1
|
Tammara V, Doke AA, Jha SK, Das A. Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain. ACS Chem Neurosci 2024; 15:4305-4321. [PMID: 39548975 DOI: 10.1021/acschemneuro.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024] Open
Abstract
The aberrant aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) state-independent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the N-terminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo- and cross-domain interfaces. In our work, the ill-known C-terminal domain appears as the most crucial structure-dictating domain, which preferably populates a compact conformation with a high β-sheet propensity in its isolated state stabilized by intrabackbone hydrogen bonds, and these signatures are comparatively faded in its integrated form. Validation of our simulated observables by a complementary spectroscopic approach on multiple counts ensures the robustness of the computationally predicted features of the TDP-43 aggregation landscape.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Zeng J, Tang Y, Dong X, Li F, Wei G. Influence of ALS-linked M337V mutation on the conformational ensembles of TDP-43 321-340 peptide monomer and dimer. Proteins 2024; 92:1059-1069. [PMID: 36841957 DOI: 10.1002/prot.26482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
The transactive response (TAR) DNA/RNA-binding protein 43 (TDP-43) can self-assemble into both functional stress granules via liquid-liquid phase separation (LLPS) and pathogenic amyloid fibrillary aggregates that are closely linked to amyotrophic lateral sclerosis. Previous experimental studies reported that the low complexity domain (LCD) of TDP-43 plays an essential role in the LLPS and aggregation of the full-length protein, and it alone can also undergo LLPS to form liquid droplets mainly via intermolecular interactions in the 321-340 region. And the ALS-associated M337V mutation impairs LCD's LLPS and facilitates liquid-solid phase transition. However, the underlying atomistic mechanism is not well understood. Herein, as a first step to understand the M337V-caused LLPS disruption of TDP-43 LCD mediated by the 321-340 region and the fibrillization enhancement, we investigated the conformational properties of monomer/dimer of TDP-43321-340 peptide and its M337V mutant by performing extensive all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations demonstrate that M337V mutation alters the residue regions with high helix/β-structure propensities and thus affects the conformational ensembles of both monomer and dimer. M337V mutation inhibits helix formation in the N-terminal Ala-rich region and the C-terminal mutation site region, while facilitating their long β-sheet formation, albeit with a minor impact on the average probability of both helix structure and β-structure. Further analysis of dimer system shows that M337V mutation disrupts inter-molecular helix-helix interactions and W334-W334 π-π stacking interactions which were reported to be important for the LLPS of TDP-43 LCD, whereas enhances the overall peptide residue-residue interactions and weakens peptide-water interactions, which is conducive to peptide fibrillization. This study provides mechanistic insights into the M337V-mutation-induced impairment of phase separation and facilitation of fibril formation of TDP-43 LCD.
Collapse
Affiliation(s)
- Jiyuan Zeng
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
3
|
Ingólfsson HI, Rizuan A, Liu X, Mohanty P, Souza PCT, Marrink SJ, Bowers MT, Mittal J, Berry J. Multiscale simulations reveal TDP-43 molecular-level interactions driving condensation. Biophys J 2023; 122:4370-4381. [PMID: 37853696 PMCID: PMC10720261 DOI: 10.1016/j.bpj.2023.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/27/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
The RNA-binding protein TDP-43 is associated with mRNA processing and transport from the nucleus to the cytoplasm. TDP-43 localizes in the nucleus as well as accumulating in cytoplasmic condensates such as stress granules. Aggregation and formation of amyloid-like fibrils of cytoplasmic TDP-43 are hallmarks of numerous neurodegenerative diseases, most strikingly present in >90% of amyotrophic lateral sclerosis (ALS) patients. If excessive accumulation of cytoplasmic TDP-43 causes, or is caused by, neurodegeneration is presently not known. In this work, we use molecular dynamics simulations at multiple resolutions to explore TDP-43 self- and cross-interaction dynamics. A full-length molecular model of TDP-43, all 414 amino acids, was constructed from select structures of the protein functional domains (N-terminal domain, and two RNA recognition motifs, RRM1 and RRM2) and modeling of disordered connecting loops and the low complexity glycine-rich C-terminus domain. All-atom CHARMM36m simulations of single TDP-43 proteins served as guides to construct a coarse-grained Martini 3 model of TDP-43. The Martini model and a coarser implicit solvent C⍺ model, optimized for disordered proteins, were subsequently used to probe TDP-43 interactions; self-interactions from single-chain full-length TDP-43 simulations, cross-interactions from simulations with two proteins and simulations with assemblies of dozens to hundreds of proteins. Our findings illustrate the utility of different modeling scales for accessing TDP-43 molecular-level interactions and suggest that TDP-43 has numerous interaction preferences or patterns, exhibiting an overall strong, but dynamic, association and driving the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California.
