynecology Department , Vall Hebron University Hospital , Barcelona , Spain
| | | | - Xavier Matias-Guiu
- d Pathological Oncology Group and Pathology Department , University Hospital Arnau de Vilanova, IRBLLEIDA, University of Lleida, CIBERONC , Barcelona , Spain.,e Gynecology Cancer Group , University Hospital Bellvitge, Idibell, CIBERONC , Barcelona , Spain
| | - Jan Van Oostrum
- f Luxembourg Clinical Proteomics Center (LCP) , Luxembourg Institute of Health (LIH) , Strassen , Luxembourg
| | - Jaume Reventos
- e Gynecology Cancer Group , University Hospital Bellvitge, Idibell, CIBERONC , Barcelona , Spain.,g Basic Sciences Department , International University of Catalonia , Barcelona , Spain
| | - Antonio Gil-Moreno
- a Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) , Universitat Autonoma de Barcelona, CIBERONC , Barcelona , Spain.,c Pathology Department , Vall Hebron University Hospital, CIBERONC , Barcelona , Spain
| | - Eva Colas
- a Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) , Universitat Autonoma de Barcelona, CIBERONC , Barcelona , Spain
| |
Collapse
|
27
|
Nedelkov D. Mass Spectrometric Studies of Apolipoprotein Proteoforms and Their Role in Lipid Metabolism and Type 2 Diabetes. Proteomes 2017; 5:E27. [PMID: 29036931 PMCID: PMC5748562 DOI: 10.3390/proteomes5040027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Apolipoproteins function as structural components of lipoprotein particles, cofactors for enzymes, and ligands for cell-surface receptors. Most of the apoliporoteins exhibit proteoforms, arising from single nucleotide polymorphisms (SNPs) and post-translational modifications such as glycosylation, oxidation, and sequence truncations. Reviewed here are recent studies correlating apolipoproteins proteoforms with the specific clinical measures of lipid metabolism and cardiometabolic risk. Targeted mass spectrometric immunoassays toward apolipoproteins A-I, A-II, and C-III were applied on large cross-sectional and longitudinal clinical cohorts. Several correlations were observed, including greater apolipoprotein A-I and A-II oxidation in patients with diabetes and cardiovascular disease, and a divergent apoC-III proteoforms association with plasma triglycerides, indicating significant differences in the metabolism of the individual apoC-III proteoforms. These are the first studies of their kind, correlating specific proteoforms with clinical measures in order to determine their utility as potential clinical biomarkers for disease diagnosis, risk stratification, and therapy decisions. Such studies provide the impetus for the further development and clinical translation of MS-based protein tests.
Collapse
|
28
|
A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal Chim Acta 2017; 964:7-23. [DOI: 10.1016/j.aca.2017.01.059] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/18/2023]
|
29
|
Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics. Sci Rep 2017; 7:44829. [PMID: 28358042 PMCID: PMC5372163 DOI: 10.1038/srep44829] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.
