1
|
Hochholdinger F, Yu P. Molecular concepts to explain heterosis in crops. TRENDS IN PLANT SCIENCE 2025; 30:95-104. [PMID: 39191625 DOI: 10.1016/j.tplants.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
Heterosis describes the superior performance of hybrid plants compared with their genetically distinct parents and is a pillar of global food security. Here we review the current status of the molecular dissection of heterosis. We discuss how extensive intraspecific structural genomic variation between parental genotypes leads to heterosis by genetic complementation in hybrids. Moreover, we survey how global gene expression complementation contributes to heterosis by hundreds of additionally active genes in hybrids and how overdominant single genes mediate heterosis in several species. Furthermore, we highlight the prominent role of the microbiome in improving the performance of hybrids. Taken together, the molecular understanding of heterosis will pave the way to accelerate hybrid productivity and a more sustainable agriculture.
Collapse
Affiliation(s)
- Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany; INRES, Institute of Crop Science and Resource Conservation, Root Functional Biology, University of Bonn, 53113 Bonn, Germany.
| |
Collapse
|
2
|
Wang Z, He Z, Wang J, Wang C, Gao C, Wang Y. A DNA-binding protein capture technology that purifies proteins by directly isolating the target DNA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111796. [PMID: 37467789 DOI: 10.1016/j.plantsci.2023.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
DNA-protein interactions are critical to almost all cellular functions, and identification of the proteins that bind to an DNA site of interest (gene-centered approach) is an important investigation area. However, gene-centered methods are mainly based on DNA hybridization to isolate target proteins, which is complex and inefficient. Here, we built a gene-centered approach involving direct isolation of target DNA, termed protein capture based on biolistic transformation (PCaB). The target DNA was labeled with biotin and cyanine 3 (Cy3) at its 5' and 3' DNA ends, respectively, and introduced into the host plants through biolistic transformation. The DNA and its binding proteins were crosslinked using formaldehyde. The labeled DNAs were obtained using gel excision and biotin-Streptavidin affinity according to the indication of Cy3 fluorescence, which make harvest of target DNA with a low background. The DNA-binding proteins were identified using mass spectrometry analysis. The PCaB method allowed us to identify and confirm 16 putative upstream regulators of the BpERF3 gene from Betula platyphylla. Theoretically, PCaB could be adapted to all plant species that can be transformed using biolistic bombardment, and captures DNA-binding proteins quickly with a low background. Therefore, PCaB will provide a powerful tool to discover DNA-protein interactions.
Collapse
Affiliation(s)
- Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jingxin Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Forestry, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Duruflé H, Balliau T, Blanchet N, Chaubet A, Duhnen A, Pouilly N, Blein-Nicolas M, Mangin B, Maury P, Langlade NB, Zivy M. Sunflower Hybrids and Inbred Lines Adopt Different Physiological Strategies and Proteome Responses to Cope with Water Deficit. Biomolecules 2023; 13:1110. [PMID: 37509146 PMCID: PMC10377273 DOI: 10.3390/biom13071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Sunflower is a hybrid crop that is considered moderately drought-tolerant and adapted to new cropping systems required for the agro-ecological transition. Here, we studied the impact of hybridity status (hybrids vs. inbred lines) on the responses to drought at the molecular and eco-physiological level exploiting publicly available datasets. Eco-physiological traits and leaf proteomes were measured in eight inbred lines and their sixteen hybrids grown in the high-throughput phenotyping platform Phenotoul-Heliaphen. Hybrids and parental lines showed different growth strategies: hybrids grew faster in the absence of water constraint and arrested their growth more abruptly than inbred lines when subjected to water deficit. We identified 471 differentially accumulated proteins, of which 256 were regulated by drought. The amplitude of up- and downregulations was greater in hybrids than in inbred lines. Our results show that hybrids respond more strongly to water deficit at the molecular and eco-physiological levels. Because of presence/absence polymorphism, hybrids potentially contain more genes than their parental inbred lines. We propose that detrimental homozygous mutations and the lower number of genes in inbred lines lead to a constitutive defense mechanism that may explain the lower growth of inbred lines under well-watered conditions and their lower reactivity to water deficit.
