1
|
Taghavi Shahraki B, Khajehpour M. Understanding Ion-specific "Hofmeister" Effects in Enzyme Catalysis through using RNase A as a Paradigm Model. Chemphyschem 2025; 26:e202400820. [PMID: 39581865 DOI: 10.1002/cphc.202400820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Biophysical studies in the last two decades have clearly demonstrated that salts affect biomolecules in an ion-specific manner (i. e., Hofmeister Effects). Studies performed upon such diverse biological processes such as protein folding, protein precipitation, protein coacervation and phase separation, and protein oligomerization, have all shown that this ion specificity is directly related to how individual ions interact with biomolecular surfaces. Interestingly, although ion-specific effects upon enzyme catalytic processes are well-known in the literature, a molecular level description of these effects has not yet been made available. For example, it is not clear whether ion-specific effects observed in enzyme catalysis are directly related to how ions modulate the enzyme's folding free energy, or not. This work attempts to address this need by investigating ion-specific effects upon the enzymatic activity and folding free energy of a well-characterized enzyme system, Ribonuclease A (RNase A). To this end we have developed a robust framework to analyze and quantify ion-specific effects upon the RNase A catalyzed phosphate ring opening reaction of cCMP (Cytidine 2':3'-cyclic monophosphate monosodium salt). Our studies show that both the folding thermodynamics and the Michaelis-Menten kinetic parameters of this enzyme show ion-specific salt dependence. However, even through salt addition affects the folding free energy and enzyme catalysis of RNase A in an ion-specific manner, these effects are not necessarily directly related to each other. Ion-specific effects observed in protein folding reflects mostly how an individual ion interacts with the overall protein surface; while alternatively, ion-specific effects on enzyme activity indicate how a given ion interacts with the enzyme active site surface or alternatively, how ions interact with the substrate molecule as represented by changes in the substrate thermodynamic activity coefficient.
Collapse
Affiliation(s)
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
2
|
Malicka W, Dai Y, Herrmann A, Haag R, Ballauff M, Pigaleva M, Risse T, Lauster D, Asakereh I, Khajehpour M. Measuring the Thermal Unfolding of Lysozyme: A Critical Comparison of Differential Scanning Fluorimetry and Differential Scanning Calorimetry. ChemistryOpen 2025:e202400340. [PMID: 39935040 DOI: 10.1002/open.202400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/04/2025] [Indexed: 02/13/2025] Open
Abstract
The thermal unfolding of lysozyme in aqueous solution has been analyzed by (nano) differential scanning fluorimetry (nanoDSF) and differential scanning calorimetry (DSC). In addition, dynamic light scattering (DLS) acquired in parallel to the DSF measurements, was used to confirm that the change in hydrodynamic radius upon unfolding is rather small (RH,f =1.75 nm in the folded state; and RH,u=1.91 nm in the unfolded state). NanoDSF measurements were evaluated to characterize the folding/unfolding transition within the classical two-state folding model. The temperature of unfolding (Tm) is found to be the most robust quantity. The unfolding enthalpyΔ H u ${{\rm \Delta }{H}_{u}}$ and the change of specific heat were also obtained and errors in the range of 5-10 % and 30-50 % were determined, respectively. A comparison of thermodynamic parameters from nanoDSF and DSC measurements provides evidence for an increasing unfolding enthalpyΔ H u ${{\rm \Delta }{H}_{u}}$ with protein concentration. A comparison with data from literature suggests that a weak association in the folded state can lead to the observed change of the unfolding enthalpy. For Δcp significantly higher values is deduced from the analysis of temperature dependent nanoDSF measurements (10 kJ/(K mol)) as compare to DSC (3-5 kJ/(K mol)).
Collapse
Affiliation(s)
- Weronika Malicka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Yueyue Dai
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Andreas Herrmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Matthias Ballauff
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Marina Pigaleva
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Thomas Risse
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniel Lauster
- Institut für Pharmazie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Iman Asakereh
- University of Manitoba, Winnipeg, Manitoba R3T 2 N2, Canada
| | | |
Collapse
|
3
|
Polańska O, Szulc N, Stottko R, Olek M, Nadwodna J, Gąsior-Głogowska M, Szefczyk M. Challenges in Peptide Solubilization - Amyloids Case Study. CHEM REC 2024; 24:e202400053. [PMID: 39023378 DOI: 10.1002/tcr.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Peptide science has been a rapidly growing research field because of the enormous potential application of these biocompatible and bioactive molecules. However, many factors limit the widespread use of peptides in medicine, and low solubility is among the most common problems that hamper drug development in the early stages of research. Solubility is a crucial, albeit poorly understood, feature that determines peptide behavior. Several different solubility predictors have been proposed, and many strategies and protocols have been reported to dissolve peptides, but none of them is a one-size-fits-all method for solubilization of even the same peptide. In this review, we look for the reasons behind the difficulties in dissolving peptides, analyze the factors influencing peptide aggregation, conduct a critical analysis of solubilization strategies and protocols available in the literature, and give some tips on how to deal with the so-called difficult sequences. We focus on amyloids, which are particularly difficult to dissolve and handle such as amyloid beta (Aβ), insulin, and phenol-soluble modulins (PSMs).