Collapse
|
30
|
Korbakis D, Schiza C, Brinc D, Soosaipillai A, Karakosta TD, Légaré C, Sullivan R, Mullen B, Jarvi K, Diamandis EP, Drabovich AP. Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility. BMC Med 2017; 15:60. [PMID: 28330469 PMCID: PMC5363040 DOI: 10.1186/s12916-017-0817-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND TEX101 is a cell membrane protein exclusively expressed by testicular germ cells and shed into seminal plasma. We previously verified human TEX101 as a biomarker for the differential diagnosis of azoospermia, and developed a first-of-its-kind TEX101 ELISA. To demonstrate the clinical utility of TEX101, in this work we aimed at evaluating ELISA performance in a large population of fertile, subfertile, and infertile men. METHODS Mass spectrometry, size-exclusion chromatography, ultracentrifugation, and immunohistochemistry were used to characterize TEX101 protein as an analyte in seminal plasma. Using the optimized protocol for seminal plasma pretreatment, TEX101 was measured by ELISA in 805 seminal plasma samples. RESULTS We demonstrated that TEX101 was present in seminal plasma mostly in a free soluble form and that its small fraction was associated with seminal microvesicles. TEX101 median values were estimated in healthy, fertile pre-vasectomy men (5436 ng/mL, N = 64) and in patients with unexplained infertility (4967 ng/mL, N = 277), oligospermia (450 ng/mL, N = 270), and azoospermia (0.5 ng/mL, N = 137). Fertile post-vasectomy men (N = 57) and patients with Sertoli cell-only syndrome (N = 13) and obstructive azoospermia (N = 36) had undetectable levels of TEX101 (≤0.5 ng/mL). A cut-off value of 0.9 ng/mL provided 100% sensitivity at 100% specificity for distinguishing pre- and post-vasectomy men. The combination of a concentration of TEX101 > 0.9 ng/mL and epididymis-specific protein ECM1 > 2.3 μg/mL provided 81% sensitivity at 100% specificity for differentiating between non-obstructive and obstructive azoospermia, thus eliminating the majority of diagnostic testicular biopsies. In addition, a cut-off value of ≥0.6 ng/mL provided 73% sensitivity at 64% specificity for predicting sperm or spermatid retrieval in patients with non-obstructive azoospermia. CONCLUSIONS We demonstrated the clinical utility of TEX101 ELISA as a test to evaluate vasectomy success, to stratify azoospermia forms, and to better select patients for sperm retrieval.
Collapse
Affiliation(s)
- Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Davor Brinc
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Theano D Karakosta
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Christine Légaré
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Medicine, Université Laval, Québec, Canada
| | - Robert Sullivan
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Medicine, Université Laval, Québec, Canada
| | - Brendan Mullen
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada.,Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada. .,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada. .,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
31
|
Perumal N, Manicam C, Steinicke M, Funke S, Pfeiffer N, Grus FH. Characterization of the human aqueous humour proteome: A comparison of the genders. PLoS One 2017; 12:e0172481. [PMID: 28273097 PMCID: PMC5342205 DOI: 10.1371/journal.pone.0172481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/06/2017] [Indexed: 01/20/2023] Open
Abstract
Aqueous humour (AH) is an important biologic fluid that maintains normal intraocular pressure and contains proteins that regulate the homeostasis of ocular tissues. Any alterations in the protein compositions are correlated to the pathogenesis of various ocular disorders. In recent years, gender-based medicine has emerged as an important research focus considering the prevalence of certain diseases, which are higher in a particular sex. Nevertheless, the inter-gender variations in the AH proteome are unknown. Therefore, this study endeavoured to characterize the AH proteome to assess the differences between genders. Thirty AH samples of patients who underwent cataract surgery were categorized according to their gender. Label-free quantitative discovery mass spectrometry-based proteomics strategy was employed to characterize the AH proteome. A total of 147 proteins were identified with a false discovery rate of less than 1% and only the top 10 major AH proteins make up almost 90% of the total identified proteins. A large number of proteins identified were correlated to defence, immune and inflammatory mechanisms, and response to wounding. Four proteins were found to be differentially abundant between the genders, comprising SERPINF1, SERPINA3, SERPING1 and PTGDS. The findings emerging from our study provide the first insight into the gender-based proteome differences in the AH and also highlight the importance in considering potential sex-dependent changes in the proteome of ocular pathologies in future studies employing the AH.
