1
|
Leo G, Leone P, Ataie Kachoie E, Tolomeo M, Galluccio M, Indiveri C, Barile M, Capaldi S. Structural insights into the bifunctional enzyme human FAD synthase. Structure 2024; 32:953-965.e5. [PMID: 38688286 DOI: 10.1016/j.str.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Human flavin adenine dinucleotide synthase (hFADS) is a bifunctional, multi-domain enzyme that exhibits both flavin mononucleotide adenylyltransferase and pyrophosphatase activities. Here we report the crystal structure of full-length hFADS2 and its C-terminal PAPS domain in complex with flavin adenine dinucleotide (FAD), and dissect the structural determinants underlying the contribution of each individual domain, within isoforms 1 and 2, to each of the two enzymatic activities. Structural and functional characterization performed on complete or truncated constructs confirmed that the C-terminal domain tightly binds FAD and catalyzes its synthesis, while the combination of the N-terminal molybdopterin-binding and KH domains is the minimal essential substructure required for the hydrolysis of FAD and other ADP-containing dinucleotides. hFADS2 associates in a stable C2-symmetric dimer, in which the packing of the KH domain of one protomer against the N-terminal domain of the other creates the adenosine-specific active site responsible for the hydrolytic activity.
Collapse
Affiliation(s)
- Giulia Leo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnology and Environment, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Elham Ataie Kachoie
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari, via Orabona 4, 70126 Bari, Italy; Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, via P. Bucci 4c, 6c, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, via P. Bucci 4c, 6c, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, via P. Bucci 4c, 6c, 87036 Arcavacata di Rende, Italy; National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126 Bari, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
2
|
Jaroensuk J, Chuaboon L, Kesornpun C, Chaiyen P. Enzymes in riboflavin biosynthesis: Potential antibiotic drug targets. Arch Biochem Biophys 2023; 748:109762. [PMID: 37739114 DOI: 10.1016/j.abb.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The rapid resistance of pathogens to antibiotics has emerged as a major threat to global health. Identification of new antibiotic targets is thus needed for developing alternative drugs. Genes encoding enzymes involved in the biosynthesis of riboflavin and flavin cofactors (FMN/FAD) are attractive targets because these enzymatic reactions are necessary for most bacteria to synthesize flavin cofactors for use in their central metabolic reactions. Moreover, humans lack most of these enzymes because we uptake riboflavin from our diet. This review discusses the current knowledge of enzymes involved in bacterial biosynthesis of riboflavin and other flavin cofactors, as well as the functions of the FMN riboswitch. Here, we highlight recent progress in the structural and mechanistic characterization, and inhibition of GTP cyclohydrolase II (GCH II), lumazine synthase (LS), riboflavin synthase (RFS), FAD synthetase (FADS), and FMN riboswitch, which have been identified as plausible antibiotic targets. As the structures and functions of these enzymes and regulatory systems are not completely understood, they are attractive as subjects for future in-depth biochemical and biophysical analysis.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Litavadee Chuaboon
- School of Pharmacy and Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand.
| |
Collapse
|
3
|
Moreno A, Taleb V, Sebastián M, Anoz-Carbonell E, Martínez-Júlvez M, Medina M. Cofactors and pathogens: Flavin mononucleotide and flavin adenine dinucleotide (FAD) biosynthesis by the FAD synthase from Brucella ovis. IUBMB Life 2021; 74:655-671. [PMID: 34813144 PMCID: PMC9299109 DOI: 10.1002/iub.2576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 02/02/2023]
Abstract
The biosynthesis of the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), cofactors used by 2% of proteins, occurs through the sequential action of two ubiquitous activities: a riboflavinkinase (RFK) that phosphorylates the riboflavin (RF) precursor to FMN, and a FMN:adenylyltransferase (FMNAT) that transforms FMN into FAD. In most mammals two different monofunctional enzymes have each of these activities, but in prokaryotes a single bifunctional enzyme, FAD synthase (FADS), holds them. Differential structural and functional traits for RFK and FMNAT catalysis between bacteria and mammals, as well as within the few bacterial FADSs so far characterized, has envisaged the potentiality of FADSs from pathogens as targets for the development of species‐specific inhibitors. Here, we particularly characterize the FADS from the ovine pathogen Brucella ovis (BoFADS), causative agent of brucellosis. We show that BoFADS has RFK activity independently of the media redox status, but its FMNAT activity (in both forward and reverse senses) only occurs under strong reducing conditions. Moreover, kinetics for flavin and adenine nucleotides binding to the RFK site show that BoFADS binds preferentially the substrates of the RFK reaction over the products and that the adenine nucleotide must bind prior to flavin entrapment. These results, together with multiple sequence alignments and phylogenetic analysis, point to variability in the less conserved regions as contributing to the species‐specific features in prokaryotic FADSs, including those from pathogens, that allow them to adopt alternative strategies in FMN and FAD biosynthesis and overall flavin homeostasis.