Collapse
Affiliation(s)
- Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Natalia Szulc
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Rafał Stottko
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdanska 7/9, 50-344, Wrocław, Poland
| | - Mateusz Olek
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Traugutta 2, 41-800 Zabrze, Poland
| | - Julita Nadwodna
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
4
|
Hribar-Lee B, Lukšič M. Biophysical Principles Emerging from Experiments on Protein-Protein Association and Aggregation. Annu Rev Biophys 2024; 53:1-18. [PMID: 37906740 DOI: 10.1146/annurev-biophys-030722-111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Protein-protein association and aggregation are fundamental processes that play critical roles in various biological phenomena, from cellular signaling to disease progression. Understanding the underlying biophysical principles governing these processes is crucial for elucidating their mechanisms and developing strategies for therapeutic intervention. In this review, we provide an overview of recent experimental studies focused on protein-protein association and aggregation. We explore the key biophysical factors that influence these processes, including protein structure, conformational dynamics, and intermolecular interactions. We discuss the effects of environmental conditions such as temperature, pH and related buffer-specific effects, and ionic strength and related ion-specific effects on protein aggregation. The effects of polymer crowders and sugars are also addressed. We list the techniques used to study aggregation. We analyze emerging trends and challenges in the field, including the development of computational models and the integration of multidisciplinary approaches for a comprehensive understanding of protein-protein association and aggregation.
Collapse
Affiliation(s)
- Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia;
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia;
| |
Collapse
|
5
|
Jordan J, Gibb CL, Tran T, Yao W, Rose A, Mague JT, Easson MW, Gibb BC. Anion Binding to Ammonium and Guanidinium Hosts: Implications for the Reverse Hofmeister Effects Induced by Lysine and Arginine Residues. J Org Chem 2024; 89:6877-6891. [PMID: 38662908 PMCID: PMC11110012 DOI: 10.1021/acs.joc.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.
Collapse
Affiliation(s)
- Jacobs
H. Jordan
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Corinne L.D. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Thien Tran
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Austin Rose
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Michael W. Easson
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
6
|
Paul B, Furst EM, Lenhoff AM, Wagner NJ, Teixeira SCM. Combined Effects of Pressure and Ionic Strength on Protein-Protein Interactions: An Empirical Approach. Biomacromolecules 2024; 25:338-348. [PMID: 38117685 PMCID: PMC11650695 DOI: 10.1021/acs.biomac.3c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Proteins are exposed to hydrostatic pressure (HP) in a variety of ecosystems as well as in processing steps such as freeze-thaw, cell disruption, sterilization, and homogenization, yet pressure effects on protein-protein interactions (PPIs) remain underexplored. With the goal of contributing toward the expanded use of HP as a fundamental control parameter in protein research, processing, and engineering, small-angle X-ray scattering was used to examine the effects of HP and ionic strength on ovalbumin, a model protein. Based on an extensive data set, we develop an empirical method for scaling PPIs to a master curve by combining HP and osmotic effects. We define an effective pressure parameter that has been shown to successfully apply to other model protein data available in the literature, with deviations evident for proteins that do not follow the apparent Hofmeister series. The limitations of the empirical scaling are discussed in the context of the hypothesized underlying mechanisms.