Collapse
Affiliation(s)
- Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Steinicke
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Funke
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
32
|
Bieniek JM, Drabovich AP, Lo KC. Seminal biomarkers for the evaluation of male infertility. Asian J Androl 2017; 18:426-33. [PMID: 26975492 PMCID: PMC4854096 DOI: 10.4103/1008-682x.175781] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For men struggling to conceive with their partners, diagnostic tools are limited and often consist of only a standard semen analysis. This baseline test serves as a crude estimation of male fertility, leaving patients and clinicians in need of additional diagnostic biomarkers. Seminal fluid contains the highest concentration of molecules from the male reproductive glands, therefore, this review focuses on current and novel seminal biomarkers in certain male infertility scenarios, including natural fertility, differentiating azoospermia etiologies, and predicting assisted reproductive technique success. Currently available tests include antisperm antibody assays, DNA fragmentation index, sperm fluorescence in situ hybridization, and other historical sperm functional tests. The poor diagnostic ability of current assays has led to continued efforts to find more predictive biomarkers. Emerging research in the fields of genomics, epigenetics, proteomics, transcriptomics, and metabolomics holds promise for the development of novel male infertility biomarkers. Seminal protein-based assays of TEX101, ECM1, and ACRV1 are already available or under final development for clinical use. Additional panels of DNA, RNA, proteins, or metabolites are being explored as we attempt to understand the pathophysiologic processes of male infertility. Future ventures will need to continue data integration and validation for the development of clinically useful infertility biomarkers to aid in male infertility diagnosis, treatment, and counseling.
Collapse
|
33
|
Affiliation(s)
- Dobrin Nedelkov
- Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
34
|
Karakosta TD, Soosaipillai A, Diamandis EP, Batruch I, Drabovich AP. Quantification of Human Kallikrein-Related Peptidases in Biological Fluids by Multiplatform Targeted Mass Spectrometry Assays. Mol Cell Proteomics 2016; 15:2863-76. [PMID: 27371727 DOI: 10.1074/mcp.m115.057695] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA). Here, we developed multiplex targeted mass spectrometry assays for the simultaneous quantification of all 15 KLKs. Proteotypic peptides for each KLK were carefully selected based on experimental data and multiplexed in single assays. Performance of assays was evaluated using three different mass spectrometry platforms including triple quadrupole, quadrupole-ion trap, and quadrupole-orbitrap instruments. Heavy isotope-labeled synthetic peptides with a quantifying tag were used for absolute quantification of KLKs in sweat, cervico-vaginal fluid, seminal plasma, and blood serum, with limits of detection ranging from 5 to 500 ng/ml. Analytical performance of assays was evaluated by measuring endogenous KLKs in relevant biological fluids, and results were compared with selected ELISAs. The multiplex targeted proteomic assays were demonstrated to be accurate, reproducible, sensitive, and specific alternatives to antibody-based assays. Finally, KLK4, a highly prostate-specific protein and a speculated biomarker of prostate cancer, was unambiguously detected and quantified by immunoenrichment-SRM assay in seminal plasma and blood serum samples from individuals with confirmed prostate cancer and negative biopsy. Mass spectrometry revealed exclusively the presence of a secreted isoform and thus unequivocally resolved earlier disputes about KLK4 identity in seminal plasma. Measurements of KLK4 in either 41 seminal plasma or 58 blood serum samples revealed no statistically significant differences between patients with confirmed prostate cancer and negative biopsy. The presented multiplex targeted proteomic assays are an alternative analytical tool to study the biological and pathological roles of human KLKs.