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas
| | - Xikun Liu
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California; Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS & University of Lyon, Lyon, France; Laboratory of Biology and Modeling of the Cell, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239 and Inserm U1293, 46 Allée d'Italie, Lyon, France
| | - Siewert J Marrink
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Michael T Bowers
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas; Department of Chemistry, Texas A&M University, College Station, Texas; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas
| | - Joel Berry
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| |
Collapse
|
4
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Doke AA, Jha SK. Shapeshifter TDP-43: Molecular mechanism of structural polymorphism, aggregation, phase separation and their modulators. Biophys Chem 2023; 295:106972. [PMID: 36812677 DOI: 10.1016/j.bpc.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
TDP-43 is a nucleic acid-binding protein that performs physiologically essential functions and is known to undergo phase separation and aggregation during stress. Initial observations have shown that TDP-43 forms heterogeneous assemblies, including monomer, dimer, oligomers, aggregates, phase-separated assemblies, etc. However, the significance of each assembly of TDP-43 concerning its function, phase separation, and aggregation is poorly known. Furthermore, how different assemblies of TDP-43 are related to each other is unclear. In this review, we focus on the various assemblies of TDP-43 and discuss the plausible origin of the structural heterogeneity of TDP-43. TDP-43 is involved in multiple physiological processes like phase separation, aggregation, prion-like seeding, and performing physiological functions. However, the molecular mechanism behind the physiological process performed by TDP-43 is not well understood. The current review discusses the plausible molecular mechanism of phase separation, aggregation, and prion-like propagation of TDP-43.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Liu X, Li X, Qiao Q, Li F, Wei G. ALS-Linked A315T and A315E Mutations Enhance β-Barrel Formation of the TDP-43 307-319 Hexamer: A REST2 Simulation Study. ACS Chem Neurosci 2023; 14:1310-1320. [PMID: 36888995 DOI: 10.1021/acschemneuro.3c00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Pathogenic mutations of transactivation response element DNA-binding protein 43 (TDP-43) are closely linked with amyotrophic lateral sclerosis (ALS). It was recently reported that two ALS-linked familial mutants A315T and A315E of TDP-43307-319 peptides can self-assemble into oligomers including tetramers, hexamers, and octamers, among which hexamers were suggested to form the β-barrel structure. However, due to the transient nature of oligomers, their conformational properties and the atomic mechanisms underlying the β-barrel formation remain largely elusive. Herein, we investigated the hexameric conformational distributions of the wild-type (WT) TDP-43307-319 fragment and its A315T and A315E mutants by performing all-atom explicit-solvent replica exchange with solute tempering 2 simulations. Our simulations reveal that each peptide can self-assemble into diverse conformations including ordered β-barrels, bilayer β-sheets and/or monolayer β-sheets, and disordered complexes. A315T and A315E mutants display higher propensity to form β-barrel structures than the WT, which provides atomic explanation for their enhanced neurotoxicity reported previously. Detailed interaction analysis shows that A315T and A315E mutations increase inter-molecular interactions. Also, the β-barrel structures formed by the three different peptides are stabilized by distinct inter-peptide side-chain hydrogen bonding, hydrophobic, and aromatic stacking interactions. This study demonstrates the enhanced β-barrel formation of the TDP-43307-319 hexamer by the pathogenic A315T and A315E mutations and reveals the underlying molecular determinants, which may be helpful for in-depth understanding of the ALS-mutation-induced neurotoxicity of TDP-43 protein.
Collapse
Affiliation(s)
- Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qin Qiao
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| |
Collapse
|
7
|
Role of Triggers on the Structural and Functional Facets of TAR DNA-binding Protein 43. Neuroscience 2023; 511:110-130. [PMID: 36442745 DOI: 10.1016/j.neuroscience.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Nuclear TAR DNA-binding protein 43 (TDP-43) mitigates cellular function, but the dynamic nucleus-cytoplasm shuttling of TDP-43 is disrupted in diseases, such as Amyotrophic Lateral Sclerosis (ALS). The polymorphic nature of the TDP-43 structures in vitro and in vivo is a result of environmental factors leading to the protein pathogenesis. Once the triggers which mitigate TDP-43 biochemistry are identified, new therapies can be developed. This review aims to illustrate recent discoveries in the diversity of TDP-43 structures (amyloidogenic and non-amyloidogenic) and highlight the triggers which result in their formation.
