1
|
Ong HW, Adderley J, Tobin AB, Drewry DH, Doerig C. Parasite and host kinases as targets for antimalarials. Expert Opin Ther Targets 2023; 27:151-169. [PMID: 36942408 DOI: 10.1080/14728222.2023.2185511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.
Collapse
Affiliation(s)
- Han Wee Ong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Jack Adderley
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| | - Andrew B Tobin
- Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - David H Drewry
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Christian Doerig
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| |
Collapse
|
2
|
Galal KA, Truong A, Kwarcinski F, de Silva C, Avalani K, Havener TM, Chirgwin ME, Merten E, Ong HW, Willis C, Abdelwaly A, Helal MA, Derbyshire ER, Zutshi R, Drewry DH. Identification of Novel 2,4,5-Trisubstituted Pyrimidines as Potent Dual Inhibitors of Plasmodial PfGSK3/ PfPK6 with Activity against Blood Stage Parasites In Vitro. J Med Chem 2022; 65:13172-13197. [PMID: 36166733 PMCID: PMC9574854 DOI: 10.1021/acs.jmedchem.2c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Essential plasmodial kinases PfGSK3
and PfPK6 are considered novel drug targets to combat
rising
resistance to traditional antimalarial therapy. Herein, we report
the discovery of IKK16 as a dual PfGSK3/PfPK6 inhibitor active against blood stage Pf3D7 parasites. To establish structure–activity relationships
for PfPK6 and PfGSK3, 52 analogues
were synthesized and assessed for the inhibition of PfGSK3 and PfPK6, with potent inhibitors further assessed
for activity against blood and liver stage parasites. This culminated
in the discovery of dual PfGSK3/PfPK6 inhibitors 23d (PfGSK3/PfPK6 IC50 = 172/11 nM) and 23e (PfGSK3/PfPK6 IC50 = 97/8 nM)
with antiplasmodial activity (23dPf3D7 EC50 = 552 ± 37 nM and 23ePf3D7 EC50 = 1400 ± 13 nM). However, both
compounds exhibited significant promiscuity when tested in a panel
of human kinase targets. Our results demonstrate that dual PfPK6/PfGSK3 inhibitors with antiplasmodial
activity can be identified and can set the stage for further optimization
efforts.
Collapse
Affiliation(s)
- Kareem A Galal
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anna Truong
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Frank Kwarcinski
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Chandi de Silva
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Krisha Avalani
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael E Chirgwin
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Eric Merten
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Han Wee Ong
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Caleb Willis
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12587, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12587, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710, United States
| | - Reena Zutshi
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Borba JVVB, Silva ADCE, do Nascimento MN, Ferreira LT, Rimoldi A, Starling L, Ramos PIP, Costa FTM, Andrade CH. Update and elucidation of Plasmodium kinomes: Prioritization of kinases as potential drug targets for malaria. Comput Struct Biotechnol J 2022; 20:3708-3717. [PMID: 35891792 PMCID: PMC9293725 DOI: 10.1016/j.csbj.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/05/2022] Open
Abstract
Malaria is a tropical disease caused by Plasmodium spp. and transmitted by the bite of infected Anopheles mosquitoes. Protein kinases (PKs) play key roles in the life cycle of the etiological agent of malaria, turning these proteins attractive targets for antimalarial drug discovery campaigns. As part of an effort to understand parasite signaling functions, we report the results of a bioinformatics pipeline analysis of PKs of eight Plasmodium species. To date, no P. malariae and P. ovale kinome assemble has been conducted. We classified, curated and annotated predicted kinases to update P. falciparum, P. vivax, P. yoelii, P. berghei, P. chabaudi, and P. knowlesi kinomes published to date, as well as report for the first time the kinomes of P. malariae and P. ovale. Overall, from 76 to 97 PKs were identified among all Plasmodium spp. kinomes. Most of the kinases were assigned to seven of nine major kinase groups: AGC, CAMK, CMGC, CK1, STE, TKL, OTHER; and the Plasmodium-specific group FIKK. About 30% of kinases have been deeply classified into group, family and subfamily levels and only about 10% remained unclassified. Furthermore, updating and comparing the kinomes of P. vivax and P. falciparum allowed for the prioritization and selection of kinases as potential drug targets that could be explored for discovering new drugs against malaria. This integrated approach resulted in the selection of 37 protein kinases as potential targets and the identification of investigational compounds with moderate in vitro activity against asexual P. falciparum (3D7 and Dd2 strains) stages that could serve as starting points for the search of potent antimalarial leads in the future.