Collapse
Affiliation(s)
- Harold Duruflé
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
- INRAE, ONF, BioForA, 45075 Orleans, France
| | - Thierry Balliau
- AgroParisTech, GQE-Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France
| | - Nicolas Blanchet
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Adeline Chaubet
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Alexandra Duhnen
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Nicolas Pouilly
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Mélisande Blein-Nicolas
- AgroParisTech, GQE-Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France
| | - Brigitte Mangin
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Pierre Maury
- INRAE, INP-ENSAT Toulouse, UMR AGIR, Université de Toulouse, 31000 Toulouse, France
| | | | - Michel Zivy
- AgroParisTech, GQE-Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Plant proteostasis: a proven and promising target for crop improvement. Essays Biochem 2022; 66:75-85. [PMID: 35929615 DOI: 10.1042/ebc20210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
The Green Revolution of the 1960s accomplished dramatic increases in crop yields through genetic improvement, chemical fertilisers, irrigation, and mechanisation. However, the current trajectory of population growth, against a backdrop of climate change and geopolitical unrest, predicts that agricultural production will be insufficient to ensure global food security in the next three decades. Improvements to crops that go beyond incremental gains are urgently needed. Plant biology has also undergone a revolution in recent years, through the development and application of powerful technologies including genome sequencing, a pantheon of 'omics techniques, precise genome editing, and step changes in structural biology and microscopy. Proteostasis - the collective processes that control the protein complement of the cell, comprising synthesis, modification, localisation, and degradation - is a field that has benefitted from these advances. This special issue presents a selection of the latest research in this vibrant field, with a particular focus on protein degradation. In the current article, we highlight the diverse and widespread contributions of plant proteostasis to agronomic traits, suggest opportunities and strategies to manipulate different elements of proteostatic mechanisms for crop improvement, and discuss the challenges involved in bringing these ideas into practice.
Collapse
|
5
|
Wan J, Wang Q, Zhao J, Zhang X, Guo Z, Hu D, Meng S, Lin Y, Qiu X, Mu L, Ding D, Tang J. Gene expression variation explains maize seed germination heterosis. BMC PLANT BIOLOGY 2022; 22:301. [PMID: 35718761 PMCID: PMC9208091 DOI: 10.1186/s12870-022-03690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heterosis has been extensively utilized in plant breeding, however, the underlying molecular mechanism remains largely elusive. Maize (Zea mays), which exhibits strong heterosis, is an ideal material for studying heterosis. RESULTS In this study, there is faster imbibition and development in reciprocal crossing Zhengdan958 hybrids than in their parent lines during seed germination. To investigate the mechanism of heterosis of maize germination, comparative transcriptomic analyses were conducted. The gene expression patterns showed that 1324 (47.27%) and 1592 (66.44%) of the differential expression genes between hybrids and either parental line display parental dominance up or higher levels in the reciprocal cross of Zhengdan958, respectively. Notably, these genes were mainly enriched in metabolic pathways, including carbon metabolism, glycolysis/gluconeogenesis, protein processing in endoplasmic reticulum, etc. CONCLUSION: Our results provide evidence for the higher expression level genes in hybrid involved in metabolic pathways acting as main contributors to maize seed germinating heterosis. These findings provide new insights into the gene expression variation of maize embryos and improve the understanding of maize seed germination heterosis.
Collapse
Affiliation(s)
- Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiyue Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiawen Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Desheng Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shujun Meng
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan Lin
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Qiu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liqin Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Liu W, Zhang Y, He H, He G, Deng XW. From hybrid genomes to heterotic trait output: Challenges and opportunities. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102193. [PMID: 35219140 DOI: 10.1016/j.pbi.2022.102193] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Heterosis (or hybrid vigor) has been widely used in crop seed breeding to improve many key economic traits. Nevertheless, the genetic and molecular basis of this important phenomenon has long remained elusive, constraining its flexible and effective exploitation. Advanced genomic approaches are efficient in characterizing the mechanism of heterosis. Here, we review how the omics approaches, including genomic, transcriptomic, and population genetics methods such as genome-wide association studies, can reveal how hybrid genomes outperform parental genomes in plants. This information opens up opportunities for genomic exploration and manipulation of heterosis in crop breeding.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Zhang
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China
| | - Guangming He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China; Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China.