Collapse
|
8
|
Chiang WC, Fang YS, Lye YS, Weng TY, Ganesan K, Huang SH, Chang LY, Chou SC, Chen YR. Hyperphosphorylation-Mimetic TDP-43 Drives Amyloid Formation and Possesses Neuronal Toxicity at the Oligomeric Stage. ACS Chem Neurosci 2022; 13:2599-2612. [PMID: 36007056 DOI: 10.1021/acschemneuro.1c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TDP-43 proteinopathies cover a range of neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Hyperphosphorylated TDP-43 was found within the inclusion bodies in disease lesions; however, the role of hyperphosphorylation and the toxic species are still ambiguous. To characterize the hyperphosphorylation effect of TDP-43, here, we employed five serine mutations implicated in the diseases at serine locations 379, 403, 404, 409, and 410 in the C-terminus to aspartate (S5D) and to alanine (S5A). We systematically characterized the conformation, liquid-liquid phase separation, oligomerization, and fibrillization of TDP-43 variants. Results revealed that the recombinant TDP-43 variants readily formed structurally similar spherical oligomers, as evidenced by circular dichroism spectroscopy, fluorescence spectroscopy, the TDP-43 oligomer-specific antibody assay, dynamic light scattering, and transmission electron microscopy. After incubation, only the phosphor-mimic S5D TDP-43 formed thioflavin-positive amyloid fibrils, whereas wild-type and S5A TDP-43 formed amorphous aggregates. We also examined membrane disruption, the cytotoxicity of human neuroblastoma, and the synaptic loss of primary neurons induced by oligomers and large aggregates of TDP-43. The results showed that all oligomeric TDP-43 variants were toxic regardless of hyperphosphorylation, but the fibrils and amorphous aggregates were not. Overall, our results demonstrated the hyperphosphorylation effect on fibril formation and the toxicity attributed from TDP-43 oligomers. This study facilitates the understanding and therapeutic development for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Wan-Chin Chiang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Yu-Sheng Fang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang-Fu Rd., Sec. 2., Hsinchu 30013, Taiwan
| | - Yuh Shen Lye
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Yu Weng
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Kiruthika Ganesan
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Shih-Han Huang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Lan-Yun Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Shih-Chieh Chou
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang-Fu Rd., Sec. 2., Hsinchu 30013, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Liu X, Lao Z, Li X, Dong X, Wei G. ALS-associated A315E and A315pT variants exhibit distinct mechanisms in inducing irreversible aggregation of TDP-43 312-317 peptides. Phys Chem Chem Phys 2022; 24:16263-16273. [PMID: 35758309 DOI: 10.1039/d2cp01625g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is intensively associated with insoluble aggregates formed by transactivation response element DNA-binding protein 43 (TDP-43) in the cytoplasm of neuron cells. A recent experimental study reported that two ALS-linked familial variants, A315E and A315pT (pT, phosphorylated threonine), can induce irreversible aggregation of the TDP-43 312NFGAFS317 segment (TDP-43312-317). However, the underlying molecular mechanism remains largely elusive. Here, we investigated the early aggregation process of the wild type (WT) 312NFGAFS317 segment and its A315E and A315pT variants by performing multiple microsecond all-atom molecular dynamics simulations. Our simulations show that the two variants display lower fluidity than WT, consistent with their decreased labilities observed in previous denaturation assay experiments. Despite each of the two variants carrying one negative charge, unexpectedly, we find that both A315E mutation and A315pT phosphorylation enhance intermolecular interactions and result in the formation of more compact oligomers. Compared to WT, A315E oligomers possess low β-sheet content but a compact hydrophobic core, while A315pT oligomers have high β-sheet content and large β-sheets. Side chain hydrogen-bonding and hydrophobic interactions as well as N312-E315 salt bridges contribute most to the increased aggregation propensity of the A315E mutant. By contrast, main chain and side chain hydrogen-bonding interactions, side chain hydrophobic and aromatic interactions, are crucial to the enhanced aggregation capability of the A315pT variant. These results indicate that glutamate mutation and phosphorylation at position 315 induce the irreversible aggregation of TDP-43312-317 peptides through differential mechanisms, which remind us that we should be careful in the investigation of the phosphorylation effect on protein aggregation by using phosphomimetic substitutions. This study provides mechanistic insights into the A315E/A315pT-induced irreversible aggregation of TDP-43312-317, which may be helpful for the in-depth understanding of ALS-mutation/phosphorylation-associated liquid-to-solid phase transition of TDP-43 protein aggregates.