Collapse
Affiliation(s)
- Joyce Villa Verde Bastos Borba
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil.,Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Arthur de Carvalho E Silva
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Marília Nunes do Nascimento
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aline Rimoldi
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luísa Starling
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | | | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil.,Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
4
|
Mahmud F, Lai NS, How SE, Gansau JA, Mustaffa KMF, Leow CH, Osman H, Sidek HM, Embi N, Lee PC. Bioactivities and Mode of Actions of Dibutyl Phthalates and Nocardamine from Streptomyces sp. H11809. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072292. [PMID: 35408690 PMCID: PMC9000801 DOI: 10.3390/molecules27072292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
Dibutyl phthalate (DBP) produced by Streptomyces sp. H11809 exerted inhibitory activity against human GSK-3β (Hs GSK-3β) and Plasmodiumfalciparum 3D7 (Pf 3D7) malaria parasites. The current study aimed to determine DBP’s plausible mode of action against Hs GSK-3β and Pf 3D7. Molecular docking analysis indicated that DBP has a higher binding affinity to the substrate-binding site (pocket 2; −6.9 kcal/mol) than the ATP-binding site (pocket 1; −6.1 kcal/mol) of Hs GSK-3β. It was suggested that the esters of DBP play a pivotal role in the inhibition of Hs GSK-3β through the formation of hydrogen bonds with Arg96/Glu97 amino acid residues in pocket 2. Subsequently, an in vitro Hs GSK-3β enzymatic assay revealed that DBP inhibits the activity of Hs GSK-3β via mixed inhibition inhibitory mechanisms, with a moderate IC50 of 2.0 µM. Furthermore, the decrease in Km value with an increasing DBP concentration suggested that DBP favors binding on free Hs GSK-3β over its substrate-bound state. However, the antimalarial mode of action of DBP remains unknown since the generation of a Pf 3D7 DBP-resistant clone was not successful. Thus, the molecular target of DBP might be indispensable for Pf survival. We also identified nocardamine as another active compound from Streptomyces sp. H11809 chloroform extract. It showed potent antimalarial activity with an IC50 of 1.5 μM, which is ~10-fold more potent than DBP, but with no effect on Hs GSK-3β. The addition of ≥12.5 µM ferric ions into the Pf culture reduced nocardamine antimalarial activity by 90% under in vitro settings. Hence, the iron-chelating ability of nocardamine was shown to starve the parasites from their iron source, eventually inhibiting their growth.
Collapse
Affiliation(s)
- Fauze Mahmud
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (F.M.); (K.M.F.M.); (C.H.L.)
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.E.H.); (J.A.G.)
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (F.M.); (K.M.F.M.); (C.H.L.)
- Correspondence: (N.S.L.); (P.-C.L.); Tel.: +60-4653-4862 (N.S.L.); +60-8832-0000 (P.-C.L.); Fax: +60-4653-4803 (N.S.L.); +60-8843-2324 (P.-C.L.)
| | - Siew Eng How
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.E.H.); (J.A.G.)
| | - Jualang Azlan Gansau
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.E.H.); (J.A.G.)
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (F.M.); (K.M.F.M.); (C.H.L.)
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (F.M.); (K.M.F.M.); (C.H.L.)
| | - Hasnah Osman
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Hasidah Mohd Sidek
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (H.M.S.); (N.E.)
| | - Noor Embi
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (H.M.S.); (N.E.)
| | - Ping-Chin Lee
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.E.H.); (J.A.G.)