Collapse
Affiliation(s)
- Andrea Moreno
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Victor Taleb
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - María Sebastián
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Molecular insights into the mechanism of substrate binding and catalysis of bifunctional FAD synthetase from Staphylococcus aureus. Biochimie 2021; 182:217-227. [PMID: 33516756 DOI: 10.1016/j.biochi.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 11/24/2022]
Abstract
Flavin adenine dinucleotide synthetase (FADS), a bifunctional prokaryotic enzyme, is involved in the synthesis of two vital cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Here, we investigated the biochemical characteristics of FADS from Staphylococcus aureus (Sa), a pathogenic bacteria causing food-borne diseases. The SaFADS possesses riboflavin kinase (RFK) and FMN adenylyltransferase (FMNAT) activities that transforms riboflavin to FMN and FMN to FAD, respectively. The FMNAT domain also exhibits reversible FAD pyrophosphorylase activity (FADpp). Further, we show that the FMNAT and FADpp activities are dependent on the reducing environment. Mutations of the conserved K289 and F290 residues present on the RFK domain affect the kinetic parameters of both the RFK and FMNAT domains. Additionally, the molecular dynamics analysis of apo and riboflavin: ATP: Mg2+ ternary complex of SaFADS shows that F290 is involved in stabilizing the active site geometry to hold the enzyme-substrate complex. In addition, the deletion of the αh2 helix that acts as a connecting linker between the FMNAT and RFK domains showed substantial loss of their activities. The helix deletion could have affected the flap motion of L2c, L4c, β4n and L3n present in the close proximity resulting in the distortion of the active site geometry. In conclusion, our study has characterized the RFK and FMNAT activities of SaFADS and shown the importance of conserved K289 and F290 in RFK activity. As FADSs are potential drug targets, understanding their mechanism of action might help in discovering species-specific antibacterial drugs.
Collapse
|
5
|
Lostao A, Medina M. Atomic Force Microscopy: Single-Molecule Imaging and Force Spectroscopy in the Study of Flavoproteins Ligand Binding and Reaction Mechanisms. Methods Mol Biol 2021; 2280:157-178. [PMID: 33751434 DOI: 10.1007/978-1-0716-1286-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy (AFM) is one of the most versatile tools currently used in nanoscience. AFM allows for performing nondestructive imaging of almost any sample in either air or liquid, regardless whether the specimen is insulating, conductive, transparent, or opaque. It also allows for measuring interaction forces between a sharp probe and a sample surface, therefore allowing to probe nanomechanical properties of the specimen by either applying a controlled force or pulling the sample. It can provide topography, mechanical, magnetic, and conductive maps for very different type of samples. Transferred to the field of biology, today, AFM is the only microscopy technique able to produce images from biomolecules to bacteria and cells with nanometric resolution in aqueous media. Here, we will focus on the biological applications of AFM to flavoproteins. Despite references in the literature are scarce in this particular field, here it is described how imaging with AFM can contribute to describe catalysis mechanisms of some flavoenzymes, how oxidation states or binding of relevant ligands influence the association state of molecules, the dynamics of functional quaternary assemblies, and even visualize structural differences of individual protein molecules. Furthermore, we will show how force spectroscopy can be used to obtain the kinetic parameters, the dissociation landscape and the mechanical forces that maintain flavoprotein complexes, including the possibility to specifically detect particular flavoproteins on a sample.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain. .,Laboratorio de Microscopias Avanzadas, Universidad de Zaragoza, Zaragoza, Spain. .,Fundación ARAID, Zaragoza, Spain.