Collapse
Affiliation(s)
- Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| | - Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
10
|
Zhao C, Liao Y, Rahaman A, Kumar V. Towards Understanding the Relationship Between ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:892518. [PMID: 35783140 PMCID: PMC9248913 DOI: 10.3389/fnagi.2022.892518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Biological stress due to the aberrant buildup of misfolded/unfolded proteins in the endoplasmic reticulum (ER) is considered a key reason behind many human neurodegenerative diseases. Cells adapted to ER stress through the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by degeneration of the motor system. It has largely been known that ER stress plays an important role in the pathogenesis of ALS through the dysregulation of proteostasis. Moreover, accumulating evidence indicates that ER stress and UPR are important players in TDP-43 pathology. In this mini-review, the complex interplay between ER stress and the UPR in ALS and TDP-43 pathology will be explored by taking into account the studies from in vitro and in vivo models of ALS. We also discuss therapeutic strategies to control levels of ER stress and UPR signaling components that have contrasting effects on ALS pathogenesis.
Collapse
Affiliation(s)
- Chenxuan Zhao
- School of Engineering, College of Technology and Business, Guangzhou, China
| | - Yong Liao
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
- *Correspondence: Yong Liao Vijay Kumar
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, India
- *Correspondence: Yong Liao Vijay Kumar
| |
Collapse
|
11
|
Rizzuti B. Molecular simulations of proteins: From simplified physical interactions to complex biological phenomena. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140757. [PMID: 35051666 DOI: 10.1016/j.bbapap.2022.140757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Abstract
Molecular dynamics simulation is the most popular computational technique for investigating the structural and dynamical behaviour of proteins, in search of the molecular basis of their function. Far from being a completely settled field of research, simulations are still evolving to best capture the essential features of the atomic interactions that govern a protein's inner motions. Modern force fields are becoming increasingly accurate in providing a physical description adequate to this purpose, and allow us to model complex biological systems under fairly realistic conditions. Furthermore, the use of accelerated sampling techniques is improving our access to the observation of progressively larger molecular structures, longer time scales, and more hidden functional events. In this review, the basic principles of molecular dynamics simulations and a number of key applications in the area of protein science are summarized, and some of the most important results are discussed. Examples include the study of the structure, dynamics and binding properties of 'difficult' targets, such as intrinsically disordered proteins and membrane receptors, and the investigation of challenging phenomena like hydration-driven processes and protein aggregation. The findings described provide an overall picture of the current state of this research field, and indicate new perspectives on the road ahead to the upcoming future of molecular simulations.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
12
|
Anjum F, Joshia N, Mohammad T, Shafie A, Alhumaydhi FA, Aljasir MA, Shahwan MJS, Abdullaev B, Adnan M, Elasbali AM, Pasupuleti VR, Hassan MI. Impact of Single Amino Acid Substitutions in Parkinsonism-Associated Deglycase-PARK7 and Their Association with Parkinson's Disease. J Pers Med 2022; 12:220. [PMID: 35207708 PMCID: PMC8878504 DOI: 10.3390/jpm12020220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Parkinsonism-associated deglycase-PARK7/DJ-1 (PARK7) is a multifunctional protein having significant roles in inflammatory and immune disorders and cell protection against oxidative stress. Mutations in PARK7 may result in the onset and progression of a few neurodegenerative disorders such as Parkinson's disease. This study has analyzed the non-synonymous single nucleotide polymorphisms (nsSNPs) resulting in single amino acid substitutions in PARK7 to explore its disease-causing variants and their structural dysfunctions. Initially, we retrieved the mutational dataset of PARK7 from the Ensembl database and performed detailed analyses using sequence-based and structure-based approaches. The pathogenicity of the PARK7 was then performed to distinguish the destabilizing/deleterious variants. Aggregation propensity, noncovalent interactions, packing density, and solvent accessible surface area analyses were carried out on the selected pathogenic mutations. The SODA study suggested that mutations in PARK7 result in aggregation, inducing disordered helix and altering the strand propensity. The effect of mutations alters the number of hydrogen bonds and hydrophobic interactions in PARK7, as calculated from the Arpeggio server. The study indicated that the alteration in the hydrophobic contacts and frustration of the protein could alter the stability of the missense variants of the PARK7, which might result in disease progression. This study provides a detailed understanding of the destabilizing effects of single amino acid substitutions in PARK7.