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (N.S.L.); (P.-C.L.); Tel.: +60-4653-4862 (N.S.L.); +60-8832-0000 (P.-C.L.); Fax: +60-4653-4803 (N.S.L.); +60-8843-2324 (P.-C.L.)
| |
Collapse
|
5
|
Lande DH, Nasereddin A, Alder A, Gilberger TW, Dzikowski R, Grünefeld J, Kunick C. Synthesis and Antiplasmodial Activity of Bisindolylcyclobutenediones. Molecules 2021; 26:4739. [PMID: 34443327 PMCID: PMC8402075 DOI: 10.3390/molecules26164739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria is one of the most dangerous infectious diseases. Because the causative Plasmodium parasites have developed resistances against virtually all established antimalarial drugs, novel antiplasmodial agents are required. In order to target plasmodial kinases, novel N-unsubstituted bisindolylcyclobutenediones were designed as analogs to the kinase inhibitory bisindolylmaleimides. Molecular docking experiments produced favorable poses of the unsubstituted bisindolylcyclobutenedione in the ATP binding pocket of various plasmodial protein kinases. The synthesis of the title compounds was accomplished by sequential Friedel-Crafts acylation procedures. In vitro screening of the new compounds against transgenic NF54-luc P. falciparum parasites revealed a set of derivatives with submicromolar activity, of which some displayed a reasonable selectivity profile against a human cell line. Although the molecular docking studies suggested the plasmodial protein kinase PfGSK-3 as the putative biological target, the title compounds failed to inhibit the isolated enzyme in vitro. As selective submicromolar antiplasmodial agents, the N-unsubstituted bisindolylcyclobutenediones are promising starting structures in the search for antimalarial drugs, albeit for a rational development, the biological target addressed by these compounds has yet to be identified.
Collapse
Affiliation(s)
- Duc Hoàng Lande
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arne Alder
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Tim W. Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
| | - Johann Grünefeld
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Wu K, Zhai X, Huang S, Jiang L, Yu Z, Huang J. Protein Kinases: Potential Drug Targets Against Schistosoma japonicum. Front Cell Infect Microbiol 2021; 11:691757. [PMID: 34277472 PMCID: PMC8282181 DOI: 10.3389/fcimb.2021.691757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Schistosoma japonicum (S. japonicum) infection can induce serious organ damage and cause schistosomiasis japonica which is mainly prevalent in Asia and currently one of the most seriously neglected tropical diseases. Treatment of schistosomiasis largely depends on the drug praziquantel (PZQ). However, PZQ exhibits low killing efficacy on juvenile worms and the potential emergence of its drug resistance is a continual concern. Protein kinases (PKs) are enzymes that catalyze the phosphorylation of proteins and can participate in many signaling pathways in vivo. Recent studies confirmed the essential roles of PKs in the growth and development of S. japonicum, as well as in schistosome-host interactions, and researches have screened drug targets about PKs from S. japonicum (SjPKs), which provide new opportunities of developing new treatments on schistosomiasis. The aim of this review is to present the current progress on SjPKs from classification, different functions and their potential to become drug targets compared with other schistosomes. The efficiency of related protein kinase inhibitors on schistosomes is highlighted. Finally, the current challenges and problems in the study of SjPKs are proposed, which can provide future guidance for developing anti-schistosomiasis drugs and vaccines.
Collapse
Affiliation(s)
- Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Xingyu Zhai
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Zheng Yu
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
7
|
Stroganova T, Vasilin VK, Dotsenko VV, Aksenov NA, Morozov PG, Vassiliev PM, Volynkin VA, Krapivin GD. Unusual Oxidative Dimerization in the 3-Aminothieno[2,3- b]pyridine-2-carboxamide Series. ACS OMEGA 2021; 6:14030-14048. [PMID: 34124427 PMCID: PMC8190813 DOI: 10.1021/acsomega.1c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Noncatalyzed, regio- and stereoselective hypochlorite oxidation of 3-aminothieno[2,3-b]pyridine-2-carboxamides is presented. Unexpectedly, the oxidation proceeded by different mechanistic pathways, and different products were formed, depending on the nature of solvents used. A possible mechanism, the structure of products, kinetics and dynamics of intramolecular processes, and biological activity of products are discussed.