Collapse
Affiliation(s)
- Brian Paul
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Eric M. Furst
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Abraham M. Lenhoff
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Norman J. Wagner
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Susana C. M. Teixeira
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, United States
| |
Collapse
|
7
|
Džupponová V, Tomášková N, Antošová A, Sedlák E, Žoldák G. Salt-Specific Suppression of the Cold Denaturation of Thermophilic Multidomain Initiation Factor 2. Int J Mol Sci 2023; 24:ijms24076787. [PMID: 37047761 PMCID: PMC10094840 DOI: 10.3390/ijms24076787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Thermophilic proteins and enzymes are attractive for use in industrial applications due to their resistance against heat and denaturants. Here, we report on a thermophilic protein that is stable at high temperatures (Ttrs, hot 67 °C) but undergoes significant unfolding at room temperature due to cold denaturation. Little is known about the cold denaturation of thermophilic proteins, although it can significantly limit their applications. We investigated the cold denaturation of thermophilic multidomain protein translation initiation factor 2 (IF2) from Thermus thermophilus. IF2 is a GTPase that binds to ribosomal subunits and initiator fMet-tRNAfMet during the initiation of protein biosynthesis. In the presence of 9 M urea, measurements in the far-UV region by circular dichroism were used to capture details about the secondary structure of full-length IF2 protein and its domains during cold and hot denaturation. Cold denaturation can be suppressed by salt, depending on the type, due to the decreased heat capacity. Thermodynamic analysis and mathematical modeling of the denaturation process showed that salts reduce the cooperativity of denaturation of the IF2 domains, which might be associated with the high frustration between domains. This characteristic of high interdomain frustration may be the key to satisfying numerous diverse contacts with ribosomal subunits, translation factors, and tRNA.
Collapse
Affiliation(s)
- Veronika Džupponová
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenna 5, 04001 Košice, Slovakia
| | - Nataša Tomášková
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04001 Košice, Slovakia
| | - Andrea Antošová
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Erik Sedlák
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04001 Košice, Slovakia
- Center for Interdisciplinary Biosciences, Technology and Innovation Park P.J. Šafárik University, Trieda SNP 1, 04011 Košice, Slovakia
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park P.J. Šafárik University, Trieda SNP 1, 04011 Košice, Slovakia
- Center for Interdisciplinary Biosciences, Cassovia New Industry Cluster, Trieda SNP 1, 04011 Košice, Slovakia
| |
Collapse
|
8
|
Tomioka Y, Sato R, Takahashi R, Nagatoishi S, Shiba K, Tsumoto K, Arakawa T, Akuta T. Agarose native gel electrophoresis analysis of thermal aggregation controlled by Hofmeister series. Biophys Chem 2023; 296:106977. [PMID: 36857888 DOI: 10.1016/j.bpc.2023.106977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
The effects of salting-in and salting-out salts defined by Hofmeister series on the solution state of bovine serum albumin (BSA) in 50 mM Tris-HCl buffer at pH 7.4 before and after thermal unfolding at 80 °C for 5 min were examined using agarose native gel electrophoresis and mass photometry. Gel electrophoresis showed that salting-in MgCl2, CaCl2 and NaSCN resulted in formation of intermediate structures of BSA upon heating on native gel, while heating in buffer alone resulted in aggregated bands. Mass photometry showed large loss of monomer and oligomers when heated in this buffer, but retaining these structures in the presence of 1 M MgCl2 and NaSCN. To our surprise, salting-out MgSO4 also showed a similar effect on gel electrophoresis and mass photometry. Salting-out NaCl and (NH4)2SO4 resulted in smearing and aggregated bands, which were supported by mass photometry. Aggregation-suppressive ArgHCl also showed oligomer aggregates upon gel electrophoresis and mass photometry.
Collapse
Affiliation(s)
- Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Ryo Sato
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Ryo Takahashi
- Refeyn Japan, K.K., 1-1-14, Sakuraguchi-cho, Nada-ku, Kobe, Hyogo 6570036, Japan.
| | - Satoru Nagatoishi
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Kohei Shiba
- Refeyn Japan, K.K., 1-1-14, Sakuraguchi-cho, Nada-ku, Kobe, Hyogo 6570036, Japan.
| | - Kouhei Tsumoto
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA 92130, USA.