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Namrata Joshia
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (F.A.A.); (M.A.A.)
| | - Mohammad A. Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (F.A.A.); (M.A.A.)
| | - Moyad J. S. Shahwan
- College of Pharmacy & Health Sciences, Ajman University, Ajman 20550, United Arab Emirates;
| | - Bekhzod Abdullaev
- Scientific Department, Akfa University, Tashkent 100095, Uzbekistan;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail 55436, Saudi Arabia;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 44800, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Riau 28291, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Katti-genahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| |
Collapse
|
13
|
Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23010524. [PMID: 35008951 PMCID: PMC8745237 DOI: 10.3390/ijms23010524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.
Collapse
|
14
|
Grassmann G, Miotto M, Di Rienzo L, Salaris F, Silvestri B, Zacco E, Rosa A, Tartaglia GG, Ruocco G, Milanetti E. A Computational Approach to Investigate TDP-43 RNA-Recognition Motif 2 C-Terminal Fragments Aggregation in Amyotrophic Lateral Sclerosis. Biomolecules 2021; 11:1905. [PMID: 34944548 PMCID: PMC8699346 DOI: 10.3390/biom11121905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many of the molecular mechanisms underlying the pathological aggregation of proteins observed in neurodegenerative diseases are still not fully understood. Among the aggregate-associated diseases, Amyotrophic Lateral Sclerosis (ALS) is of relevant importance. In fact, although understanding the processes that cause the disease is still an open challenge, its relationship with protein aggregation is widely known. In particular, human TDP-43, an RNA/DNA binding protein, is a major component of the pathological cytoplasmic inclusions observed in ALS patients. Indeed, the deposition of the phosphorylated full-length TDP-43 in spinal cord cells has been widely studied. Moreover, it has also been shown that the brain cortex presents an accumulation of phosphorylated C-terminal fragments (CTFs). Even if it is debated whether the aggregation of CTFs represents a primary cause of ALS, it is a hallmark of TDP-43 related neurodegeneration in the brain. Here, we investigate the CTFs aggregation process, providing a computational model of interaction based on the evaluation of shape complementarity at the molecular interfaces. To this end, extensive Molecular Dynamics (MD) simulations were conducted for different types of protein fragments, with the aim of exploring the equilibrium conformations. Adopting a newly developed approach based on Zernike polynomials, able to find complementary regions in the molecular surface, we sampled a large set of solvent-exposed portions of CTFs structures as obtained from MD simulations. Our analysis proposes and assesses a set of possible association mechanisms between the CTFs, which could drive the aggregation process of the CTFs. To further evaluate the structural details of such associations, we perform molecular docking and additional MD simulations to propose possible complexes and assess their stability, focusing on complexes whose interacting regions are both characterized by a high shape complementarity and involve β3 and β5 strands at their interfaces.
