1
|
Schreuder M, Poenou G, Strijbis VJF, Cheung KL, Reitsma PH, Bos MHA. Evolutionary Adaptations in Pseudonaja Textilis Venom Factor X Induce Zymogen Activity and Resistance to the Intrinsic Tenase Complex. Thromb Haemost 2020; 120:1512-1523. [PMID: 32820486 DOI: 10.1055/s-0040-1715441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The venom of the Australian snake Pseudonaja textilis comprises powerful prothrombin activators consisting of factor X (v-ptFX)- and factor V-like proteins. While all vertebrate liver-expressed factor X (FX) homologs, including that of P. textilis, comprise an activation peptide of approximately 45 to 65 residues, the activation peptide of v-ptFX is significantly shortened to 27 residues. In this study, we demonstrate that exchanging the human FX activation peptide for the snake venom ortholog impedes proteolytic cleavage by the intrinsic factor VIIIa-factor IXa tenase complex. Furthermore, our findings indicate that the human FX activation peptide comprises an essential binding site for the intrinsic tenase complex. Conversely, incorporation of FX into the extrinsic tissue factor-factor VIIa tenase complex is completely dependent on exosite-mediated interactions. Remarkably, the shortened activation peptide allows for factor V-dependent prothrombin conversion while in the zymogen state. This indicates that the active site of FX molecules comprising the v-ptFX activation peptide partially matures upon assembly into a premature prothrombinase complex. Taken together, the shortened activation peptide is one of the remarkable characteristics of v-ptFX that has been modified from its original form, thereby transforming FX into a powerful procoagulant protein. Moreover, these results shed new light on the structural requirements for serine protease activation and indicate that catalytic activity can be obtained without formation of the characteristic Ile16-Asp194 salt bridge via modification of the activation peptide.
Collapse
Affiliation(s)
- Mark Schreuder
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Geraldine Poenou
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.,AP-HP, Hôpital Louis Mourier, Colombes, France
| | - Viola J F Strijbis
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ka Lei Cheung
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter H Reitsma
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Balestra D, Branchini A. Molecular Mechanisms and Determinants of Innovative Correction Approaches in Coagulation Factor Deficiencies. Int J Mol Sci 2019; 20:ijms20123036. [PMID: 31234407 PMCID: PMC6627357 DOI: 10.3390/ijms20123036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
3
|
Ferrarese M, Baroni M, Della Valle P, Spiga I, Poloniato A, D'Angelo A, Pinotti M, Bernardi F, Branchini A. Missense changes in the catalytic domain of coagulation factor X account for minimal function preventing a perinatal lethal condition. Haemophilia 2019; 25:685-692. [PMID: 30994257 DOI: 10.1111/hae.13761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Inherited deficiencies in the coagulation pathway provide diversified models to investigate the molecular bases of perinatal lethality associated with null-like variants. Differently from X-linked haemophilias, homozygous/doubly heterozygous null variants in the rare autosomally inherited deficiency of factor X (FX) might be incompatible with perinatal survival. AIM To provide experimental evidence about the null/close-to-null FX function. METHODS The residual secreted (ELISA) and functional (thrombin generation assays) protein levels associated with the novel nonsense (c.1382G>A; p.Trp461Ter) and missense (c.752T>C; p.Leu251Pro) variants, found in the proposita with life-threatening symptoms at birth, were characterized through recombinant (r)FX expression. RESULTS The rFX-461Ter showed very low secretion and undetectable function. Expression and function of the predicted readthrough-deriving missense variants (rFX-461Tyr, rFX-461Gln) were also severely impaired. These unfavourable features, due to nucleotide and protein sequence constraints, precluded functional readthrough over the 461 stop codon. Differently, the poorly secreted rFX-251Pro variant displayed residual function that was characterized by anti-TFPI aptamer-based amplification or selective inhibition of activated FX function by fondaparinux in plasma and found to be reduced by approximately three orders of magnitude. Similarly to the rFX-251Pro, a group of catalytic domain missense variants cause poorly secreted molecules with modest function in FX-deficient patients with life-threatening symptoms. CONCLUSIONS Our data, contributing to the knowledge of the very severe FX deficiency forms, support life-saving requirement of trace FX function, clearly exemplified by the dysfunctional but not completely inactive rFX-251Pro variant that, albeit with severely reduced function, is compatible with a residual activity ensuring minimal haemostasis and permitting perinatal survival.