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Lans I, Anoz-Carbonell E, Palacio-Rodríguez K, Aínsa JA, Medina M, Cossio P. In silico discovery and biological validation of ligands of FAD synthase, a promising new antimicrobial target. PLoS Comput Biol 2020; 16:e1007898. [PMID: 32797038 PMCID: PMC7449411 DOI: 10.1371/journal.pcbi.1007898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/26/2020] [Accepted: 07/09/2020] [Indexed: 01/06/2023] Open
Abstract
New treatments for diseases caused by antimicrobial-resistant microorganisms can be developed by identifying unexplored therapeutic targets and by designing efficient drug screening protocols. In this study, we have screened a library of compounds to find ligands for the flavin-adenine dinucleotide synthase (FADS) -a potential target for drug design against tuberculosis and pneumonia- by implementing a new and efficient virtual screening protocol. The protocol has been developed for the in silico search of ligands of unexplored therapeutic targets, for which limited information about ligands or ligand-receptor structures is available. It implements an integrative funnel-like strategy with filtering layers that increase in computational accuracy. The protocol starts with a pharmacophore-based virtual screening strategy that uses ligand-free receptor conformations from molecular dynamics (MD) simulations. Then, it performs a molecular docking stage using several docking programs and an exponential consensus ranking strategy. The last filter, samples the conformations of compounds bound to the target using MD simulations. The MD conformations are scored using several traditional scoring functions in combination with a newly-proposed score that takes into account the fluctuations of the molecule with a Morse-based potential. The protocol was optimized and validated using a compound library with known ligands of the Corynebacterium ammoniagenes FADS. Then, it was used to find new FADS ligands from a compound library of 14,000 molecules. A small set of 17 in silico filtered molecules were tested experimentally. We identified five inhibitors of the activity of the flavin adenylyl transferase module of the FADS, and some of them were able to inhibit growth of three bacterial species: C. ammoniagenes, Mycobacterium tuberculosis, and Streptococcus pneumoniae, where the last two are human pathogens. Overall, the results show that the integrative VS protocol is a cost-effective solution for the discovery of ligands of unexplored therapeutic targets.
Collapse
Affiliation(s)
- Isaias Lans
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (Unidades Asociadas BIFI-IQFR y CBsC-CSIC), Universidad de Zaragoza, Spain
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública. Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Karen Palacio-Rodríguez
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
| | - José Antonio Aínsa
- Instituto de Biocomputación y Física de Sistemas Complejos (Unidades Asociadas BIFI-IQFR y CBsC-CSIC), Universidad de Zaragoza, Spain
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública. Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (Unidades Asociadas BIFI-IQFR y CBsC-CSIC), Universidad de Zaragoza, Spain
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
7
|
Insights into the FMNAT Active Site of FAD Synthase: Aromaticity is Essential for Flavin Binding and Catalysis. Int J Mol Sci 2020; 21:ijms21103738. [PMID: 32466340 PMCID: PMC7279473 DOI: 10.3390/ijms21103738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
The last step in the biosynthesis of flavin adenine dinucleotide (FAD) is considered a target for the design of antimicrobial drugs because it is carried out by two non-homologous proteins in eukaryotic and prokaryotic organisms. Monofunctional FMN: adenylyltransferases (FMNAT) in Eukarya and FMNAT modules of bifunctional FAD synthases (FADS) in Prokarya belong to different structural families with dissimilar chemistry and binding modes for the substrates. In this study, we analyzed the relevance of the hydrophobic environment of the flavin isoalloxazine in the FMNAT active site of Corynebacterium ammoniagenes FADS (CaFADS) through the mutational analysis of its F62, Y106, and F128 residues. They form the isoalloxazine binding cavity and are highly conserved in the prokaryotic FADS family. The spectroscopic, steady-state kinetics and thermodynamic data presented indicate that distortion of aromaticity at the FMNAT isoalloxazine binding cavity prevents FMN and FAD from correct accommodation in their binding cavity and, as a consequence, decreases the efficiency of the FMNAT activity. Therefore, the side-chains of F62, Y106 and F128 are relevant in the formation of the catalytic competent complex during FMNAT catalysis in CaFADS. The introduced mutations also modulate the activity occurring at the riboflavin kinase (RFK) module of CaFADS, further evidencing the formation of quaternary assemblies during catalysis.