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| |
Collapse
|
9
|
Dušeková E, Garajová K, Yavaşer R, Tomková M, Sedláková D, Dzurillová V, Kulik N, Fadaei F, Shaposhnikova A, Minofar B, Sedlák E. Modulation of global stability, ligand binding and catalytic properties of trypsin by anions. Biophys Chem 2022; 288:106856. [PMID: 35872468 DOI: 10.1016/j.bpc.2022.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Specific salts effect is well-known on stability and solubility of proteins, however, relatively limited knowledge is known regarding the effect on catalytic properties of enzymes. Here, we examined the effect of four sodium anions on thermal stability and catalytic properties of trypsin and binding of the fluorescent probe, p-aminobenzamidine (PAB), to the enzyme. We show that the specific anions effect on trypsin properties agrees with the localization of the anions in the Hofmeister series. Thermal stability of trypsin, Tm, the affinity of the fluorescent probe to the binding site, Kd, and the rate constant, kcat, of trypsin-catalyzed hydrolysis of the substrate N-benzoyl-L-arginine ethyl ester (BAEE) increase with increasing kosmotropic character of anions in the order: perchlorate<bromide<chloride<sulfate, while the value of Michaelis constant, KM, decreases. Correlations between the values of Tm, Kd for PAB, kcat, and KM for BAEE in the presence of 1 M studied salts suggest interrelation among these parameters of the enzyme. Global stabilization as well as increased rigidity of trypsin is accompanied by strengthening of interaction with fluorescent probe PAB and in accordance with decreasing values of KM for the substrate BAEE. Strong correlations between parameters characterizing the trypsin properties with the charge densities of anions clearly indicate direct electrostatic interaction as a basis of the specific anion effect on the conformational and functional properties of the enzyme.
Collapse
Affiliation(s)
- Eva Dušeková
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Katarína Garajová
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia
| | - Rukiye Yavaşer
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia; Chemistry Department, Faculty of Arts and Science, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Mária Tomková
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Veronika Dzurillová
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Natalia Kulik
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic
| | - Fatemeh Fadaei
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic; Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333 Nové Hrady, Czech Republic
| | - Anastasiia Shaposhnikova
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic; Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333 Nové Hrady, Czech Republic
| | - Babak Minofar
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333 Nové Hrady, Czech Republic.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia.
| |
Collapse
|
10
|
Gregory KP, Elliott GR, Robertson H, Kumar A, Wanless EJ, Webber GB, Craig VSJ, Andersson GG, Page AJ. Understanding specific ion effects and the Hofmeister series. Phys Chem Chem Phys 2022; 24:12682-12718. [PMID: 35543205 DOI: 10.1039/d2cp00847e] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Specific ion effects (SIE), encompassing the Hofmeister Series, have been known for more than 130 years since Hofmeister and Lewith's foundational work. SIEs are ubiquitous and are observed across the medical, biological, chemical and industrial sciences. Nevertheless, no general predictive theory has yet been able to explain ion specificity across these fields; it remains impossible to predict when, how, and to what magnitude, a SIE will be observed. In part, this is due to the complexity of real systems in which ions, counterions, solvents and cosolutes all play varying roles, which give rise to anomalies and reversals in anticipated SIEs. Herein we review the historical explanations for SIE in water and the key ion properties that have been attributed to them. Systems where the Hofmeister series is perturbed or reversed are explored, as is the behaviour of ions at the liquid-vapour interface. We discuss SIEs in mixed electrolytes, nonaqueous solvents, and in highly concentrated electrolyte solutions - exciting frontiers in this field with particular relevance to biological and electrochemical applications. We conclude the perspective by summarising the challenges and opportunities facing this SIE research that highlight potential pathways towards a general predictive theory of SIE.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia. .,Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gareth R Elliott
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Hayden Robertson
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Grant B Webber
- School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
11
|
Khorshidian N, Khanniri E, Koushki MR, Sohrabvandi S, Yousefi M. An Overview of Antimicrobial Activity of Lysozyme and Its Functionality in Cheese. Front Nutr 2022; 9:833618. [PMID: 35356735 PMCID: PMC8959614 DOI: 10.3389/fnut.2022.833618] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