Collapse
Affiliation(s)
- Theano D Karakosta
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Antoninus Soosaipillai
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ihor Batruch
- ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrei P Drabovich
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada;
| |
Collapse
|
35
|
Begcevic I, Brinc D, Drabovich AP, Batruch I, Diamandis EP. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the Human Protein Atlas. Clin Proteomics 2016; 13:11. [PMID: 27186164 PMCID: PMC4868024 DOI: 10.1186/s12014-016-9111-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is a proximal fluid which communicates closely with brain tissue, contains numerous brain-derived proteins and thus represents a promising fluid for discovery of biomarkers of central nervous system (CNS) diseases. The main purpose of this study was to generate an extensive CSF proteome and define brain-related proteins identified in CSF, suitable for development of diagnostic assays. Methods Six non-pathological CSF samples from three female and three male individuals were selected for CSF analysis. Samples were first subjected to strong cation exchange chromatography, followed by LC-MS/MS analysis. Secreted and membrane-bound proteins enriched in the brain tissues were retrieved from the Human Protein Atlas. Results In total, 2615 proteins were identified in the CSF. The number of proteins identified per individual sample ranged from 1109 to 1421, with inter-individual variability between six samples of 21 %. Based on the Human Protein Atlas, 78 brain-specific proteins found in CSF samples were proposed as a signature of brain-enriched proteins in CSF. Conclusion A combination of Human Protein Atlas database and experimental search of proteins in specific body fluid can be applied as an initial step in search for disease biomarkers specific for a particular tissue. This signature may be of significant interest for development of novel diagnostics of CNS diseases and identification of drug targets. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9111-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilijana Begcevic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| |
Collapse
|
36
|
Zaslavsky BY, Uversky VN, Chait A. Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein–partner interactions in vitro and in vivo by solvent interaction analysis method. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:622-44. [DOI: 10.1016/j.bbapap.2016.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/29/2022]
|
37
|
Drabovich AP, Pavlou MP, Schiza C, Diamandis EP. Dynamics of Protein Expression Reveals Primary Targets and Secondary Messengers of Estrogen Receptor Alpha Signaling in MCF-7 Breast Cancer Cells. Mol Cell Proteomics 2016; 15:2093-107. [PMID: 27067054 DOI: 10.1074/mcp.m115.057257] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor alpha (ERα)-mediated proliferation of breast cancer cells is facilitated through expression of multiple primary target genes, products of which induce a secondary response to stimulation. To differentiate between the primary and secondary target proteins of ERα signaling, we measured dynamics of protein expression induced by 17β-estradiol in MCF-7 breast cancer cells. Measurement of the global proteomic effects of estradiol by stable isotope labeling by amino acids in cell culture (SILAC) resulted in identification of 103 estrogen-regulated proteins, with only 40 of the corresponding genes having estrogen response elements. Selected reaction monitoring (SRM) assays were used to validate the differential expression of 19 proteins and measure the dynamics of their expression within 72 h after estradiol stimulation, and in the absence or presence of 4-hydroxytamoxifen, to confirm ERα-mediated signaling. Dynamics of protein expression unambiguously revealed early and delayed response proteins and well correlated with presence or absence of estrogen response elements in the corresponding genes. Finally, we quantified dynamics of protein expression in a rarely studied network of transcription factors with a negative feedback loop (ERα-EGR3-NAB2). Because NAB2 protein is a repressor of EGR3-induced transcription, siRNA-mediated silencing of NAB2 resulted in the enhanced expression of the EGR3-induced protein ITGA2. To conclude, we provided a high-quality proteomic resource to supplement genomic and transcriptomic studies of ERα signaling.
Collapse
Affiliation(s)
- Andrei P Drabovich
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5T3L9; §Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada, M5T3L9;
| | - Maria P Pavlou
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5T3L9; ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada, M5T3L9
| | - Christina Schiza
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5T3L9; ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada, M5T3L9
| | - Eleftherios P Diamandis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5T3L9; §Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada, M5T3L9; ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada, M5T3L9; ‖Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, M5T3L9
| |
Collapse
|
38
|
Lee H, Mun DG, Bae J, Kim H, Oh SY, Park YS, Lee JH, Lee SW. A simple dual online ultra-high pressure liquid chromatography system (sDO-UHPLC) for high throughput proteome analysis. Analyst 2016; 140:5700-6. [PMID: 26153568 DOI: 10.1039/c5an00639b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.
Collapse
Affiliation(s)
- Hangyeore Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Thomas S, Hao L, Ricke WA, Li L. Biomarker discovery in mass spectrometry-based urinary proteomics. Proteomics Clin Appl 2016; 10:358-70. [PMID: 26703953 DOI: 10.1002/prca.201500102] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/05/2015] [Accepted: 12/21/2015] [Indexed: 01/03/2023]
Abstract
Urinary proteomics has become one of the most attractive topics in disease biomarker discovery. MS-based proteomic analysis has advanced continuously and emerged as a prominent tool in the field of clinical bioanalysis. However, only few protein biomarkers have made their way to validation and clinical practice. Biomarker discovery is challenged by many clinical and analytical factors including, but not limited to, the complexity of urine and the wide dynamic range of endogenous proteins in the sample. This article highlights promising technologies and strategies in the MS-based biomarker discovery process, including study design, sample preparation, protein quantification, instrumental platforms, and bioinformatics. Different proteomics approaches are discussed, and progresses in maximizing urinary proteome coverage and standardization are emphasized in this review. MS-based urinary proteomics has great potential in the development of noninvasive diagnostic assays in the future, which will require collaborative efforts between analytical scientists, systems biologists, and clinicians.