Collapse
Affiliation(s)
- Greta Grassmann
- Department of Physics and Astronomy, University of Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy; or
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Mattia Miotto
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Lorenzo Di Rienzo
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Federico Salaris
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Beatrice Silvestri
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elsa Zacco
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy;
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy;
- Center for Human Technologies, Via Enrico Melen 83, 16152 Genova, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Wahiduzzaman, Kumar V, Anjum F, Shafie A, Elasbali AM, Islam A, Ahmad F, Hassan MI. Delineating the Aggregation-Prone Hotspot Regions (Peptides) in the Human Cu/Zn Superoxide Dismutase 1. ACS OMEGA 2021; 6:33985-33994. [PMID: 34926946 PMCID: PMC8675042 DOI: 10.1021/acsomega.1c05321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/19/2021] [Indexed: 02/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, incurable neurodegenerative disease described by progressive degeneration of motor neurons. The most common familial form of ALS (fALS) has been associated with mutations in the Cu/Zn superoxide dismutase (SOD1) gene. Mutation-induced misfolding and aggregation of SOD1 is often found in ALS patients. In this work, we probe the aggregation properties of peptides derived from the SOD1. To examine the source of SOD1 aggregation, we have employed a computational algorithm to identify four peptides from the SOD1 protein sequence that aggregates into a fibril. Aided by computational algorithms, we identified four peptides likely involved in SOD1 fibrillization. These four aggregation-prone peptides were 14VQGIINFE21, 30KVWGSIKGL38, 101DSVISLS107, and 147GVIGIAQ153. In addition, the formation of fibril propensities from the identified peptides was investigated through different biophysical techniques. The atomic structures of two fibril-forming peptides from the C-terminal SOD1 showed that the steric zippers formed by 101DSVISLS107 and 147GVIGIAQ153 vary in their arrangement. We also discovered that fALS mutations in the peptide 147GVIGIAQ153 increased the fibril-forming propensity and altered the steric zipper's packing. Thus, our results suggested that the C-terminal peptides of SOD1 have a central role in amyloid formation and might be involved in forming the structural core of SOD1 aggregation observed in vivo.
Collapse
Affiliation(s)
- Wahiduzzaman
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Vijay Kumar
- Amity
Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India
| | - Farah Anjum
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alaa Shafie
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Clinical
Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
16
|
Esposto JC, Martic S. Phosphorylated TAR DNA-Binding Protein-43: Aggregation and Antibody-Based Inhibition. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166234. [PMID: 34339840 DOI: 10.1016/j.bbadis.2021.166234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
TAR DNA-binding protein-43 (TDP-43) pathology, including fibrillar aggregates and mutations, develops in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). Hyperphosphorylation and aggregation of TDP-43 contribute to pathology and are viable therapeutic targets for ALS. In vivo inhibition of TDP-43 aggregation was evaluated using anti-TDP-43 antibodies with promising outcomes. However, the exact mechanism of antibody-based inhibition targeting TDP-43 is not well understood but may lead to the identification of viable immunotherapies. Herein, the mechanism of in vitro aggregation of phosphorylated TDP-43 was explored, and the anti-TDP-43 antibodies tested for their inhibitor efficacies. Specifically, the aggregation of phosphorylated full-length TDP-43 protein (pS410) was monitored by transmission electron microscopy (TEM), turbidity absorbance, and thioflavin (ThT). The protein aggregates were insoluble, ThT-positive and characterized with heterogeneous morphologies (fibers, amorphous structures). Antibodies specific to epitopes 178-393 and 256-269, within the RRM2-CTD domain, reduced the formation of β-sheets and insoluble aggregates, at low antibody loading (antibody: protein ratio = 1 ug/mL: 45 ug/mL). Inhibition outcomes were highly dependent on the type and loading of antibodies, indicating dual functionality of such inhibitors, as aggregation inhibitors or aggregation promoters. Anti-SOD1 and anti-tau antibodies were not effective inhibitors against TDP-43 aggregation, indicating selective inhibition.
Collapse
Affiliation(s)
- Josephine C Esposto
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada K9L 0G2.
| | - Sanela Martic
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada K9L 0G2.
| |
Collapse
|
17
|
Grishin SY, Dzhus UF, Glukhov AS, Selivanova OM, Surin AK, Galzitskaya OV. Identification of Amyloidogenic Regions in Pseudomonas aeruginosa Ribosomal S1 Protein. Int J Mol Sci 2021; 22:ijms22147291. [PMID: 34298910 PMCID: PMC8305250 DOI: 10.3390/ijms22147291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S ribosomal subunit and is also able to interact with mRNA and tmRNA. An important feature of the S1 protein family is a strong tendency towards aggregation. To study the amyloidogenic properties of S1, we isolated and purified the recombinant ribosomal S1 protein of Pseudomonas aeruginosa. Using the FoldAmyloid, Waltz, Pasta 2.0, and AGGRESCAN programs, amyloidogenic regions of the protein were predicted, which play a key role in its aggregation. The method of limited proteolysis in combination with high performance liquid chromatography and mass spectrometric analysis of the products, made it possible to identify regions of the S1 protein from P. aeruginosa that are protected from the action of proteinase K, trypsin, and chymotrypsin. Sequences of theoretically predicted and experimentally identified amyloidogenic regions were used to synthesize four peptides, three of which demonstrated the ability to form amyloid-like fibrils, as shown by electron microscopy and fluorescence spectroscopy. The identified amyloidogenic sites can further serve as a basis for the development of new antibacterial peptides against the pathogenic microorganism P. aeruginosa.