Collapse
Affiliation(s)
- Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Patrizia Della Valle
- Coagulation Service and Thrombosis Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Ivana Spiga
- Clinical Molecular Biology Laboratory, IRCCS San Raffaele Hospital, Milan, Italy
| | - Antonella Poloniato
- Neonatology Unit, Mother-Child Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Armando D'Angelo
- Coagulation Service and Thrombosis Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Ferrarese M, Pignani S, Lombardi S, Balestra D, Bernardi F, Pinotti M, Branchini A. The carboxyl-terminal region of human coagulation factor X as a natural linker for fusion strategies. Thromb Res 2018; 173:4-11. [PMID: 30453126 DOI: 10.1016/j.thromres.2018.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Fusion with human serum albumin (HSA), which represents a well-established technique to extend half-life of therapeutic proteins, commonly exploits intervening peptide linkers as key components. Here, we explored the human coagulation factor X (FX) carboxyl-terminal region, previously demonstrated by us to be dispensable for secretion and coagulant activity, as a natural linker for fusion purposes. To test our hypothesis, we compared direct FX-HSA fusion with the designed FX-HSA fusion proteins mimicking the recombinant activated factor VII (rFVIIa)-HSA or factor IX (FIX)-HSA chimeras, both strongly dependent from artificial linkers. Three constructs were produced by direct tandem fusion (FX-HSA) and through flexible (glycine/serine; FX-GS-HSA, mimicking rFVIIa-HSA) or cleavable (incorporating the FX activation site; FX-CL-HSA, mimicking FIX-HSA) linkers. The FX-HSA was efficiently secreted and displayed prolonged plasma persistence in mice. All chimeras possessed remarkable pro-coagulant activity, comparable to FX for FX-HSA (88.7 ± 6.0%) and FX-CL-HSA (98.0 ± 16.4%) or reduced for FX-GS-HSA (55.8 ± 5.4%). Upon incubation with activators, FX-HSA and FX-CL-HSA displayed a correct activation profile while the FX-GS-HSA activation was slightly defective. In fluorogenic-based assays, FX-HSA showed normal activity over time and a specific amidolytic activity (1.0 ± 0.12) comparable to that of FX. Overall, the FX-HSA features indicate that the FX carboxyl-terminal region represents an intrinsic sequence allowing direct tandem fusion. Our results provide the first experimental evidence for i) a coagulation factor fusion protein with biological properties independent from artificial linkers, ii) the suitability of FX carboxyl-terminal region as a natural linker for fusion purposes.