| |
Collapse
|
7
|
Mo Z, Pu Y, Zhou J, Tian Z, Teng J, Chen Q, Duan L, Liu R. Effect of the over-dominant expression of proteins on nicotine heterosis via proteomic analysis. Sci Rep 2021; 11:21063. [PMID: 34702915 PMCID: PMC8548390 DOI: 10.1038/s41598-021-00614-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Heterosis is a common biological phenomenon that can be used to optimize yield and quality of crops. Using heterosis breeding, hybrids with suitable nicotine content have been applied to tobacco leaf production. However, the molecular mechanism of the formation of nicotine heterosis has never been explained from the perspective of protein. The DIA proteomics technique was used to compare the differential proteomics of the hybrid Va116 × Basma, showing strong heterosis in nicotine content from its parent lines Va116 and Basma. Proteomics analysis indicated that 65.2% of DEPs showed over-dominant expression patterns, and these DEPs included QS, BBL, GS, ARAF and RFC1 which related to nicotine synthesis. In addition, some DEPs (including GST, ABCE2 and ABCF1 and SLY1) that may be associated with nicotinic transport exhibited significant heterosis over the parental lines. These findings demonstrated that the efficiency of the synthesis and transport of nicotine in hybrids was significantly higher than that in the parent lines, and the accumulation of over-dominant expression proteins may be the cause of heterosis of nicotinic content in hybrids.
Collapse
Affiliation(s)
- Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Yuanyuan Pu
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Junhao Zhou
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Zonglin Tian
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Jianhui Teng
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Qian Chen
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Renxiang Liu
- College of Tobacco, Guizhou University, Guiyang, China.
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China.
| |
Collapse
|
8
|
Rehman AU, Dang T, Qamar S, Ilyas A, Fatema R, Kafle M, Hussain Z, Masood S, Iqbal S, Shahzad K. Revisiting Plant Heterosis-From Field Scale to Molecules. Genes (Basel) 2021; 12:genes12111688. [PMID: 34828294 PMCID: PMC8619659 DOI: 10.3390/genes12111688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Heterosis refers to the increase in biomass, stature, fertility, and other characters that impart superior performance to the F1 progeny over genetically diverged parents. The manifestation of heterosis brought an economic revolution to the agricultural production and seed sector in the last few decades. Initially, the idea was exploited in cross-pollinated plants, but eventually acquired serious attention in self-pollinated crops as well. Regardless of harvesting the benefits of heterosis, a century-long discussion is continued to understand the underlying basis of this phenomenon. The massive increase in knowledge of various fields of science such as genetics, epigenetics, genomics, proteomics, and metabolomics persistently provide new insights to understand the reasons for the expression of hybrid vigor. In this review, we have gathered information ranging from classical genetic studies, field experiments to various high-throughput omics and computational modelling studies in order to understand the underlying basis of heterosis. The modern-day science has worked significantly to pull off our understanding of heterosis yet leaving open questions that requires further research and experimentation. Answering these questions would possibly equip today’s plant breeders with efficient tools and accurate choices to breed crops for a sustainable future.
Collapse
Affiliation(s)
- Attiq ur Rehman
- Horticulture Technologies, Production Systems Unit, Natural Resources Institute (Luke), Toivonlinnantie 518, 21500 Piikkiö, Finland;
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, The University of Helsinki, 00790 Helsinki, Finland;
| | - Trang Dang
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Correspondence:
| | - Shanzay Qamar
- Department of Agricultural Biotechnology, National Institute of Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Science, Faisalabad 38000, Pakistan;
| | - Amina Ilyas
- Department of Botany, Government College University, Lahore 54000, Pakistan;
| | - Reemana Fatema
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-230 53 Alnarp, Sweden;
- Department of Seed Science and Technology, Ege University, Bornova, Izmir 35100, Turkey
| | - Madan Kafle
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, The University of Helsinki, 00790 Helsinki, Finland;
| | - Zawar Hussain
- Environmental and Plant Biology Department, Ohio University, Athens, OH 45701, USA;
| | - Sara Masood
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, University of Lahore, Lahore 54000, Pakistan;
| | - Shehyar Iqbal
- IMPLANTEUS Graduate School, Avignon Université, 84000 Avignon, France;
| | - Khurram Shahzad
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan;
| |
Collapse
|
9
|
Reverse Chromatin Immunoprecipitation (R-ChIP) enables investigation of the upstream regulators of plant genes. Commun Biol 2020; 3:770. [PMID: 33318632 PMCID: PMC7736860 DOI: 10.1038/s42003-020-01500-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/13/2020] [Indexed: 02/02/2023] Open
Abstract
DNA binding proteins carry out important and diverse functions in the cell, including gene regulation, but identifying these proteins is technically challenging. In the present study, we developed a technique to capture DNA-associated proteins called reverse chromatin immunoprecipitation (R-ChIP). This technology uses a set of specific DNA probes labeled with biotin to isolate chromatin, and the DNA-associated proteins are then identified using mass spectrometry. Using R-ChIP, we identified 439 proteins that potentially bind to the promoter of the Arabidopsis thaliana gene AtCAT3 (AT1G20620). According to functional annotation, we randomly selected 5 transcription factors from these candidates, including bZIP1664, TEM1, bHLH106, BTF3, and HAT1, to verify whether they in fact bind to the AtCAT3 promoter. The binding of these 5 transcription factors was confirmed using chromatin immunoprecipitation quantitative real-time PCR and electrophoretic mobility shift assays. In addition, we improved the R-ChIP method using plants in which the DNA of interest had been transiently introduced, which does not require the T-DNA integration, and showed that this substantially improved the protein capture efficiency. These results together demonstrate that R-ChIP has a wide application to characterize chromatin composition and isolate upstream regulators of a specific gene.