Collapse
|
8
|
Liu S, Hu W, Wang Z, Chen T. Production of riboflavin and related cofactors by biotechnological processes. Microb Cell Fact 2020; 19:31. [PMID: 32054466 PMCID: PMC7017516 DOI: 10.1186/s12934-020-01302-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Riboflavin (RF) and its active forms, the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have been extensively used in the food, feed and pharmaceutical industries. Modern commercial production of riboflavin is based on microbial fermentation, but the established genetically engineered production strains are facing new challenges due to safety concerns in the food and feed additives industry. High yields of flavin mononucleotide and flavin adenine dinucleotide have been obtained using whole-cell biocatalysis processes. However, the necessity of adding expensive precursors results in high production costs. Consequently, developing microbial cell factories that are capable of efficiently producing flavin nucleotides at low cost is an increasingly attractive approach. The biotechnological processes for the production of RF and its cognate cofactors are reviewed in this article.
Collapse
Affiliation(s)
- Shuang Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Wenya Hu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
9
|
Arilla-Luna S, Serrano A, Medina M. Specific Features for the Competent Binding of Substrates at the FMN Adenylyltransferase Site of FAD Synthase from Corynebacterium ammoniagenes. Int J Mol Sci 2019; 20:ijms20205083. [PMID: 31614972 PMCID: PMC6829536 DOI: 10.3390/ijms20205083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
Bifunctional FAD synthases (FADSs) catalyze FMN (flavin mononucleotide) and FAD (flavinadenine dinucleotide) biosynthesis at their C-riboflavin kinase (RFK) and N-FMN:adenylyltransferase (FMNAT) modules, respectively. Biophysical properties and requirements for their FMNAT activity differ among species. Here, we evaluate the relevance of the integrity of the binding site of the isoalloxazine of flavinic substrates for FMNAT catalysis in Corynebacterium ammoniagenes FADS (CaFADS). We have substituted P56 and P58, belonging to a conserved motif, as well as L98. These residues shape the isoalloxazine FMNAT site, although they are not expected to directly contact it. All substitutions override enzyme ability to transform substrates at the FMNAT site, although most variants are able to bind them. Spectroscopic properties and thermodynamic parameters for the binding of ligands indicate that mutations alter their interaction modes. Substitutions also modulate binding and kinetic properties at the RFK site, evidencing the crosstalk of different protomers within CaFADS assemblies during catalysis. In conclusion, despite the FMNAT site for the binding of substrates in CaFADS appearing as a wide open cavity, it is finely tuned to provide the competent binding conformation of substrates. In particular, P56, P58 and L98 shape the isoalloxazine site to place the FMN- and FAD-reacting phosphates in optimal geometry for catalysis.
Collapse
Affiliation(s)
- Sonia Arilla-Luna
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, and Institute of Biocomputation and Physics of Complex Systems (Joint Units: BIFI-IQFR and GBsC-CSIC), University of Zaragoza, 50009 Zaragoza, Spain.
| | - Ana Serrano
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, and Institute of Biocomputation and Physics of Complex Systems (Joint Units: BIFI-IQFR and GBsC-CSIC), University of Zaragoza, 50009 Zaragoza, Spain.