Collapse
Affiliation(s)
- Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Pignani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
5
|
Pignani S, Todaro A, Ferrarese M, Marchi S, Lombardi S, Balestra D, Pinton P, Bernardi F, Pinotti M, Branchini A. The chaperone-like sodium phenylbutyrate improves factor IX intracellular trafficking and activity impaired by the frequent p.R294Q mutation. J Thromb Haemost 2018; 16:2035-2043. [PMID: 29993188 DOI: 10.1111/jth.14236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/25/2022]
Abstract
Essentials Missense mutations often impair protein folding, and thus intracellular trafficking and secretion. Cellular models of severe type I hemophilia B were challenged with chaperone-like compounds. Sodium phenylbutyrate improved intracellular trafficking and secretion of the frequent p.R294Q. The increased coagulant activity levels (∼3%) of p.R294Q would ameliorate the bleeding phenotype. SUMMARY Background Missense mutations often impair protein folding and intracellular processing, which can be improved by small compounds with chaperone-like activity. However, little has been done in coagulopathies, where even modest increases of functional levels could have therapeutic implications. Objectives To rescue the expression of factor IX (FIX) variants affected by missense mutations associated with type I hemophilia B (HB) through chaperone-like compounds. Methods Expression studies of recombinant (r)FIX variants and evaluation of secreted levels (ELISA), intracellular trafficking (immunofluorescence) and activity (coagulant assays) before and after treatment of cells with chaperone-like compounds. Results As a model we chose the most frequent HB mutation (p.R294Q, ~100 patients), compared with other recurrent mutations associated with severe/moderate type I HB. Immunofluorescence studies revealed retention of rFIX variants in the endoplasmic reticulum and negligible localization in the Golgi, thus indicating impaired intracellular trafficking. Consistently, and in agreement with coagulation phenotypes in patients, all missense mutations resulted in impaired secretion (< 1% wild-type rFIX). Sodium phenylbutyrate (NaPBA) quantitatively improved trafficking to the Golgi and dose dependently promoted secretion (from 0.3 ± 0.1% to 1.5 ± 0.3%) only of the rFIX-294Q variant. Noticeably, this variant displayed a specific coagulant activity that was higher (~2.0 fold) than that of wild-type rFIX in all treatment conditions. Importantly, coagulant activity was concurrently increased to levels (3.0 ± 0.9%) that, if achieved in patients, would ameliorate the bleeding phenotype. Conclusions Altogether, our data detail molecular mechanisms underlying type I HB and candidate NaPBA as affordable 'personalized' therapeutics for patients affected by the highly frequent p.R294Q mutation, and with reduced access to substitutive therapy.
Collapse
Affiliation(s)
- S Pignani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - A Todaro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - M Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - S Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - D Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - F Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - M Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - A Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Nagaya S, Akiyama M, Murakami M, Sekiya A, Asakura H, Morishita E. Congenital coagulation factor X deficiency: Genetic analysis of five patients and functional characterization of mutant factor X proteins. Haemophilia 2018; 24:774-785. [DOI: 10.1111/hae.13606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Satomi Nagaya
- Asanogawa General Hospital; Kanazawa Ishikawa Japan
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Kanazawa Ishikawa Japan
| | - Masashi Akiyama
- Department of Molecular Pathogenesis; National Cerebral and Cardiovascular Center Research Institute; Osaka Japan
| | - Morika Murakami
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Kanazawa Ishikawa Japan
| | - Akiko Sekiya
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Kanazawa Ishikawa Japan
| | - Hidesaku Asakura
- Department of Hematology; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Kanazawa Ishikawa Japan
- Department of Hematology; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| |
Collapse
|
7
|
Engineered factor Xa variants retain procoagulant activity independent of direct factor Xa inhibitors. Nat Commun 2017; 8:528. [PMID: 28904343 PMCID: PMC5597622 DOI: 10.1038/s41467-017-00647-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023] Open
Abstract
The absence of an adequate reversal strategy to prevent and stop potential life-threatening bleeding complications is a major drawback to the clinical use of the direct oral inhibitors of blood coagulation factor Xa. Here we show that specific modifications of the substrate-binding aromatic S4 subpocket within the factor Xa active site disrupt high-affinity engagement of the direct factor Xa inhibitors. These modifications either entail amino-acid substitution of S4 subsite residues Tyr99 and/or Phe174 (chymotrypsinogen numbering), or extension of the 99-loop that borders the S4 subsite. The latter modifications led to the engineering of a factor Xa variant that is able to support coagulation in human plasma spiked with (supra-)physiological concentrations of direct factor Xa inhibitors. As such, this factor Xa variant has the potential to be employed to bypass the direct factor Xa inhibitor-mediated anticoagulation in patients that require restoration of blood coagulation. A major drawback in the clinical use of the oral anticoagulants that directly inhibit factor Xa in order to prevent blood clot formation is the potential for life threatening bleeding events. Here the authors describe factor Xa variants that are refractory to inhibition by these anticoagulants and could serve as rescue agents in treated patients.
Collapse
|