Due to the concern of consumers about the presence of synthetic preservatives, researchers and food manufacturers have recently conducted extensive research on the limited use of these preservatives and the introduction and use of natural preservatives, such as herbal extracts and essential oils, bacteriocins, and antimicrobial enzymes. Lysozyme is a natural enzyme with antimicrobial activity that has attracted considerable attention to be potentially utilized in various industries. Since lysozyme is an intrinsic component of the human immune system and has low toxicity; it could be considered as a natural antimicrobial agent for use in food and pharmaceutical industries. Lysozyme exerts antimicrobial activity against microorganisms, especially Gram-positive bacteria, by hydrolyzing 1,4-beta-linkages between N-acetylmuramic acid and N-acetylglucosamine in the cell wall. In addition, increased antimicrobial activity of lysozyme against Gram-negative bacteria could be achieved by the modification of lysozyme through physical or chemical interactions. Lysozyme is presented as a natural preservative in mammalian milk and can be utilized as a bio-preservative in dairy products, such as cheese. Both bacteria and fungi can contaminate and spoil the cheese; especially the one that is made traditionally by raw milk. Furthermore, uncontrolled and improper processes and post-pasteurization contamination can participate in the cheese contamination. Therefore, besides common preservative strategies applied in cheese production, lysozyme could be utilized alone or in combination with other preservative strategies to improve the safety of cheese. Hence, this study aimed to review the antimicrobial properties of lysozyme as natural antimicrobial enzyme and its functionality in cheese.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Koushki
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
12
|
Enhanced activity and stability of protein-glutaminase by Hofmeister effects. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Gregory KP, Wanless EJ, Webber GB, Craig VSJ, Page AJ. The electrostatic origins of specific ion effects: quantifying the Hofmeister series for anions. Chem Sci 2021; 12:15007-15015. [PMID: 34976339 PMCID: PMC8612401 DOI: 10.1039/d1sc03568a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Life as we know it is dependent upon water, or more specifically salty water. Without dissolved ions, the interactions between biological molecules are insufficiently complex to support life. This complexity is intimately tied to the variation in properties induced by the presence of different ions. These specific ion effects, widely known as Hofmeister effects, have been known for more than 100 years. They are ubiquitous throughout the chemical, biological and physical sciences. The origin of these effects and their relative strengths is still hotly debated. Here we reconsider the origins of specific ion effects through the lens of Coulomb interactions and establish a foundation for anion effects in aqueous and non-aqueous environments. We show that, for anions, the Hofmeister series can be explained and quantified by consideration of site-specific electrostatic interactions. This can simply be approximated by the radial charge density of the anion, which we have calculated for commonly reported ions. This broadly quantifies previously unpredictable specific ion effects, including those known to influence solution properties, virus activities and reaction rates. Furthermore, in non-aqueous solvents, the relative magnitude of the anion series is dependent on the Lewis acidity of the solvent, as measured by the Gutmann Acceptor Number. Analogous SIEs for cations bear limited correlation with their radial charge density, highlighting a fundamental asymmetry in the origins of specific ion effects for anions and cations, due to competing non-Coulombic phenomena.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Grant B Webber
- School of Engineering, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics, Australian National University Canberra ACT 0200 Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| |
Collapse
|
14
|
Ribeiro SS, Castro TG, Gomes CM, Marcos JC. Hofmeister effects on protein stability are dependent on the nature of the unfolded state. Phys Chem Chem Phys 2021; 23:25210-25225. [PMID: 34730580 DOI: 10.1039/d1cp02477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interpretation of a salt's effect on protein stability traditionally discriminates low concentration regimes (<0.3 M), dominated by electrostatic forces, and high concentration regimes, generally described by ion-specific Hofmeister effects. However, increased theoretical and experimental studies have highlighted observations of the Hofmeister phenomena at concentration ranges as low as 0.001 M. Reasonable quantitative predictions of such observations have been successfully achieved throughout the inclusion of ion dispersion forces in classical electrostatic theories. This molecular description is also on the basis of quantitative estimates obtained resorting to surface/bulk solvent partition models developed for ion-specific Hofmeister effects. However, the latter are limited by the availability of reliable structures representative of the unfolded state. Here, we use myoglobin as a model to explore how ion-dependency on the nature of the unfolded state affects protein stability, combining spectroscopic techniques with molecular dynamic simulations. To this end, the thermal and chemical stability of myoglobin was assessed in the presence of three different salts (NaCl, (NH4)2SO4 and Na2SO4), at physiologically relevant concentrations (0-0.3 M). We observed mild destabilization of the native state induced by each ion, attributed to unfavorable neutralization and hydrogen-bonding with the protein side-chains. Both effects, combined with binding of Na+, Cl- and SO42- to the thermally unfolded state, resulted in an overall destabilization of the protein. Contrastingly, ion binding was hindered in the chemically unfolded conformation, due to occupation of the binding sites by urea molecules. Such mechanistic action led to a lower degree of destabilization, promoting surface tension effects that stabilized myoglobin according to the Hofmeister series. Therefore, we demonstrate that Hofmeister effects on protein stability are modulated by the heterogeneous physico-chemical nature of the unfolded state. Altogether, our findings evidence the need to characterize the structure of the unfolded state when attempting to dissect the molecular mechanisms underlying the effects of salts on protein stability.