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Milagros Medina
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, and Institute of Biocomputation and Physics of Complex Systems (Joint Units: BIFI-IQFR and GBsC-CSIC), University of Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
10
|
Sebastián M, Arilla-Luna S, Bellalou J, Yruela I, Medina M. The Biosynthesis of Flavin Cofactors in Listeria monocytogenes. J Mol Biol 2019; 431:2762-2776. [PMID: 31132361 DOI: 10.1016/j.jmb.2019.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/26/2022]
Abstract
Listeria monocytogenes is riboflavin auxotrophic, but it has two genes envisaged to transform riboflavin into FMN and FAD after its uptaked by specialized transporters. One encodes a bifunctional type I FAD synthase (FADS, herein LmFADS-1), while the other produces a protein similar to type I at the FMN:ATP adenylyltransferase (FMNAT) site but with a shorter C-terminal that lacks any riboflavin kinase (RFK) motif. This second protein is rare among bacteria and has been named FADS type II (LmFADS-2). Here we present a biochemical and biophysical study of LmFADS-1 and LmFADS-2 by integrating kinetic and thermodynamic data together with sequence and structural prediction methods to evaluate their occurrence in Listeria, as well as their function and molecular properties. Despite LmFADS-1 similarities to other type I FADSs, (i) its RFK activity has not riboflavin substrate inhibition and occurs under reducing and oxidizing conditions, (ii) its FMNAT activity requires strong reducing environment, and (iii) binding of reaction products, but not substrates, favors binding of the second ligand. LmFADS-2 produces FAD under oxidizing and reducing environments, but its C-terminus module function remains unknown. Listeria species conserve both FADSs, being sequence identity high within L. monocytogenes strains. Our data exemplify alternative strategies for FMN and FAD biosynthesis and homeostasis, envisaging that in Listeria two FADSs might be required to fulfill the supply of flavin cofactors under niches that can go from saprophytism to virulence. As FADSs are attractive antimicrobial targets, understanding of FADSs traits in different species is essential to help in the discovery of specific antimicrobials.
Collapse
Affiliation(s)
- Maria Sebastián
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Arilla-Luna
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jacques Bellalou
- Plateforme de Protéines Recombinantes, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | - Inmaculada Yruela
- Estación Experimental de Aula Dei, National Spanish Research Council (CSIC), Zaragoza, Spain; Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza, Spain; Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC Spain.
| |
Collapse
|
11
|
The Dimer-of-Trimers Assembly Prevents Catalysis at the Transferase Site of Prokaryotic FAD Synthase. Biophys J 2018; 115:988-995. [PMID: 30177440 DOI: 10.1016/j.bpj.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD) are essential flavoprotein cofactors. A riboflavin kinase (RFK) activity catalyzes riboflavin phosphorylation to FMN, which can then be transformed into FAD by an FMN:adenylyltransferase (FMNAT) activity. Two enzymes are responsible for each one of these activities in eukaryotes, whereas prokaryotes have a single bifunctional enzyme, FAD synthase (FADS). FADS folds in two independent modules: the C-terminal with RFK activity and the N-terminal with FMNAT activity. Differences in structure and chemistry for the FMNAT catalysis among prokaryotic and eukaryotic enzymes pointed to the FMNAT activity of prokaryotic FADS as a potential antimicrobial target, making the structural model of the bacterial FMNAT module in complex with substrates relevant to understand the FADS catalytic mechanism and to the discovery of antimicrobial drugs. However, such a crystallographic complex remains elusive. Here, we have used molecular docking and molecular dynamics simulations to generate energetically stable interactions of the FMNAT module of FADS from Corynebacterium ammoniagenes with ATP/Mg2+ and FMN in both the monomeric and dimer-of-trimers assemblies reported for this protein. For the monomer, we have identified the residues that accommodate the reactive phosphates in a conformation compatible with catalysis. Interestingly, for the dimer-of-trimers conformation, we have found that the RFK module negatively influences FMN binding at the interacting FMNAT module. These results agree with calorimetric data of purified samples containing nearly 100% monomer or nearly 100% dimer-of-trimers, indicating that FMN binds to the monomer but not to the dimer-of-trimers. Such observations support regulation of flavin homeostasis by quaternary C. ammoniagenes FADS assemblies.
Collapse
|
12
|
Bacterial Production, Characterization and Protein Modeling of a Novel Monofuctional Isoform of FAD Synthase in Humans: An Emergency Protein? Molecules 2018; 23:molecules23010116. [PMID: 29316637 PMCID: PMC6017331 DOI: 10.3390/molecules23010116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
FAD synthase (FADS, EC 2.7.7.2) is the last essential enzyme involved in the pathway of biosynthesis of Flavin cofactors starting from Riboflavin (Rf). Alternative splicing of the human FLAD1 gene generates different isoforms of the enzyme FAD synthase. Besides the well characterized isoform 1 and 2, other FADS isoforms with different catalytic domains have been detected, which are splice variants. We report the characterization of one of these novel isoforms, a 320 amino acid protein, consisting of the sole C-terminal 3′-phosphoadenosine 5′-phosphosulfate (PAPS) reductase domain (named FADS6). This isoform has been previously detected in Riboflavin-Responsive (RR-MADD) and Non-responsive Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) patients with frameshift mutations of FLAD1 gene. To functionally characterize the hFADS6, it has been over-expressed in Escherichia coli and purified with a yield of 25 mg·L−1 of cell culture. The protein has a monomeric form, it binds FAD and is able to catalyze FAD synthesis (kcat about 2.8 min−1), as well as FAD pyrophosphorolysis in a strictly Mg2+-dependent manner. The synthesis of FAD is inhibited by HgCl2. The enzyme lacks the ability to hydrolyze FAD. It behaves similarly to PAPS. Combining threading and ab-initio strategy a 3D structural model for such isoform has been built. The relevance to human physio-pathology of this FADS isoform is discussed.