Collapse
Affiliation(s)
- Tatyana
A. Stroganova
- Department
of Bioorganic Chemistry, Kuban State Technological
University, Krasnodar 350072, Russian Federation
| | - Vladimir K. Vasilin
- Department
of Bioorganic Chemistry, Kuban State Technological
University, Krasnodar 350072, Russian Federation
| | - Victor V. Dotsenko
- Department
of Organic Chemistry and Technologies, Kuban
State University, Krasnodar 350040, Russian Federation
- Department
of Organic Chemistry, North Caucasus Federal
University, Stavropol 355009, Russian Federation
| | - Nicolai A. Aksenov
- Department
of Organic Chemistry, North Caucasus Federal
University, Stavropol 355009, Russian Federation
| | - Pavel G. Morozov
- Department
of Chemistry of Natural Compounds, Southern
Federal University, Rostov-on-Don 344006, Russian Federation
| | - Pavel M. Vassiliev
- Volgograd
State Medical University, Volgograd 400131, Russian Federation
| | - Vitaly A. Volynkin
- Department
of Inorganic Chemistry, Kuban State University, Krasnodar 350040, Russian Federation
| | - Gennady D. Krapivin
- Scientific
Research Institute of Chemistry of Heterocyclic Compounds, Kuban State Technological University, Krasnodar 350072, Russian Federation
| |
Collapse
|
8
|
Peglow TJ, Bartz RH, Barcellos T, Schumacher RF, Cargnelutti R, Perin G. Synthesis of 2‐Aryl‐(3‐Organochalcogenyl)Thieno[2,3‐
b
]Pyridines Promoted by Oxone®. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Thiago J. Peglow
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas, RS Brazil
| | - Ricardo H. Bartz
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas, RS Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos Universidade de Caxias do Sul – UCS Caxias do Sul, RS Brazil
| | - Ricardo F. Schumacher
- Departamento de Química, CCNE Universidade Federal de Santa Maria – UFSM Santa Maria, RS Brazil
| | - Roberta Cargnelutti
- Departamento de Química, CCNE Universidade Federal de Santa Maria – UFSM Santa Maria, RS Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas, RS Brazil
| |
Collapse
|
9
|
Borba JVVB, Silva AC, Lima MNN, Mendonca SS, Furnham N, Costa FTM, Andrade CH. Chemogenomics and bioinformatics approaches for prioritizing kinases as drug targets for neglected tropical diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:187-223. [PMID: 33632465 DOI: 10.1016/bs.apcsb.2020.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) are a group of twenty-one diseases classified by the World Health Organization that prevail in regions with tropical and subtropical climate and affect more than one billion people. There is an urgent need to develop new and safer drugs for these diseases. Protein kinases are a potential class of targets for developing new drugs against NTDs, since they play crucial role in many biological processes, such as signaling pathways, regulating cellular communication, division, metabolism and death. Bioinformatics is a field that aims to organize large amounts of biological data as well as develop and use tools for understanding and analyze them in order to produce meaningful information in a biological manner. In combination with chemogenomics, which analyzes chemical-biological interactions to screen ligands against selected targets families, these approaches can be used to stablish a rational strategy for prioritizing new drug targets for NTDs. Here, we describe how bioinformatics and chemogenomics tools can help to identify protein kinases and their potential inhibitors for the development of new drugs for NTDs. We present a review of bioinformatics tools and techniques that can be used to define an organisms kinome for drug prioritization, drug and target repurposing, multi-quinase inhibition approachs and selectivity profiling. We also present some successful examples of the application of such approaches in recent case studies.
Collapse
Affiliation(s)
- Joyce Villa Verde Bastos Borba
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Tropical Diseases-Prof. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, SP, Brazil
| | - Arthur Carvalho Silva
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marilia Nunes Nascimento Lima
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sabrina Silva Mendonca
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, SP, Brazil
| | - Carolina Horta Andrade
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil; Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
10
|
Abstract
Malaria is one of the most impacting public health problems in tropical and subtropical areas of the globe, with approximately 200 million cases worldwide annually. In the absence of an effective vaccine, rapid treatment is vital for effective malaria control. However, parasite resistance to currently available drugs underscores the urgent need for identifying new antimalarial therapies with new mechanisms of action. Among potential drug targets for developing new antimalarial candidates, protein kinases are attractive. These enzymes catalyze the phosphorylation of several proteins, thereby regulating a variety of cellular processes and playing crucial roles in the development of all stages of the malaria parasite life cycle. Moreover, the large phylogenetic distance between Plasmodium species and its human host is reflected in marked differences in structure and function of malaria protein kinases between the homologs of both species, indicating that selectivity can be attained. In this review, we describe the functions of the different types of Plasmodium kinases and highlight the main recent advances in the discovery of kinase inhibitors as potential new antimalarial drug candidates.