Collapse
|
10
|
Li Z, Zhu A, Song Q, Chen HY, Harmon FG, Chen ZJ. Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory Pathways Contributes to Maize Heterosis. THE PLANT CELL 2020; 32:3706-3722. [PMID: 33004616 PMCID: PMC7721322 DOI: 10.1105/tpc.20.00320] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 05/04/2023]
Abstract
Heterosis or hybrid vigor is widespread in plants and animals. Although the molecular basis for heterosis has been extensively studied, metabolic and proteomic contributions to heterosis remain elusive. Here we report an integrative analysis of time-series metabolome and proteome data in maize (Zea mays) hybrids and their inbred parents. Many maize metabolites and proteins are diurnally regulated, and many of these show nonadditive abundance in the hybrids, including key enzymes and metabolites involved in carbon assimilation. Compared with robust trait heterosis, metabolic heterosis is relatively mild. Interestingly, most amino acids display negative mid-parent heterosis (MPH), i.e., having lower values than the average of the parents, while sugars, alcohols, and nucleoside metabolites show positive MPH. From the network perspective, metabolites in the photosynthetic pathway show positive MPH, whereas metabolites in the photorespiratory pathway show negative MPH, which corresponds to nonadditive protein abundance and enzyme activities of key enzymes in the respective pathways in the hybrids. Moreover, diurnally expressed proteins that are upregulated in the hybrids are enriched in photosynthesis-related gene-ontology terms. Hybrids may more effectively remove toxic metabolites generated during photorespiration, and thus maintain higher photosynthetic efficiency. These metabolic and proteomic resources provide unique insight into heterosis and its utilization for high yielding maize and other crop plants.
Collapse
Affiliation(s)
- Zhi Li
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Andan Zhu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Helen Y Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Frank G Harmon
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
11
|
K. Srivastava R, Bollam S, Pujarula V, Pusuluri M, Singh RB, Potupureddi G, Gupta R. Exploitation of Heterosis in Pearl Millet: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E807. [PMID: 32605134 PMCID: PMC7412370 DOI: 10.3390/plants9070807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
The phenomenon of heterosis has fascinated plant breeders ever since it was first described by Charles Darwin in 1876 in the vegetable kingdom and later elaborated by George H Shull and Edward M East in maize during 1908. Heterosis is the phenotypic and functional superiority manifested in the F1 crosses over the parents. Various classical complementation mechanisms gave way to the study of the underlying potential cellular and molecular mechanisms responsible for heterosis. In cereals, such as maize, heterosis has been exploited very well, with the development of many single-cross hybrids that revolutionized the yield and productivity enhancements. Pearl millet (Pennisetum glaucum (L.) R. Br.) is one of the important cereal crops with nutritious grains and lower water and energy footprints in addition to the capability of growing in some of the harshest and most marginal environments of the world. In this highly cross-pollinating crop, heterosis was exploited by the development of a commercially viable cytoplasmic male-sterility (CMS) system involving a three-lines breeding system (A-, B- and R-lines). The first set of male-sterile lines, i.e., Tift 23A and Tift18A, were developed in the early 1960s in Tifton, Georgia, USA. These provided a breakthrough in the development of hybrids worldwide, e.g., Tift 23A was extensively used by Punjab Agricultural University (PAU), Ludhiana, India, for the development of the first single-cross pearl millet hybrid, named Hybrid Bajra 1 (HB 1), in 1965. Over the past five decades, the pearl millet community has shown tremendous improvement in terms of cytoplasmic and nuclear diversification of the hybrid parental lines, which led to a progressive increase in the yield and adaptability of the hybrids that were developed, resulting in significant genetic gains. Lately, the whole genome sequencing of Tift 23D2B1 and re-sequencing of circa 1000 genomes by a consortium led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) has been a significant milestone in the development of cutting-edge genetic and genomic resources in pearl millet. Recently, the application of genomics and molecular technologies has provided better insights into genetic architecture and patterns of heterotic gene pools. Development of whole-genome prediction models incorporating heterotic gene pool models, mapped traits and markers have the potential to take heterosis breeding to a new level in pearl millet. This review discusses advances and prospects in various fronts of heterosis for pearl millet.