Collapse
Affiliation(s)
- Sara S Ribeiro
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências and Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João C Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
15
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
16
|
Sedlák E, Žár T, Varhač R, Musatov A, Tomášková N. Anion-Specific Effects on the Alkaline State of Cytochrome c. BIOCHEMISTRY (MOSCOW) 2021; 86:59-73. [PMID: 33705282 DOI: 10.1134/s0006297921010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Specific effects of anions on the structure, thermal stability, and peroxidase activity of native (state III) and alkaline (state IV) cytochrome c (cyt c) have been studied by the UV-VIS absorbance spectroscopy, intrinsic tryptophan fluorescence, and circular dichroism. Thermal and isothermal denaturation monitored by the tryptophan fluorescence and circular dichroism, respectively, implied lower stability of cyt c state IV in comparison with the state III. The pKa value of alkaline isomerization of cyt c depended on the present salts, i.e., kosmotropic anions increased and chaotropic anions decreased pKa (Hofmeister effect on protein stability). The peroxidase activity of cyt c in the state III, measured by oxidation of guaiacol, showed clear dependence on the salt position in the Hofmeister series, while cyt c in the alkaline state lacked the peroxidase activity regardless of the type of anions present in the solution. The alkaline isomerization of cyt c in the presence of 8 M urea, measured by Trp59 fluorescence, implied an existence of a high-affinity non-native ligand for the heme iron even in a partially denatured protein conformation. The conformation of the cyt c alkaline state in 8 M urea was considerably modulated by the specific effect of anions. Based on the Trp59 fluorescence quenching upon titration to alkaline pH in 8 M urea and molecular dynamics simulation, we hypothesize that the Lys79 conformer is most likely the predominant alkaline conformer of cyt c. The high affinity of the sixth ligand for the heme iron is likely a reason of the lack of peroxidase activity of cyt c in the alkaline state.
Collapse
Affiliation(s)
- Erik Sedlák
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Košice, 04154, Slovakia. .,Centre for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Košice, 04154, Slovakia
| | - Tibor Žár
- Centre for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Košice, 04154, Slovakia.
| | - Rastislav Varhač
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Košice, 04154, Slovakia.
| | - Andrej Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, 040 01, Slovakia.
| | - Nataša Tomášková
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Košice, 04154, Slovakia.
| |
Collapse
|
17
|
Mao Y, Fan R, Li R, Ye X, Kulozik U. Flow-through enzymatic reactors using polymer monoliths: From motivation to application. Electrophoresis 2020; 42:2599-2614. [PMID: 33314167 DOI: 10.1002/elps.202000266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/01/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022]
Abstract
The application of monolithic materials as carriers for enzymes has rapidly expanded to the realization of flow-through analysis and bioconversion processes. This expansion is partly attributed to the absence from diffusion limitation in many monoliths-based enzyme reactors. Particularly, the relatively ease of introducing functional groups renders polymer monoliths attractive as enzyme carriers. After summarizing the motivation to develop enzymatic reactors using polymer monoliths, this review reports the most recent applications of such reactors. Besides, the present review focuses on the crucial characteristics of polymer monoliths affecting the immobilization of enzymes and the processing parameters dictating the performance of the resulting enzymatic reactors. This review is intended to provide a guideline for designing and applying flow-through enzymatic reactors using polymer monoliths.
Collapse
Affiliation(s)
- Yuhong Mao
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Renkuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
18
|
Garajová K, Sedláková D, Berta M, Gazova Z, Sedlák E. Destabilization effect of imidazolium cation-Hofmeister anion salts on cytochrome c. Int J Biol Macromol 2020; 164:3808-3813. [DOI: 10.1016/j.ijbiomac.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023]
|
19
|
Collu M, Carucci C, Salis A. Specific Anion Effects on Lipase Adsorption and Enzymatic Synthesis of Biodiesel in Nonaqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9465-9471. [PMID: 32640792 DOI: 10.1021/acs.langmuir.0c01330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pseudomonas fluorescens lipase (Pfl) was adsorbed on macroporous polypropylene to obtain a heterogeneous biocatalyst. The effect of NaCl concentration and of different 100 mm sodium salts on the Pfl loading and catalytic performance toward biodiesel synthesis via the solvent-free methanolysis of triglycerides was studied. Although lipase adsorption onto polypropylene is governed by hydrophobic interactions, both salt concentration and anion type affect lipase loading. Protein loading decreased along the series: Cl- > SO42- ≈ no salt > Br- > I- > SCN- > F- > AcO-. This nonmonotonic ion-specific trend can be the result of opposite mechanisms occurring during the adsorption step. A similar trend is observed also for triglyceride conversion and biodiesel yield. It is likely that ions affect the microenvironment of the adsorbed lipase by interacting specifically with the hydration water and polypeptide chains, thus affecting enzyme catalysis.