Collapse
Affiliation(s)
- Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Ulyana F. Dzhus
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Anatoly S. Glukhov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence:
| |
Collapse
|
18
|
Jin Y, Vadukul DM, Gialama D, Ge Y, Thrush R, White JT, Aprile FA. The Diagnostic Potential of Amyloidogenic Proteins. Int J Mol Sci 2021; 22:4128. [PMID: 33923609 PMCID: PMC8074075 DOI: 10.3390/ijms22084128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Antonio Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (Y.J.); (D.M.V.); (D.G.); (Y.G.); (R.T.); (J.T.W.)
| |
Collapse
|
19
|
Erickson DP, Dunbar M, Hamed E, Ozturk OK, Campanella OH, Keten S, Hamaker BR. Atomistic Modeling of Peptide Aggregation and β-Sheet Structuring in Corn Zein for Viscoelasticity. Biomacromolecules 2021; 22:1856-1866. [PMID: 33844506 DOI: 10.1021/acs.biomac.0c01558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure-function relationships of plant-based proteins that give rise to desirable texture attributes in order to mimic meat products are generally unknown. In particular, it is not clear how to engineer viscoelasticity to impart cohesiveness and proper mouthfeel; however, it is known that intermolecular β-sheet structures have the potential to enhance the viscoelastic property. Here, we investigated the propensity of selected peptide segments within common corn α-zein variants to maintain stable aggregates and β-sheet structures. Simulations on dimer systems showed that stability was influenced by the initial orientation and the presence of contiguous small hydrophobic residues. Simulations using eight-peptide β-sheet oligomers revealed that peptide sequences without proline had higher levels of β-sheet structuring. Additionally, we identified that sequences with a dimer hydrogen-bonding density of >22% tended to have a larger percent β-sheet conformation. These results contribute to understanding how the viscoelasticity of zein can be increased for use in plant-based meat analogues.
Collapse
Affiliation(s)
- Daniel P Erickson
- Whistler Center for Carbohydrate Research, Purdue University, 745 Agricultural Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907, United States
| | - Martha Dunbar
- Department of Civil and Environmental Engineering and Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Tech A133, Evanston, Illinois 60208, United States
| | - Elham Hamed
- Department of Civil and Environmental Engineering and Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Tech A133, Evanston, Illinois 60208, United States
| | - Oguz K Ozturk
- Whistler Center for Carbohydrate Research, Purdue University, 745 Agricultural Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907, United States
| | - Osvaldo H Campanella
- Whistler Center for Carbohydrate Research, Purdue University, 745 Agricultural Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, Columbus, Ohio 43210, United States
| | - Sinan Keten
- Department of Civil and Environmental Engineering and Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Tech A133, Evanston, Illinois 60208, United States
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, 745 Agricultural Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Fazal R, Boeynaems S, Swijsen A, De Decker M, Fumagalli L, Moisse M, Vanneste J, Guo W, Boon R, Vercruysse T, Eggermont K, Swinnen B, Beckers J, Pakravan D, Vandoorne T, Vanden Berghe P, Verfaillie C, Van Den Bosch L, Van Damme P. HDAC6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations. EMBO J 2021; 40:e106177. [PMID: 33694180 PMCID: PMC8013789 DOI: 10.15252/embj.2020106177] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments, and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.
Collapse
Affiliation(s)
- Raheem Fazal
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Steven Boeynaems
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Ann Swijsen
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Mathias De Decker
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Joni Vanneste
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Wenting Guo
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Ruben Boon
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Thomas Vercruysse
- Department of Microbiology, Immunology and TransplantationLaboratory of Virology and ChemotherapyRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Donya Pakravan
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Tijs Vandoorne
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Pieter Vanden Berghe
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research in GastroIntestinal Disorders, KU LeuvenLeuvenBelgium
| | - Catherine Verfaillie
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
21
|
Prabakaran R, Rawat P, Thangakani AM, Kumar S, Gromiha MM. Protein aggregation: in silico algorithms and applications. Biophys Rev 2021; 13:71-89. [PMID: 33747245 PMCID: PMC7930180 DOI: 10.1007/s12551-021-00778-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/01/2021] [Indexed: 01/08/2023] Open
Abstract
Protein aggregation is a topic of immense interest to the scientific community due to its role in several neurodegenerative diseases/disorders and industrial importance. Several in silico techniques, tools, and algorithms have been developed to predict aggregation in proteins and understand the aggregation mechanisms. This review attempts to provide an essence of the vast developments in in silico approaches, resources available, and future perspectives. It reviews aggregation-related databases, mechanistic models (aggregation-prone region and aggregation propensity prediction), kinetic models (aggregation rate prediction), and molecular dynamics studies related to aggregation. With a multitude of prediction models related to aggregation already available to the scientific community, the field of protein aggregation is rapidly maturing to tackle new applications.