Collapse
Affiliation(s)
- Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad TS 502324, India; (S.B.); (V.P.); (M.P.); (R.B.S.); (G.P.)
| | | | | | | | | | | | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad TS 502324, India; (S.B.); (V.P.); (M.P.); (R.B.S.); (G.P.)
| |
Collapse
|
12
|
Zhang G, Li J, Zhang J, Liang X, Zhang X, Wang T, Yin S. Integrated Analysis of Transcriptomic, miRNA and Proteomic Changes of a Novel Hybrid Yellow Catfish Uncovers Key Roles for miRNAs in Heterosis. Mol Cell Proteomics 2019; 18:1437-1453. [PMID: 31092672 PMCID: PMC6601203 DOI: 10.1074/mcp.ra118.001297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/09/2019] [Indexed: 01/14/2023] Open
Abstract
Heterosis is a complex biological phenomenon in which hybridization produces offspring that exhibit superior phenotypic characteristics compared with the parents. Heterosis is widely utilized in agriculture, for example in fish farming; however, its underlying molecular basis remains elusive. To gain a comprehensive and unbiased molecular understanding of fish heterosis, we analyzed the mRNA, miRNA, and proteomes of the livers of three catfish species, Pelteobagrus fulvidraco, P. vachelli, and their hybrid, the hybrid yellow catfish "Huangyou-1" (P. fulvidraco ♀ × P. vachelli ♂). Using next-generation sequencing and mass spectrometry, we show that the nonadditive, homoeolog expression bias and expression level dominance pattern were readily identified at the transcriptional, post-transcriptional, or protein levels, providing the evidence for the widespread presence of dominant models during hybridization. A number of predicted miRNA-mRNA-protein pairs were found and validated by qRT-PCR and PRM assays. Furthermore, several diverse key pathways were identified, including immune defense, metabolism, digestion and absorption, and cell proliferation and development, suggesting the vital mechanisms involved in the generation of the heterosis phenotype in progenies. We propose that the high parental expression of genes/proteins (growth, nutrition, feeding, and disease resistance) coupled with low parental miRNAs of the offspring, are inherited from the mother or father, thus indicating that the offspring were enriched with the advantages of the father or mother. We provide new and important information about the molecular mechanisms of heterosis, which represents a significant step toward a more complete elucidation of this phenomenon.
Collapse
Affiliation(s)
- Guosong Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Jie Li
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Jiajia Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Xia Liang
- §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Xinyu Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Tao Wang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Shaowu Yin
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China.
| |
Collapse
|
13
|
Yang J, Luo S, Li J, Zheng Z, Du X, Deng Y. Transcriptome analysis of growth heterosis in pearl oyster Pinctada fucata martensii. FEBS Open Bio 2018; 8:1794-1803. [PMID: 30410859 PMCID: PMC6212643 DOI: 10.1002/2211-5463.12502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023] Open
Abstract
Heterosis improves growth and survival of shellfish species. Although breeders have widely exploited heterosis, its underlying molecular mechanisms remain unclear. In this study, a 2 × 2 complete diallel cross was facilitated between two full-sib families to produce two inbred families (A and D) and their reciprocal hybrid families (B and C) of pearl oyster Pinctada fucata martensii. Growth traits of the four families were compared at the adult stages. Transcriptome analysis was conducted on the four families using an Illumina sequencing platform. The results revealed that the growth traits of the four families significantly varied (P < 0.05). The mid-parent heterosis values of shell length, shell height, shell width, shell weight, and total weight were 12.9%, 14.9%, 18.2%, 17.2%, and 33.2%, respectively. The B- and C-inbred (A and D) triads had 79 and 68 differentially expressed genes (DEGs), respectively, which were dominantly nonadditive, including overdominance, underdominance, and low-parent dominance. Gene ontology term analysis showed that the DEGs in the B- and C-inbred triads were enriched for metabolic process, cellular process cell part, binding, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs in the B- and C-inbred triads were involved in focal adhesion, the P13K-Akt signaling pathway, the mRNA surveillance pathway, and the focal adhesion pathway. The reliability of the sequencing data was confirmed by real-time polymerase chain reaction analysis of six growth-related genes. The findings of this study provide new insights into heterosis for growth traits and the design of genetic breeding programs for this species.