Collapse
Affiliation(s)
- Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ling Hao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - William A Ricke
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
40
|
De Marchi T, Liu NQ, Stingl C, Timmermans MA, Smid M, Look MP, Tjoa M, Braakman RBH, Opdam M, Linn SC, Sweep FCGJ, Span PN, Kliffen M, Luider TM, Foekens JA, Martens JWM, Umar A. 4-protein signature predicting tamoxifen treatment outcome in recurrent breast cancer. Mol Oncol 2016; 10:24-39. [PMID: 26285647 PMCID: PMC5528925 DOI: 10.1016/j.molonc.2015.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/23/2015] [Indexed: 12/02/2022] Open
Abstract
Estrogen receptor (ER) positive tumors represent the majority of breast malignancies, and are effectively treated with hormonal therapies, such as tamoxifen. However, in the recurrent disease resistance to tamoxifen therapy is common and a major cause of death. In recent years, in-depth proteome analyses have enabled identification of clinically useful biomarkers, particularly, when heterogeneity in complex tumor tissue was reduced using laser capture microdissection (LCM). In the current study, we performed high resolution proteomic analysis on two cohorts of ER positive breast tumors derived from patients who either manifested good or poor outcome to tamoxifen treatment upon recurrence. A total of 112 fresh frozen tumors were collected from multiple medical centers and divided into two sets: an in-house training and a multi-center test set. Epithelial tumor cells were enriched with LCM and analyzed by nano-LC Orbitrap mass spectrometry (MS), which yielded >3000 and >4000 quantified proteins in the training and test sets, respectively. Raw data are available via ProteomeXchange with identifiers PXD000484 and PXD000485. Statistical analysis showed differential abundance of 99 proteins, of which a subset of 4 proteins was selected through a multivariate step-down to develop a predictor for tamoxifen treatment outcome. The 4-protein signature significantly predicted poor outcome patients in the test set, independent of predictive histopathological characteristics (hazard ratio [HR] = 2.17; 95% confidence interval [CI] = 1.15 to 4.17; multivariate Cox regression p value = 0.017). Immunohistochemical (IHC) staining of PDCD4, one of the signature proteins, on an independent set of formalin-fixed paraffin-embedded tumor tissues provided and independent technical validation (HR = 0.72; 95% CI = 0.57 to 0.92; multivariate Cox regression p value = 0.009). We hereby report the first validated protein predictor for tamoxifen treatment outcome in recurrent ER-positive breast cancer. IHC further showed that PDCD4 is an independent marker.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands; Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Ning Qing Liu
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Cristoph Stingl
- Department of Neurology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Mieke A Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Maxime P Look
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Mila Tjoa
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Rene B H Braakman
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands; Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Mark Opdam
- Division of Medical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Sabine C Linn
- Division of Medical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands.
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands.
| | - Mike Kliffen
- Department of Pathology, Maasstad Hospital, Maasstadweg 21, 3079 DZ, Rotterdam, The Netherlands.
| | - Theo M Luider
- Department of Neurology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands; Cancer Genomics Center Netherlands, Amsterdam, The Netherlands.