Collapse
|
13
|
Sebastián M, Anoz-Carbonell E, Gracia B, Cossio P, Aínsa JA, Lans I, Medina M. Discovery of antimicrobial compounds targeting bacterial type FAD synthetases. J Enzyme Inhib Med Chem 2017; 33:241-254. [PMID: 29258359 PMCID: PMC7012052 DOI: 10.1080/14756366.2017.1411910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The increase of bacterial strains resistant to most of the available antibiotics shows a need to explore novel antibacterial targets to discover antimicrobial drugs. Bifunctional bacterial FAD synthetases (FADSs) synthesise the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These cofactors act in vital processes as part of flavoproteins, making FADS an essential enzyme. Bacterial FADSs are potential antibacterial targets because of differences to mammalian enzymes, particularly at the FAD producing site. We have optimised an activity-based high throughput screening assay targeting Corynebacterium ammoniagenes FADS (CaFADS) that identifies inhibitors of its different activities. We selected the three best high-performing inhibitors of the FMN:adenylyltransferase activity (FMNAT) and studied their inhibition mechanisms and binding properties. The specificity of the CaFADS hits was evaluated by studying also their effect on the Streptococcus pneumoniae FADS activities, envisaging differences that can be used to discover species-specific antibacterial drugs. The antimicrobial effect of these compounds was also evaluated on C. ammoniagenes, S. pneumoniae, and Mycobacterium tuberculosis cultures, finding hits with favourable antimicrobial properties.
Collapse
Affiliation(s)
- María Sebastián
- a Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias , Universidad de Zaragoza , Zaragoza , Spain.,b Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units) , Universidad de Zaragoza , Zaragoza , Spain
| | - Ernesto Anoz-Carbonell
- a Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias , Universidad de Zaragoza , Zaragoza , Spain.,b Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units) , Universidad de Zaragoza , Zaragoza , Spain.,c Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública. Facultad de Medicina , Universidad de Zaragoza , Zaragoza , Spain
| | - Begoña Gracia
- c Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública. Facultad de Medicina , Universidad de Zaragoza , Zaragoza , Spain.,d CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - Pilar Cossio
- e Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Frankfurt , Germany.,f Biophysics of Tropical Diseases, Max Planck Tandem Group , University of Antioquia , Medellín , Colombia
| | - José Antonio Aínsa
- b Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units) , Universidad de Zaragoza , Zaragoza , Spain.,c Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública. Facultad de Medicina , Universidad de Zaragoza , Zaragoza , Spain.,d CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - Isaías Lans
- f Biophysics of Tropical Diseases, Max Planck Tandem Group , University of Antioquia , Medellín , Colombia
| | - Milagros Medina
- a Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias , Universidad de Zaragoza , Zaragoza , Spain.,b Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units) , Universidad de Zaragoza , Zaragoza , Spain
| |
Collapse
|
14
|
Sebastián M, Lira-Navarrete E, Serrano A, Marcuello C, Velázquez-Campoy A, Lostao A, Hurtado-Guerrero R, Medina M, Martínez-Júlvez M. The FAD synthetase from the human pathogen Streptococcus pneumoniae: a bifunctional enzyme exhibiting activity-dependent redox requirements. Sci Rep 2017; 7:7609. [PMID: 28790457 PMCID: PMC5548840 DOI: 10.1038/s41598-017-07716-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/28/2017] [Indexed: 11/12/2022] Open
Abstract
Prokaryotic bifunctional FAD synthetases (FADSs) catalyze the biosynthesis of FMN and FAD, whereas in eukaryotes two enzymes are required for the same purpose. FMN and FAD are key cofactors to maintain the flavoproteome homeostasis in all type of organisms. Here we shed light to the properties of the hitherto unstudied bacterial FADS from the human pathogen Streptococcus pneumoniae (SpnFADS). As other members of the family, SpnFADS catalyzes the three typical activities of prokaryotic FADSs: riboflavin kinase (RFK), ATP:FMN:adenylyltransferase (FMNAT), and FAD pyrophosphorylase (FADpp). However, several SpnFADS biophysical properties differ from those of other family members. In particular; i) the RFK activity is not inhibited by the riboflavin (RF) substrate, ii) the FMNAT and FADSpp activities require flavin substrates in the reduced state, iii) binding of adenine nucleotide ligands is required for the binding of flavinic substrates/products and iv) the monomer is the preferred state. Collectively, our results add interesting mechanistic differences among the few prokaryotic bifunctional FADSs already characterized, which might reflect the adaptation of the enzyme to relatively different environments. In a health point of view, differences among FADS family members provide us with a framework to design selective compounds targeting these enzymes for the treatment of diverse infectious diseases.