Collapse
Affiliation(s)
- Jingmiao Yang
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Shaojie Luo
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Junhui Li
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Zhe Zheng
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Xiaodong Du
- Fisheries College Guangdong Ocean University Zhanjiang China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province Zhanjiang China
| | - Yuewen Deng
- Fisheries College Guangdong Ocean University Zhanjiang China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province Zhanjiang China
| |
Collapse
|
14
|
Ju C, Zhang W, Liu Y, Gao Y, Wang X, Yan J, Yang X, Li J. Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize. BMC PLANT BIOLOGY 2018; 18:171. [PMID: 30111287 PMCID: PMC6094888 DOI: 10.1186/s12870-018-1383-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/01/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Root systems play important roles in crop growth and stress responses. Although genetic mechanism of root traits in maize (Zea mays L.) has been investigated in different mapping populations, root traits have rarely been utilized in breeding programs. Elucidation of the genetic basis of maize root traits and, more importantly, their connection to other agronomic trait(s), such as grain yield, may facilitate root trait manipulation and maize germplasm improvement. In this study, we analyzed genome-wide genetic loci for maize seedling root traits at three time-points after seed germination to identify chromosomal regions responsible for both seedling root traits and other agronomic traits in a recombinant inbred line (RIL) population (Zong3 × Yu87-1). RESULTS Eight seedling root traits were examined at 4, 9, and 14 days after seed germination, and thirty-six putative quantitative trait loci (QTLs), accounting for 9.0-23.2% of the phenotypic variation in root traits, were detected. Co-localization of root trait QTLs was observed at, but not between, the three time-points. We identified strong or moderate correlations between root traits controlled by each co-localized QTL region. Furthermore, we identified an overlap in the QTL locations of seedling root traits examined here and six other traits reported previously in the same RIL population, including grain yield-related traits, plant height-related traits, and traits in relation to stress responses. Maize chromosomal bins 1.02-1.03, 1.07, 2.06-2.07, 5.05, 7.02-7.03, 9.04, and 10.06 were identified QTL hotspots for three or four more traits in addition to seedling root traits. CONCLUSIONS Our identification of co-localization of root trait QTLs at, but not between, each of the three time-points suggests that maize seedling root traits are regulated by different sets of pleiotropic-effect QTLs at different developmental stages. Furthermore, the identification of QTL hotspots suggests the genetic association of seedling root traits with several other traits and reveals maize chromosomal regions valuable for marker-assisted selection to improve root systems and other agronomic traits simultaneously.
Collapse
Affiliation(s)
- Chuanli Ju
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Wei Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Ya Liu
- Maize Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097 China
| | - Yufeng Gao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xiaofan Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jiansheng Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
15
|
MEENA RK, PULLAIAHGARI D, GUDIPALLI P. Proteomic analysis of heterotic seed germination in maize using F1 hybrid DHM 117 and its parental inbreds. Turk J Biol 2018; 42:345-363. [PMID: 30814898 PMCID: PMC6392162 DOI: 10.3906/biy-1803-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A number of differentially expressed proteins (DEPs) were identified in comparative two-dimensional gel electrophoresis analysis of dry and 24-h water-imbibed seeds of maize F1 hybrid DHM 117 (BML 6 × BML 7) and its parental inbreds. Of the DEPs, 53.4% (86/161) in dry seeds and 58% (127/219) in water-imbibed seeds exhibited a nonadditive pattern in the F1 hybrid as compared to parental inbreds. A total of 30 DEPs were categorized into different biological processes, most of which were related to metabolism and energy (34%), followed by storage proteins (27%), stress response (23%), transcription and translation (7%), cell cycle (3%), and hormone biosynthesis (3%). The transcript accumulation pattern of 8 selected genes corresponding to DEPs was examined using qRTPCR. Interestingly, LEA protein Rab28 showed higher accumulation in dry seeds at both protein and transcript levels, whereas indole3-acetaldehyde oxidase showed lower accumulation in water-imbibed seeds of the F1 hybrid than the female parent at the protein level. Thus, the DEPs particularly involved in metabolic and energy processes, as well as hormone biosynthesis in the F 1 hybrid, might be responsible for heterotic seed germination in the F1 hybrid. The DEPs identified in this study provide a scope for improving the seed germination trait of agricultural crops.