Collapse
Affiliation(s)
- Michela Collu
- Department of Chemical and Geological Sciences, University of Cagliari-CSGI and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari-CSGI and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari-CSGI and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| |
Collapse
|
20
|
Rana S, Kherb J. Validation of specific cation partitioning to molecular surfaces using fluorescent carbon quantum dots. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Canepa J, Torgerson J, Kim DK, Lindahl E, Takahashi R, Whitelock K, Heying M, Wilkinson SP. Characterizing osmolyte chemical class hierarchies and functional group requirements for thermal stabilization of proteins. Biophys Chem 2020; 264:106410. [PMID: 32574923 DOI: 10.1016/j.bpc.2020.106410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/20/2022]
Abstract
Osmolytes are naturally occurring organic compounds that protect cellular proteins and other macromolecules against various forms of stress including temperature extremes. While biological studies have correlated the accumulation of certain classes of osmolytes with specific forms of stress, including thermal stress, it remains unclear whether or not these observations reflect an intrinsic chemical class hierarchy amongst the osmolytes with respect to effects on protein stability. In addition, very little is known in regards to the molecular elements of the osmolytes themselves that are essential for their functions. In this study, we use differential scanning fluorimetry to quantify the thermal stabilizing effects of members from each of the three main classes of protecting osmolytes on two model protein systems, C-reactive protein and tumor necrosis factor alpha. Our data reveals the absence of a strict chemical class hierarchy amongst the osmolytes with respect to protein thermal stabilization, and indicates differential responses of these proteins to certain osmolytes. In the second part of this investigation we dissected the molecular elements of amino acid osmolytes required for thermal stabilization of myoglobin and C-reactive protein. We show that the complete amino acid zwitterion is required for thermal stabilization of myoglobin, whereas removal of the osmolyte amino group does not diminish stabilizing effects on C-reactive protein. These disparate responses of proteins to osmolytes and other small molecules are consistent with previous observations that osmolyte effects on protein stability are protein-specific. Moreover, the data reported in this study support the view that osmolyte effects cannot be fully explained by considering only the solvent accessibility of the polypeptide backbone in the native and denatured states, and corroborate the need for more complex models that take into account the entire protein fabric.
Collapse
Affiliation(s)
- J Canepa
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - J Torgerson
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - D K Kim
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - E Lindahl
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - R Takahashi
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - K Whitelock
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - M Heying
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - S P Wilkinson
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA.
| |
Collapse
|
22
|
The roles and applications of chaotropes and kosmotropes in industrial fermentation processes. World J Microbiol Biotechnol 2020; 36:89. [PMID: 32507915 DOI: 10.1007/s11274-020-02865-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Chaotropicity has long been recognised as a property of some compounds. Chaotropes tend to disrupt non-covalent interactions in biological macromolecules (e.g. proteins and nucleic acids) and supramolecular assemblies (e.g. phospholipid membranes). This results in the destabilisation and unfolding of these macromolecules and assemblies. Unsurprisingly, these compounds are typically harmful to living cells since they act against multiple targets, comprising cellular integrity and function. Kosmotropes are the opposite of chaotropes and these compounds promote the ordering and rigidification of biological macromolecules and assemblies. Since many biological macromolecules have optimum levels of flexibility, kosmotropes can also inhibit their activity and can be harmful to cells. Some products of industrial fermentations, most notably alcohols, are chaotropic. This property can be a limiting factor on rates of production and yields. It has been hypothesised that the addition of kosmotropes may mitigate the chaotropicity of some fermentation products. Some microbes naturally adapt to chaotropic environments by producing kosmotropic compatible solutes. Exploitation of this in industrial fermentations has been hampered by scientific and economic issues. The cost of the kosmotropes and their removal during purification needs to be considered. We lack a complete understanding of the chemistry of chaotropicity and a robust, quantitative framework for estimating overall chaotropicities of mixtures. This makes it difficult to predict the amount of kosmotrope required to neutralise the chaotropicity. This review considers examples of industrial fermentations where chaotropicity is an issue and suggests possible mitigations.