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Cenci L, Anesi A, Busato M, Guella G, Bossi AM. Molecularly imprinted polymers coupled to matrix assisted laser desorption ionization mass spectrometry for femtomoles detection of cardiac troponin I peptides. J Mol Recognit 2015; 29:41-50. [PMID: 26373625 DOI: 10.1002/jmr.2494] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/21/2015] [Accepted: 07/29/2015] [Indexed: 12/20/2022]
Abstract
Molecularly imprinted polymers (MIPs) were combined to MALDI-TOF-MS to evaluate a selective enrichment (SE) method for the determination of clinically relevant biomarkers from complex biological samples. The concept was proven with the myocardial injury marker Troponin I (cTnI). In a first part, MIP materials entailed for the recognition of cTnI epitopes (three peptides selected) were prepared and characterized in dimensions (0.7-2μm), dissociation constants (58-817 nM), kinetics of binding (5-60 min), binding capacity (ca. 1.5 µg/mg polymer), imprinting factors (3 > IF > 5) and selectivity for the peptide epitope. Then, the MIPs, incubated with cTnI peptides and spotted on the target with the DHB matrix, were assayed for the desorption of the peptides in MALDI-TOF-MS. The measured detection limit was ca. 300 femtomols. Finally, the MIP-SE MALDI-TOF-MS was tested for its ability to enrich in the cTnI peptides from a complex sample, mimic of serum (i.e. 81 peptides of digested albumin). The MIP-SE MALDI-TOF-MS successfully enriched in cTnI peptides from the complex sample proving the technique could offer a flexible platform to prepare entailed materials suitable for diagnostic purposes.
Collapse
Affiliation(s)
- Lucia Cenci
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| | - Andrea Anesi
- University of Trento, Department of Physics, Via Sommarive 14, 38123, Trento, Italy
| | - Mirko Busato
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| | - Graziano Guella
- University of Trento, Department of Physics, Via Sommarive 14, 38123, Trento, Italy
| | - Alessandra Maria Bossi
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
42
|
Steiner C, Tille JC, Lamerz J, Kux van Geijtenbeek S, McKee TA, Venturi M, Rubbia-Brandt L, Hochstrasser D, Cutler P, Lescuyer P, Ducret A. Quantification of HER2 by Targeted Mass Spectrometry in Formalin-Fixed Paraffin-Embedded (FFPE) Breast Cancer Tissues. Mol Cell Proteomics 2015; 14:2786-99. [PMID: 26149442 DOI: 10.1074/mcp.o115.049049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/06/2022] Open
Abstract
The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selectedreaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors. Peptide candidates were identified using an untargeted mass spectrometry approach in relevant cell lines. A multiplexed assay was developed for the six best candidate peptides and evaluated for linearity, precision and lower limit of quantification. Results showed a linear response over a calibration range of 0.012 to 100 fmol on column (R(2): 0.99-1.00).The lower limit of quantification was 0.155 fmol on column for all peptides evaluated. The six HER2 peptides were quantified by selected reaction monitoring in a cohort of 40 archival formalin-fixed paraffin-embedded tumor tissues from women with invasive breast carcinomas, which showed different levels of HER2 gene amplification as assessed by standard methods used in clinical pathology. The amounts of the six HER2 peptides were highly and significantly correlated with each other, indicating that peptide levels can be used as surrogates of protein amounts in formalin-fixed paraffin-embedded tissues. After normalization for sample size, selected reaction monitoring peptide measurements were able to correctly predict 90% of cases based on HER2 amplification as defined by the American Society of Clinical Oncology and College of American Pathologists. In conclusion, the developed assay showed good analytical performance and a high agreement with immunohistochemistry and fluorescence in situ hybridization data. This study demonstrated that selected reaction monitoring allows to accurately quantify protein expression in formalin-fixed paraffin-embedded tissues and represents therefore a powerful approach for biomarker discovery studies. The untargeted mass spectrometry data is available via ProteomeXchange whereas the quantification data by selected reaction monitoring is available on the Panorama Public website.