Collapse
Affiliation(s)
- María Sebastián
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain
| | - Erandi Lira-Navarrete
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Ana Serrano
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Carlos Marcuello
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), and Fundación INA, Universidad de Zaragoza, Zaragoza, Spain.,Univ Reims, Lab Rech Nanosci, EA4682, F-51100 Reims and INRA, FARE Lab, F-51100, Reims, France
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.,Fundación ARAID, Diputación General de Aragón, Aragón, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain
| | - Anabel Lostao
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), and Fundación INA, Universidad de Zaragoza, Zaragoza, Spain.,Fundación ARAID, Diputación General de Aragón, Aragón, Spain
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.,Fundación ARAID, Diputación General de Aragón, Aragón, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain. .,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain. .,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
15
|
Sebastián M, Serrano A, Velázquez-Campoy A, Medina M. Kinetics and thermodynamics of the protein-ligand interactions in the riboflavin kinase activity of the FAD synthetase from Corynebacterium ammoniagenes. Sci Rep 2017; 7:7281. [PMID: 28779158 PMCID: PMC5544777 DOI: 10.1038/s41598-017-07875-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/04/2017] [Indexed: 01/20/2023] Open
Abstract
Enzymes known as bifunctional and bimodular prokaryotic type-I FAD synthetase (FADS) exhibit ATP:riboflavin kinase (RFK) and FMN:ATP adenylyltransferase (FMNAT) activities in their C-terminal and N-terminal modules, respectively, and produce flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These act as cofactors of a plethora of flavoproteins in all organisms. Therefore, regulation of their production maintains the cellular flavoproteome homeostasis. Here, we focus on regulation of the FMN synthesis in Corynebacterium ammoniagenes (Ca) by the inhibition of its RFK activity by substrates and products of the reaction. We use a truncated CaFADS variant consisting in the isolated C-terminal RFK module, whose RFK activity is similar to that of the full-length enzyme. Inhibition of the RFK activity by the RF substrate is independent of the FMNAT module, and FMN production, in addition to being inhibited by an excess of RF, is also inhibited by both of the reaction products. Pre-steady-state kinetic and thermodynamic studies reveal key aspects to the substrates induced fit to produce the catalytically competent complex. Among them, the role of Mg2+ in the concerted allocation of substrates for catalysis and the ensemble of non-competent complexes that contribute to the regulated inhibition of the RFK activity are particularly relevant.