Collapse
|
11
|
Liu J, Li H, Xia T, Du P, Giri B, Li X, Li X, Cheng G. Identification of Schistosoma japonicum GSK3β interacting partners by yeast two-hybrid screening and its role in parasite survival. Parasitol Res 2020; 119:2217-2226. [PMID: 32500370 DOI: 10.1007/s00436-020-06731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/25/2020] [Indexed: 01/04/2023]
Abstract
Schistosoma is the causative agent of schistosomiasis, a common infectious disease distributed worldwide. Our previous phosphoproteomic analysis suggested that glycogen synthase kinase 3 (GSK3), a conserved protein kinase in eukaryotes, is likely involved in protein phosphorylation of Schistosoma japonicum. Here, we aimed to identify the interacting partners of S. japonicum GSK3β (SjGSK3β) and to evaluate its role in parasite survival. Toward these ends, we determined the transcription levels of SjGSK3β at different developmental stages and identified its interacting partners of SjGSK3β by screening a yeast two-hybrid S. japonicum cDNA library. We further used RNA interference (RNAi) to inhibit the expression of SjGSK3β in adult worms in vitro and examined the resultant changes in transcription of its putative interacting proteins and in worm viability compared with those of control worms. Reverse transcription-quantitative polymerase chain analysis indicated that SjGSK3β is expressed throughout the life cycle of S. japonicum, with higher expression levels detected in the eggs and relatively higher expression level found in male worms than in female worms. By screening the yeast two-hybrid library, eight proteins were identified as potentially interacting with SjGSK3β including cell division cycle 37 homolog (Cdc37), 14-3-3 protein, tegument antigen (I(H)A), V-ATPase proteolipid subunit, myosin alkali light chain 1, and three proteins without recognized functional domains. In addition, SjGSK3β RNAi reduced the SjGSK3β gene transcript level, leading to a significant decrease in kinase activity, cell viability, and worm survival. Collectively, these findings suggested that SjGSK3β may interact with its partner proteins to influence worm survival by regulating kinase activity.
Collapse
Affiliation(s)
- Jingyi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Huimin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Tianqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Pengfei Du
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Bikash Giri
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Xue Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Xuxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China.
- Tongji University of School of Medicine, #1239 Si-Ping Road, Shanghai, 200092, China.
| |
Collapse
|
12
|
EFSTATHIOU ANTONIA, Smirlis D. A Radioactive-free Kinase Inhibitor Discovery Assay Against the Trypanosoma brucei Glycogen Synthase Kinase-3 short (TbGSK-3s). Bio Protoc 2020; 10:e3493. [DOI: 10.21769/bioprotoc.3493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/29/2019] [Accepted: 12/11/2019] [Indexed: 11/02/2022] Open
|
13
|
Dotsenko VV, Buryi DS, Lukina DY, Stolyarova AN, Aksenov NA, Aksenova IV, Strelkov VD, Dyadyuchenko LV. Substituted N-(thieno[2,3-b]pyridine-3-yl)acetamides: synthesis, reactions, and biological activity. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02505-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Indirubin Analogues Inhibit Trypanosoma brucei Glycogen Synthase Kinase 3 Short and T. brucei Growth. Antimicrob Agents Chemother 2019; 63:AAC.02065-18. [PMID: 30910902 DOI: 10.1128/aac.02065-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT). The disease is fatal if it remains untreated, whereas most drug treatments are inadequate due to high toxicity, difficulties in administration, and low central nervous system penetration. T. brucei glycogen synthase kinase 3 short (TbGSK3s) is essential for parasite survival and thus represents a potential drug target that could be exploited for HAT treatment. Indirubins, effective leishmanicidals, provide a versatile scaffold for the development of potent GSK3 inhibitors. Herein, we report on the screening of 69 indirubin analogues against T. brucei bloodstream forms. Of these, 32 compounds had potent antitrypanosomal activity (half-maximal effective concentration = 0.050 to 3.2 μM) and good selectivity for the analogues over human HepG2 cells (range, 7.4- to over 641-fold). The majority of analogues were potent inhibitors of TbGSK3s, and correlation studies for an