Collapse
Affiliation(s)
- Rajesh Kumar MEENA
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad
,
Gachibowli, Hyderabad, Telangana
,
India
| | - Durgeshwar PULLAIAHGARI
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad
,
Gachibowli, Hyderabad, Telangana
,
India
| | - Padmaja GUDIPALLI
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad
,
Gachibowli, Hyderabad, Telangana
,
India
| |
Collapse
|
16
|
Fiévet JB, Nidelet T, Dillmann C, de Vienne D. Heterosis Is a Systemic Property Emerging From Non-linear Genotype-Phenotype Relationships: Evidence From in Vitro Genetics and Computer Simulations. Front Genet 2018; 9:159. [PMID: 29868111 PMCID: PMC5968397 DOI: 10.3389/fgene.2018.00159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels. We chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP) relationship, and showed that heterosis can be easily created in the laboratory. First, we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content of "parental" tubes resulted in "hybrids," whose fluxes were compared to the parental fluxes. Frequent heterotic fluxes were observed, under conditions that were determined analytically and confirmed by computer simulation. Second, to test this model in a more realistic situation, we modeled the glycolysis/fermentation network in yeast by considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde. We simulated genetic variability by randomly drawing parental enzyme concentrations under various conditions, and computed the parental and hybrid fluxes using a system of differential equations. Again we found that a majority of hybrids exhibited positive heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity between certain enzyme concentrations and fluxes. In both approaches, heterosis was maximized when the parents were phenotypically close and when the distributions of parental enzyme concentrations were contrasted and constrained. These conclusions are not restricted to metabolic systems: they only depend on the concavity of the GP relationship, which is commonly observed at various levels of the phenotypic hierarchy, and could account for the pervasiveness of heterosis.
Collapse
Affiliation(s)
- Julie B Fiévet
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Thibault Nidelet
- Sciences Pour l'Œnologie, INRA, Université de Montpellier, Montpellier, France
| | - Christine Dillmann
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Dominique de Vienne
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Rockenbach MF, Corrêa CCG, Heringer AS, Freitas ILJ, Santa-Catarina C, do Amaral-Júnior AT, Silveira V. Differentially abundant proteins associated with heterosis in the primary roots of popcorn. PLoS One 2018; 13:e0197114. [PMID: 29758068 PMCID: PMC5951555 DOI: 10.1371/journal.pone.0197114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Although heterosis has significantly contributed to increases in worldwide crop production, the molecular mechanisms regulating this phenomenon are still unknown. In the present study, we used a comparative proteomic approach to explore hybrid vigor via the proteome of both the popcorn L54 ♀ and P8 ♂ genotypes and the resultant UENF/UEM01 hybrid cross. To analyze the differentially abundant proteins involved in heterosis, we used the primary roots of these genotypes to analyze growth parameters and extract proteins. The results of the growth parameter analysis showed that the mid- and best-parent heterosis were positive for root length and root dry matter but negative for root fresh matter, seedling fresh matter, and protein content. The comparative proteomic analysis identified 1343 proteins in the primary roots of hybrid UENF/UEM01 and its parental lines; 220 proteins were differentially regulated in terms of protein abundance. The mass spectrometry proteomic data are available via ProteomeXchange with identifier “PXD009436”. A total of 62 regulated proteins were classified as nonadditive, of which 53.2% were classified as high parent abundance (+), 17.8% as above-high parent abundance (+ +), 16.1% as below-low parent abundance (− −), and 12.9% as low parent abundance (-). A total of 22 biological processes were associated with nonadditive proteins; processes involving translation, ribosome biogenesis, and energy-related metabolism represented 45.2% of the nonadditive proteins. Our results suggest that heterosis in the popcorn hybrid UENF/UEM01 at an early stage of plant development is associated with an up-regulation of proteins related to synthesis and energy metabolism.