Collapse
Affiliation(s)
- María Sebastián
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, and Institute of Biocomputation and Physics of Complex Systems (Joint Units: BIFI-IQFR and GBsC-CSIC), University of Zaragoza, Zaragoza, Spain
| | - Ana Serrano
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, and Institute of Biocomputation and Physics of Complex Systems (Joint Units: BIFI-IQFR and GBsC-CSIC), University of Zaragoza, Zaragoza, Spain.,Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, Spain
| | - Adrián Velázquez-Campoy
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, and Institute of Biocomputation and Physics of Complex Systems (Joint Units: BIFI-IQFR and GBsC-CSIC), University of Zaragoza, Zaragoza, Spain.,ARAID Foundation, Diputación General de Aragón, Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, and Institute of Biocomputation and Physics of Complex Systems (Joint Units: BIFI-IQFR and GBsC-CSIC), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
16
|
The trimer interface in the quaternary structure of the bifunctional prokaryotic FAD synthetase from Corynebacterium ammoniagenes. Sci Rep 2017; 7:404. [PMID: 28341845 PMCID: PMC5428420 DOI: 10.1038/s41598-017-00402-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 02/27/2017] [Indexed: 12/25/2022] Open
Abstract
Bifunctional FAD synthetases (FADSs) fold in two independent modules; The C-terminal riboflavin kinase (RFK) catalyzes the RFK activity, while the N-terminal FMN-adenylyltransferase (FMNAT) exhibits the FMNAT activity. The search for macromolecular interfaces in the Corynebacterium ammoniagenes FADS (CaFADS) crystal structure predicts a dimer of trimers organization. Within each trimer, a head-to-tail arrangement causes the RFK and FMNAT catalytic sites of the two neighboring protomers to approach, in agreement with active site residues of one module influencing the activity at the other. We analyze the relevance of the CaFADS head-to-tail macromolecular interfaces to stabilization of assemblies, catalysis and ligand binding. With this aim, we evaluate the effect of point mutations in loop L1c-FlapI, loop L6c, and helix α1c of the RFK module (positions K202, E203, F206, D298, V300, E301 and L304), regions at the macromolecular interface between two protomers within the trimer. Although none of the studied residues is critical in the formation and dissociation of assemblies, residues at L1c-FlapI and helix α1c particularly modulate quaternary architecture, as well as ligand binding and kinetic parameters involved with RFK and FMNAT activities. These data support the influence of transient oligomeric structures on substrate accommodation and catalysis at both CaFADS active sites.
Collapse
|
17
|
Herguedas B, Lans I, Sebastián M, Hermoso JA, Martínez-Júlvez M, Medina M. Structural insights into the synthesis of FMN in prokaryotic organisms. ACTA ACUST UNITED AC 2015; 71:2526-42. [PMID: 26627660 DOI: 10.1107/s1399004715019641] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/16/2015] [Indexed: 11/10/2022]
Abstract
Riboflavin kinases (RFKs) catalyse the phosphorylation of riboflavin to produce FMN. In most bacteria this activity is catalysed by the C-terminal module of a bifunctional enzyme, FAD synthetase (FADS), which also catalyses the transformation of FMN into FAD through its N-terminal FMN adenylyltransferase (FMNAT) module. The RFK module of FADS is a homologue of eukaryotic monofunctional RFKs, while the FMNAT module lacks homologyto eukaryotic enzymes involved in FAD production. Previously, the crystal structure of Corynebacterium ammoniagenes FADS (CaFADS) was determined in its apo form. This structure predicted a dimer-of-trimers organization with the catalytic sites of two modules of neighbouring protomers approaching each other, leading to a hypothesis about the possibility of FMN channelling in the oligomeric protein. Here, two crystal structures of the individually expressed RFK module of CaFADS in complex with the products of the reaction, FMN and ADP, are presented. Structures are complemented with computational simulations, binding studies and kinetic characterization. Binding of ligands triggers dramatic structural changes in the RFK module, which affect large portions of the protein. Substrate inhibition and molecular-dynamics simulations allowed the conformational changes that take place along the RFK catalytic cycle to be established. The influence of these conformational changes in the FMNAT module is also discussed in the context of the full-length CaFADS protomer and the quaternary organization.
Collapse
Affiliation(s)
- Beatriz Herguedas
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Instituto de Biocomputación y Física de Sistemas Complejos (Joint Unit BIFI-IQFR), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Isaias Lans
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Instituto de Biocomputación y Física de Sistemas Complejos (Joint Unit BIFI-IQFR), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María Sebastián
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Instituto de Biocomputación y Física de Sistemas Complejos (Joint Unit BIFI-IQFR), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Juan A Hermoso
- GCMBE - Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Instituto de Biocomputación y Física de Sistemas Complejos (Joint Unit BIFI-IQFR), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Instituto de Biocomputación y Física de Sistemas Complejos (Joint Unit BIFI-IQFR), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|