Collapse
|
23
|
Sedlák E, Sedláková D, Marek J, Hančár J, Garajová K, Žoldák G. Ion-Specific Protein/Water Interface Determines the Hofmeister Effect on the Kinetic Stability of Glucose Oxidase. J Phys Chem B 2019; 123:7965-7973. [DOI: 10.1021/acs.jpcb.9b05195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park P.J. Šafárik University, Jesenna 5, 041 54 Košice, Slovakia
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04001 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Jozef Marek
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Jozef Hančár
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04001 Košice, Slovakia
| | - Katarína Garajová
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04001 Košice, Slovakia
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park P.J. Šafárik University, Jesenna 5, 041 54 Košice, Slovakia
| |
Collapse
|
24
|
Dmitrieva MV, Gerasimova EV, Terent’ev AA, Dobrovol’skii YA, Zolotukhina EV. Electrochemical Peculiarities of Mediator-Assisted Bioelectrocatalytic Oxidation of Glucose by a New Type of Bioelectrocatalyst. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519090064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Konar M, Sahoo H. Phosphate and sulphate-mediated structure and stability of bone morphogenetic protein - 2 (BMP - 2): A spectroscopy enabled investigation. Int J Biol Macromol 2019; 135:1123-1133. [DOI: 10.1016/j.ijbiomac.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/20/2023]
|
26
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
27
|
|
28
|
Brudar S, Hribar-Lee B. The Role of Buffers in Wild-Type HEWL Amyloid Fibril Formation Mechanism. Biomolecules 2019; 9:E65. [PMID: 30769878 PMCID: PMC6406783 DOI: 10.3390/biom9020065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
Amyloid fibrils, highly ordered protein aggregates, play an important role in the onset of several neurological disorders. Many studies have assessed amyloid fibril formation under specific solution conditions, but they all lack an important phenomena in biological solutions-buffer specific effects. We have focused on the formation of hen egg-white lysozyme (HEWL) fibrils in aqueous solutions of different buffers in both acidic and basic pH range. By means of UV-Vis spectroscopy, fluorescence measurements and CD spectroscopy, we have managed to show that fibrillization of HEWL is affected by buffer identity (glycine, TRIS, phosphate, KCl-HCl, cacodylate, HEPES, acetate), solution pH, sample incubation (agitated vs. static) and added excipients (NaCl and PEG). HEWL only forms amyloid fibrils at pH = 2.0 under agitated conditions in glycine and KCl-HCl buffers of high enough ionic strength. Phosphate buffer on the other hand stabilizes the HEWL molecules. Similar stabilization effect was achieved by addition of PEG12000 molecules to the solution.
Collapse
Affiliation(s)
- Sandi Brudar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
29
|
Francisco OA, Clark CJ, Glor HM, Khajehpour M. Do soft anions promote protein denaturation through binding interactions? A case study using ribonuclease A. RSC Adv 2019; 9:3416-3428. [PMID: 35518962 PMCID: PMC9060304 DOI: 10.1039/c8ra10303h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/20/2019] [Indexed: 11/21/2022] Open
Abstract
It has long been known that large soft anions like bromide, iodide and thiocyanate are protein denaturing agents, but their mechanism of action is still unclear. In this work we have investigated the protein denaturing properties of these anions using Ribonuclease A (RNase A) as a model protein system. Salt-induced perturbations to the protein folding free energy were determined using differential scanning calorimetry and the results demonstrate that the addition of sodium iodide and sodium thiocyanate significantly decreases the melting temperature of the protein. In order to account for this reduction in protein stability, we show that the introduction of salts that contain soft anions to the aqueous solvent perturbs the protein unfolding free energy through three mechanisms: (a) screening Coulomb interactions that exist between charged protein residues, (b) Hofmeister effects, and (c) specific anion binding to CH and CH2 moieties in the protein polypeptide backbone. Using the micellization of 1,2-hexanediol as a ruler for hydrophobicity, we have devised a practical methodology that separates the Coulomb and Hofmeister contributions of salts to the protein unfolding free energy. This allowing us to isolate the contribution of soft anion binding interactions to the unfolding process. The analysis shows that binding contributions have the largest magnitude, confirming that it is the binding of soft anions to the polypeptide backbone that is the main promoter of protein unfolding.
Collapse
Affiliation(s)
| | | | - Hayden M Glor
- Department of Chemistry, University of Manitoba Canada
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba Canada
- University of Manitoba 468 Parker Bldg. Winnipeg Manitoba R3T2N2 Canada +1-204-2721546
| |
Collapse
|
30
|
Dušeková E, Garajová K, Yavaşer R, Varhač R, Sedlák E. Hofmeister effect on catalytic properties of chymotrypsin is substrate-dependent. Biophys Chem 2018; 243:8-16. [DOI: 10.1016/j.bpc.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022]
|
31
|
Effects of lyotropic anions on thermodynamic stability and dynamics of horse cytochrome c. Biophys Chem 2018; 240:88-97. [DOI: 10.1016/j.bpc.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 11/19/2022]
|