indirubin subset, namely, the 6-bromosubstituted 3'-oxime bearing an extra bulky substituent on the 3' oxime [(6-BIO-3'-bulky)-substituted indirubins], revealed a positive correlation between kinase inhibition and antitrypanosomal activity. Insights into this indirubin-TbGSK3s interaction were provided by structure-activity relationship studies. Comparison between 6-BIO-3'-bulky-substituted indirubin-treated parasites and parasites silenced for TbGSK3s by RNA interference suggested that the above-described compounds may target TbGSK3s in vivo To further understand the molecular basis of the growth arrest brought about by the inhibition or ablation of TbGSK3s, we investigated the intracellular localization of TbGSK3s. TbGSK3s was present in cytoskeletal structures, including the flagellum and basal body area. Overall, these results give insights into the mode of action of 6-BIO-3'-bulky-substituted indirubins that are promising hits for antitrypanosomal drug discovery.
Collapse
|
15
|
Peón A, Li H, Ghislat G, Leung KS, Wong MH, Lu G, Ballester PJ. MolTarPred: A web tool for comprehensive target prediction with reliability estimation. Chem Biol Drug Des 2019; 94:1390-1401. [PMID: 30916462 DOI: 10.1111/cbdd.13516] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/07/2019] [Accepted: 03/03/2019] [Indexed: 12/17/2022]
Abstract
Molecular target prediction can provide a starting point to understand the efficacy and side effects of phenotypic screening hits. Unfortunately, the vast majority of in silico target prediction methods are not available as web tools. Furthermore, these are limited in the number of targets that can be predicted, do not estimate which target predictions are more reliable and/or lack comprehensive retrospective validations. We present MolTarPred ( http://moltarpred.marseille.inserm.fr/), a user-friendly web tool for predicting protein targets of small organic compounds. It is powered by a large knowledge base comprising 607,659 compounds and 4,553 macromolecular targets collected from the ChEMBL database. In about 1 min, the predicted targets for the supplied molecule will be listed in a table. The chemical structures of the query molecule and the most similar compounds annotated with the predicted target will also be shown to permit visual inspection and comparison. Practical examples of the use of MolTarPred are showcased. MolTarPred is a new resource for scientists that require a more complete knowledge of the polypharmacology of a molecule. The introduction of a reliability score constitutes an attractive functionality of MolTarPred, as it permits focusing experimental confirmatory tests on the most reliable predictions, which leads to higher prospective hit rates.
Collapse
Affiliation(s)
- Antonio Peón
- Centre de Recherche en Cancérologie de Marseille (CRCM), U1068, Inserm, Marseille, France.,UMR7258, CNRS, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,UM 105, Aix-Marseille University, Marseille, France
| | - Hongjian Li
- SDIVF R&D Centre, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Ghita Ghislat
- U1104, CNRS UMR7280, Centre d'Immunologie de Marseille-Luminy, Inserm, Marseille, France
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Man-Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Pedro J Ballester
- Centre de Recherche en Cancérologie de Marseille (CRCM), U1068, Inserm, Marseille, France.,UMR7258, CNRS, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,UM 105, Aix-Marseille University, Marseille, France
| |
Collapse
|
16
|
Rogerio KR, Carvalho LJM, Domingues LHP, Neves BJ, Moreira Filho JT, Castro RN, Bianco Júnior C, Daniel-Ribeiro CT, Andrade CH, Graebin CS. Synthesis and molecular modelling studies of pyrimidinones and pyrrolo[3,4-d]-pyrimidinodiones as new antiplasmodial compounds. Mem Inst Oswaldo Cruz 2018; 113:e170452. [PMID: 29924131 PMCID: PMC6001580 DOI: 10.1590/0074-02760170452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/10/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Malaria is responsible for 429,000 deaths per year worldwide, and more than 200 million cases were reported in 2015. Increasing parasite resistance has imposed restrictions to the currently available antimalarial drugs. Thus, the search for new, effective and safe antimalarial drugs is crucial. Heterocyclic compounds, such as dihydropyrimidinones (DHPM), synthesised via the Biginelli multicomponent reaction, as well as bicyclic compounds synthesised from DHPMs, have emerged as potential