Collapse
Affiliation(s)
- Carine Steiner
- From the ‡Division of Laboratory Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland; §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland;
| | - Jean-Christophe Tille
- ¶Division of Clinical Pathology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Jens Lamerz
- §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Sabine Kux van Geijtenbeek
- §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Thomas A McKee
- ¶Division of Clinical Pathology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Miro Venturi
- ‖Oncology Division, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Laura Rubbia-Brandt
- ¶Division of Clinical Pathology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Denis Hochstrasser
- From the ‡Division of Laboratory Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Paul Cutler
- §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Pierre Lescuyer
- From the ‡Division of Laboratory Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Axel Ducret
- §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
43
|
Szabo Z, Janaky T. Challenges and developments in protein identification using mass spectrometry. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Korbakis D, Brinc D, Schiza C, Soosaipillai A, Jarvi K, Drabovich AP, Diamandis EP. Immunocapture-Selected Reaction Monitoring Screening Facilitates the Development of ELISA for the Measurement of Native TEX101 in Biological Fluids. Mol Cell Proteomics 2015; 14:1517-26. [PMID: 25813379 DOI: 10.1074/mcp.m114.047571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Monoclonal antibodies that bind the native conformation of proteins are indispensable reagents for the development of immunoassays, production of therapeutic antibodies and delineating protein interaction networks by affinity purification-mass spectrometry. Antibodies generated against short peptides, protein fragments, or even full length recombinant proteins may not bind the native protein form in biological fluids, thus limiting their utility. Here, we report the application of immunocapture coupled with selected reaction monitoring measurements (immunocapture-SRM), in the rapid screening of hybridoma culture supernatants for monoclonal antibodies that bind the native protein conformation. We produced mouse monoclonal antibodies, which detect in human serum or seminal plasma the native form of the human testis-expressed sequence 101 (TEX101) protein-a recently proposed biomarker of male infertility. Pairing of two monoclonal antibodies against unique TEX101 epitopes led to the development of an ELISA for the measurement of TEX101 in seminal plasma (limit of detection: 20 pg/ml) and serum (limit of detection: 40 pg/ml). Measurements of matched seminal plasma samples, obtained from men pre- and post-vasectomy, confirmed the absolute diagnostic specificity and sensitivity of TEX101 for noninvasive identification of physical obstructions in the male reproductive tract. Measurement of male and female serum samples revealed undetectable levels of TEX101 in the systemic circulation of healthy individuals. Immunocapture-SRM screening may facilitate development of monoclonal antibodies and immunoassays against native forms of challenging protein targets.
Collapse
Affiliation(s)
- Dimitrios Korbakis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Davor Brinc
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Christina Schiza
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | | | - Keith Jarvi
- ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; **Department of Surgery, Division of Urology, Mount Sinai Hospital, University of Toronto, Canada
| | - Andrei P Drabovich
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada;
| | - Eleftherios P Diamandis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada;
| |
Collapse
|
45
|
Mordente A, Meucci E, Martorana GE, Silvestrini A. Cancer Biomarkers Discovery and Validation: State of the Art, Problems and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 867:9-26. [DOI: 10.1007/978-94-017-7215-0_2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Stojko J, Fieulaine S, Petiot-Bécard S, Van Dorsselaer A, Meinnel T, Giglione C, Cianférani S. Ion mobility coupled to native mass spectrometry as a relevant tool to investigate extremely small ligand-induced conformational changes. Analyst 2015; 140:7234-45. [DOI: 10.1039/c5an01311a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Native and ion-mobility mass spectrometry reveal the conformational evolution over time of a peptide deformylase binding different ligands, which is consistent with slow-tight inhibition of the enzyme.
Collapse
Affiliation(s)
- Johann Stojko
- BioOrganic Mass Spectrometry Laboratory (LSMBO)
- IPHC
- Université de Strasbourg
- 67087 Strasbourg
- France
| | - Sonia Fieulaine
- Institute for Integrative Biology of the Cell (I2BC)
- CEA
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Stéphanie Petiot-Bécard
- BioOrganic Mass Spectrometry Laboratory (LSMBO)
- IPHC
- Université de Strasbourg
- 67087 Strasbourg
- France
| | - Alain Van Dorsselaer
- BioOrganic Mass Spectrometry Laboratory (LSMBO)
- IPHC
- Université de Strasbourg
- 67087 Strasbourg
- France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC)
- CEA
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC)
- CEA
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO)
- IPHC
- Université de Strasbourg
- 67087 Strasbourg
- France
| |
Collapse
|