Collapse
Affiliation(s)
- Mathias F. Rockenbach
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Caio C. G. Corrêa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Angelo S. Heringer
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Ismael L. J. Freitas
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), UENF, Campos dos Goytacazes, RJ, Brazil
| | | | - Antônio T. do Amaral-Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), UENF, Campos dos Goytacazes, RJ, Brazil
- * E-mail: (VS); (ATAJ)
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
- * E-mail: (VS); (ATAJ)
| |
Collapse
|
18
|
Hu X, Wang H, Li K, Wu Y, Liu Z, Huang C. Genome-wide proteomic profiling reveals the role of dominance protein expression in heterosis in immature maize ears. Sci Rep 2017; 7:16130. [PMID: 29170427 PMCID: PMC5700959 DOI: 10.1038/s41598-017-15985-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023] Open
Abstract
Heterosis refers to the phenomenon in which hybrid progeny show superior performance relative to their parents. Early maize ear development shows strong heterosis in ear architecture traits and greatly affects grain yield. To explore the underlying molecular mechanisms, genome-wide proteomics of immature ears of maize hybrid ZD909 and its parents were analyzed using tandem mass tag (TMT) technology. A total of 9,713 proteins were identified in all three genotypes. Among them, 3,752 (38.6%) proteins were differentially expressed between ZD909 and its parents. Multiple modes of protein action were discovered in the hybrid, while dominance expression patterns accounted for 63.6% of the total differentially expressed proteins (DEPs). Protein pathway enrichment analysis revealed that high parent dominance proteins mainly participated in carbon metabolism and nitrogen assimilation processes. Our results suggested that the dominant expression of favorable alleles related to C/N metabolism in the hybrid may be essential for ZD909 ear growth and heterosis formation. Integrated analysis of proteomic and quantitative trait locus (QTL) data further support our DEP identification and provide useful information for the discovery of genes associated with ear development. Our study provides comprehensive insight into the molecular mechanisms underlying heterosis in immature maize ears from a proteomic perspective.
Collapse
Affiliation(s)
- Xiaojiao Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Hongwu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Kun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Yujin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Zhifang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China.
| | - Changling Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China.
| |
Collapse
|
19
|
The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize. PLoS One 2017; 12:e0176121. [PMID: 28419152 PMCID: PMC5395237 DOI: 10.1371/journal.pone.0176121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/05/2017] [Indexed: 12/02/2022] Open
Abstract
A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions.
Collapse
|
20
|
Srinivas L, Vellichirammal NN, Alex AM, Nair C, Nair IV, Banerjee M. Pro-inflammatory cytokines and their epistatic interactions in genetic susceptibility to schizophrenia. J Neuroinflammation 2016; 13:105. [PMID: 27177030 PMCID: PMC4866417 DOI: 10.1186/s12974-016-0569-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/05/2016] [Indexed: 11/22/2022] Open
Abstract
Background In schizophrenia, genetic background may provide a substrate for intrinsic maldevelopment of the brain through environmental influences, by recruiting neurotrophic factors and cytokines, to trigger the changes that lead to impaired neuronal functions. Cytokines being the key regulators of immune/inflammatory reactions are also known to influence the dopaminergic, noradrenergic, and serotonergic neurotransmission. Therefore, functional polymorphisms in cytokine genes may result in imbalances in the pro- and anti-inflammatory cytokine production. Methods We screened polymorphisms in pro- and anti-inflammatory cytokine genes using a case-control association study in a South Indian population. The role of allele, genotype, haplotype, and diplotypes of these cytokine genes and their epistatic interactions were assessed in contributing to the risk of developing schizophrenia. Meta-analysis for the reported associations was also monitored for global significance. Results The pro-inflammatory cytokine gene polymorphisms in IL1Ars1800587, IL6rs1800796, TNFArs361525, and IFNGrs2069718 were associated with schizophrenia. The study also provides significant evidence for strong epistatic interactions among pro-inflammatory cytokine genes IL6 and IFNG in the development of schizophrenia. In silico analysis suggested that associated risk variants were indicative of altered transcriptional activity with higher production of IL1α, IL-6, TNF-α, and IFN-ɤ cytokines. Meta-analysis indicated heterogeneity among study population while IL1Ars1800587 was found to be globally significant. Conclusions It is important to identify the nature of inflammatory response that can be amplified by the environment, to influence either Th1 response or Th2 response. The associated functional variants in the study are involved with increased expression resulting in higher production of the pro-inflammatory cytokines IL-1α, IL-6, TNF-α, and IFN-γ. The interaction of immunological stressors with these high producer alleles of pro-inflammatory cytokines may suggest that even a lower threshold may be sufficient to induce a resultant chronic effect on the psycho-social and environmental stressors that may result in the development and pathogenesis of schizophrenia. Understanding environmental factors that influence the expression of these pro-inflammatory cytokine genes or their interaction can possibly help in dissecting the phenotypic variation and therapeutic response to antipsychotics in schizophrenia. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0569-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lekshmy Srinivas
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695 014, India
| | - Neetha N Vellichirammal
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695 014, India
| | - Ann Mary Alex
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695 014, India
| | | | - Indu V Nair
- Mental Health Centre, Trivandrum, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695 014, India.
| |
Collapse
|