antimalarial candidates in the last few years. METHODS Thirty compounds were synthesised employing the Biginelli multicomponent reaction and subsequent one-pot substitution/cyclisation protocol; the compounds were then evaluated in vitro against chloroquine-resistant Plasmodium falciparum parasites (W2 strain). Drug cytotoxicity in baseline kidney African Green Monkey cells (BGM) was also evaluated. The most active in vitro compounds were evaluated against P. berghei parasites in mice. Additionally, we performed an in silico target fishing approach with the most active compounds, aiming to shed some light into the mechanism at a molecular level. RESULTS The synthetic route chosen was effective, leading to products with high purity and yields ranging from 10-84%. Three out of the 30 compounds tested were identified as active against the parasite and presented low toxicity. The in silico study suggested that among all the molecular targets identified by our target fishing approach, Protein Kinase 3 (PK5) and Glycogen Synthase Kinase 3β (GSK-3β) are the most likely molecular targets for the synthesised compounds. CONCLUSIONS We were able to easily obtain a collection of heterocyclic compounds with in vitro anti-P. falciparum activity that can be used as scaffolds for the design and development of new antiplasmodial drugs.
Collapse
Affiliation(s)
- Kamilla Rodrigues Rogerio
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Leonardo J M Carvalho
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Luiza Helena Pinto Domingues
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Bruno Junior Neves
- Laboratório de Planejamento de Fármacos e Modelagem Molecular, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - José Teófilo Moreira Filho
- Laboratório de Planejamento de Fármacos e Modelagem Molecular, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Rosane Nora Castro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Cesare Bianco Júnior
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Claudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Carolina Horta Andrade
- Laboratório de Planejamento de Fármacos e Modelagem Molecular, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| |
Collapse
|
17
|
Cabrera DG, Horatscheck A, Wilson CR, Basarab G, Eyermann CJ, Chibale K. Plasmodial Kinase Inhibitors: License to Cure? J Med Chem 2018; 61:8061-8077. [PMID: 29771541 PMCID: PMC6166223 DOI: 10.1021/acs.jmedchem.8b00329] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Advances
in the genetics, function, and stage-specificity of Plasmodium kinases has driven robust efforts to identify
targets for the design of antimalarial therapies. Reverse genomics
following phenotypic screening against Plasmodia or
related parasites has uncovered vulnerable kinase targets including
PI4K, PKG, and GSK-3, an approach bolstered by access to human disease-directed
kinase libraries. Alternatively, screening compound libraries against Plasmodium kinases has successfully led to inhibitors with
antiplasmodial activity. As with other therapeutic areas, optimizing
compound ADMET and PK properties in parallel with target inhibitory
potency and whole cell activity becomes paramount toward advancing
compounds as clinical candidates. These and other considerations will
be discussed in the context of progress achieved toward deriving important,
novel mode-of-action kinase-inhibiting antimalarial medicines.
Collapse
|
18
|
Ali AH, Sudi S, Basir R, Embi N, Sidek HM. The Antimalarial Effect of Curcumin Is Mediated by the Inhibition of Glycogen Synthase Kinase-3β. J Med Food 2017; 20:152-161. [PMID: 28146408 DOI: 10.1089/jmf.2016.3813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β.
Collapse
Affiliation(s)
- Amatul Hamizah Ali
- 1 School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia , Bangi, Malaysia
| | - Suhaini Sudi
- 1 School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia , Bangi, Malaysia
| | - Rusliza Basir
- 2 Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , Serdang, Malaysia
| | - Noor Embi
- 1 School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia , Bangi, Malaysia
| | - Hasidah Mohd Sidek
- 1 School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia , Bangi, Malaysia
| |
Collapse
|
19
|
Murungi EK, Kariithi HM. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases. Pathogens 2017; 6:pathogens6010012. [PMID: 28335576 PMCID: PMC5371900 DOI: 10.3390/pathogens6010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host.