Collapse
Affiliation(s)
- R. Prabakaran
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu India
| | - Puneet Rawat
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu India
| | - A. Mary Thangakani
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu India
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT USA
| | - M. Michael Gromiha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu India
- School of Computing, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| |
Collapse
|
22
|
Prakash A, Kumar V, Banerjee A, Lynn AM, Prasad R. Structural heterogeneity in RNA recognition motif 2 (RRM2) of TAR DNA-binding protein 43 (TDP-43): clue to amyotrophic lateral sclerosis. J Biomol Struct Dyn 2020; 39:357-367. [DOI: 10.1080/07391102.2020.1714481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Atanu Banerjee
- Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon, India
| | - Andrew M. Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University, Gurgaon, India
| |
Collapse
|
23
|
Specific keratinase derived designer peptides potently inhibit Aβ aggregation resulting in reduced neuronal toxicity and apoptosis. Biochem J 2019; 476:1817-1841. [DOI: 10.1042/bcj20190183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Compelling evidence implicates self-assembly of amyloid-β (Aβ1–42) peptides into soluble oligomers and fibrils as a major underlying event in Alzheimer's disease (AD) pathogenesis. Herein, we employed amyloid-degrading keratinase (kerA) enzyme as a key Aβ1–42-binding scaffold to identify five keratinase-guided peptides (KgPs) capable of interacting with and altering amyloidogenic conversion of Aβ1–42. The KgPs showed micromolar affinities with Aβ1–42 and abolished its sigmoidal amyloidogenic transition, resulting in abrogation of fibrillogenesis. Comprehensive assessment using dynamic light scattering (DLS), atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy showed that KgPs induced the formation of off-pathway oligomers comparatively larger than the native Aβ1–42 oligomers but with a significantly reduced cross-β signature. These off-pathway oligomers exhibited low immunoreactivity against oligomer-specific (A11) and fibril-specific (OC) antibodies and rescued neuronal cells from Aβ1–42 oligomer toxicity as well as neuronal apoptosis. Structural analysis using molecular docking and molecular dynamics (MD) simulations showed two preferred KgP binding sites (Lys16–Phe20 and Leu28–Val39) on the NMR ensembles of monomeric and fibrillar Aβ1–42, indicating an interruption of crucial hydrophobic and aromatic interactions. Overall, our results demonstrate a new approach for designing potential anti-amyloid molecules that could pave way for developing effective therapeutics against AD and other amyloid diseases.
Collapse
|
24
|
RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation. Sci Rep 2019; 9:6171. [PMID: 30992467 PMCID: PMC6467989 DOI: 10.1038/s41598-019-42367-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression, dysfunction and particularly aggregation of a group of RNA-binding proteins, including TDP-43, FUS and RBM45, are associated with neurological disorders. These three disease-linked RNA-binding proteins all contain at least one RNA recognition motif (RRM). However, it is not clear if these RRMs contribute to their aggregation-prone character. Here, we compare the biophysical and fibril formation properties of five RRMs from disease-linked RNA-binding proteins and five RRMs from non-disease-associated proteins to determine if disease-linked RRMs share specific features making them prone to self-assembly. We found that most of the disease-linked RRMs exhibit reversible thermal unfolding and refolding, and have a slightly lower average thermal melting point compared to that of normal RRMs. The full domain of TDP-43 RRM1 and FUS RRM, as well as the β-peptides from these two RRMs, could self-assemble into fibril-like aggregates which are amyloids of parallel β-sheets as verified by X-ray diffraction and FT-IR spectroscopy. Our results suggest that some disease-linked RRMs indeed play important roles in amyloid formation and shed light on why RNA-binding proteins with RRMs are frequently identified in the cellular inclusions of neurodegenerative diseases.
Collapse
|