Collapse
Affiliation(s)
- Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, 20115 Njoro, Kenya.
| | - Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Kaptagat Rd, Loresho, 00200 Nairobi, Kenya.
| |
Collapse
|
20
|
Pharmacophore-based screening and drug repurposing exemplified on glycogen synthase kinase-3 inhibitors. Mol Divers 2017; 21:385-405. [PMID: 28108896 DOI: 10.1007/s11030-016-9724-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
The current study was conducted to elaborate a novel pharmacophore model to accurately map selective glycogen synthase kinase-3 (GSK-3) inhibitors, and perform virtual screening and drug repurposing. Pharmacophore modeling was developed using PHASE on a data set of 203 maleimides. Two benchmarking validation data sets with focus on selectivity were assembled using ChEMBL and PubChem GSK-3 confirmatory assays. A drug repurposing experiment linking pharmacophore matching with drug information originating from multiple data sources was performed. A five-point pharmacophore model was built consisting of a hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic (H), and two rings (RR). An atom-based 3D quantitative structure-activity relationship (QSAR) model showed good correlative and satisfactory predictive abilities (training set [Formula: see text]; test set: [Formula: see text]; whole data set: stability [Formula: see text]). Virtual screening experiments revealed that selective GSK-3 inhibitors are ranked preferentially by Hypo-1, but fail to retrieve nonselective compounds. The pharmacophore and 3D QSAR models can provide assistance to design novel, potential GSK-3 inhibitors with high potency and selectivity pattern, with potential application for the treatment of GSK-3-driven diseases. A class of purine nucleoside antileukemic drugs was identified as potential inhibitor of GSK-3, suggesting the reassessment of the target range of these drugs.
Collapse
|
21
|
Palomo V, Martinez A. Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2014-2015). Expert Opin Ther Pat 2016; 27:657-666. [PMID: 27828716 DOI: 10.1080/13543776.2017.1259412] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Glycogen synthase kinase (GSK-3) is a serine/threonine kinase that phosphorylates more than one hundred different sequences within proteins in a variety of different pathways. It is a key component of a remarkably large number of cellular processes and diseases. Imbalance of GSK-3 activity is involved in various prevalent pathological diseases, such as diabetes, neurodegenerative diseases and cancer. Understanding its role in different disorders has been central in the last several decades and there has been a significantly large development of GSK-3 inhibitors, some of which, show promising results for the treatment of these devastating diseases. Areas covered: This review covers patent literature on GSK-3 inhibitors and their applications published and/or granted between 2014 and 2015. Expert opinion: GSK-3 inhibitors have gained a prominent role in regenerative medicine based in their ability to modulate stem cells. Moreover, some allosteric modulators of GSK-3 emerge as safe compounds for chronic treatments.
Collapse
Affiliation(s)
- Valle Palomo
- a Centro de Investigaciones Biologicas-CSIC , Translational Medicinal and Biological Chemistry Laboratory , Madrid , Spain
| | - Ana Martinez
- a Centro de Investigaciones Biologicas-CSIC , Translational Medicinal and Biological Chemistry Laboratory , Madrid , Spain
| |
Collapse
|
22
|
Dahari DE, Salleh RM, Mahmud F, Chin LP, Embi N, Sidek HM. Anti-malarial Activities of Two Soil Actinomycete Isolates from Sabah via Inhibition of Glycogen Synthase Kinase 3β. Trop Life Sci Res 2016; 27:53-71. [PMID: 27688851 DOI: 10.21315/tlsr2016.27.2.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition, our study suggests that DBP is in part the bioactive component contributing to the anti-malarial activity displayed by H11809 acting through the inhibition of GSK3β.
Collapse
Affiliation(s)
- Dhiana Efani Dahari
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Raifana Mohamad Salleh
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Fauze Mahmud
- School of Science and Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia
| | - Lee Ping Chin
- School of Science and Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia
| | - Noor Embi
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Hasidah Mohd Sidek
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|